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Abstract: Diabetes has been shown to accelerate vascular senescence, which is associated with chronic
inflammation and oxidative stress, both implicated in the development of endothelial dysfunction.
This condition represents the initial alteration linking diabetes to related cardiovascular (CV) com-
plications. Recently, it has been hypothesised that the acetyltransferase, p300, may contribute to
establishing an early vascular senescent phenotype, playing a relevant role in diabetes-associated in-
flammation and oxidative stress, which drive endothelial dysfunction. Specifically, p300 can modulate
vascular inflammation through epigenetic mechanisms and transcription factors acetylation. Indeed,
it regulates the inflammatory pathway by interacting with nuclear factor kappa-light-chain-enhancer
of activated B cells p65 subunit (NF-κB p65) or by inducing its acetylation, suggesting a crucial role of
p300 as a bridge between NF-κB p65 and the transcriptional machinery. Additionally, p300-mediated
epigenetic modifications could be upstream of the activation of inflammatory cytokines, and they
may induce oxidative stress by affecting the production of reactive oxygen species (ROS). Because
several in vitro and in vivo studies shed light on the potential use of acetyltransferase inhibitors, a
better understanding of the mechanisms underlying the role of p300 in diabetic vascular dysfunction
could help in finding new strategies for the clinical management of CV diseases related to diabetes.

Keywords: diabetes; cardiovascular disease; endothelial dysfunction; senescence; p300; epigenetics;
inflammation; oxidative stress

1. Cardiovascular Disease and Diabetes

Cardiovascular diseases (CVDs) are the main causes of death and disability among
patients with diabetes. This was confirmed by a meta-analysis of 102 prospective studies,
showing that diabetes confers a two-fold excess risk in adverse vascular outcomes, indepen-
dently of other risk factors. CV complications associated with diabetes can be classified as
microvascular, such as nephropathy and retinopathy, which are major causes of kidney dis-
ease and blindness, respectively, or macrovascular complications, including ischaemic heart
disease, heart failure, stroke, coronary artery disease and peripheral artery disease [1–3].
Specifically, macrovascular damage in diabetes is characterised by atherosclerotic disease
affecting coronary, cerebral and peripheral arteries [4].

Diabetes-associated endothelial dysfunction is one of the most critical initiating trig-
gers of vascular complications and, therefore, an important predictor of the onset of CVD.

This is a very complex process orchestrated by several factors, such as hypergly-
caemia, dyslipidaemia, free fatty acids and insulin resistance, which impair the normal
functionality of the endothelium by promoting inflammation, oxidative stress, thrombosis,
arterial stiffness and the impaired regulation of arterial tone and flow [4]. All these factors
contribute to generating an imbalance between vasodilating and vasoconstricting factors,
favouring proinflammatory and prothrombotic effects that promote atherosclerosis. In
detail, hyperglycaemia can induce a series of cellular events that increase the production
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of ROS, such as superoxide anion, which induces oxidative stress and, in turn, leads to a
reduced NO bioavailability [5].

In addition to impaired vasodilation, diabetes is also associated with increased circu-
lating levels of endothelium-derived adhesion molecules, plasminogen activator inhibitor-1
and high triglyceride levels, which denote a proinflammatory endothelial phenotype. In-
flammation is also driven by the increase in advanced glycation end products (AGEs),
which result from the overproduction of mitochondrial superoxide anion. Diabetes is
also characterised by high circulating levels of free fatty acids, which may compromise
endothelial function through the activation of protein kinase C and the dysregulation of
insulin pathway transduction.

All these processes exacerbate vascular inflammation and are characterised by the
increased expression of several cytokines, such as Vascular cell adhesion molecule 1 (VCAM-
1), E-selectin, Intercellular adhesion molecule-1 (ICAM-1), Interleukin-6 (IL-6), IL-1 and IL-8
and Monocyte chemoattractant protein-1 (MCP-1), facilitating the adhesion of monocytes,
neutrophils and macrophages to the endothelium and, consequently, the formation of
atherosclerotic plaque [6–14].

Although diabetes management has improved, the prevention and control of cardiovas-
cular complications represent the main target of diabetes therapy [15], and the mechanisms by
which hyperglycaemia contributes to CV system alteration need further elucidation.

Diabetic patients present dysfunction of multiple organ systems similar to that ob-
served in chronological ageing, suggesting that this metabolic disease might induce an
early ageing state associated with early vascular senescence, implicated in the development
of endothelial dysfunction [16–23]. Therefore, a deep understanding of the molecular
mechanisms underlying diabetic premature vascular senescence could lead to identifying
new potential targets in order to control the progression of vascular damage in diabetes.

2. Cardiovascular Senescence and Diabetes

Cellular senescence is an irreversible arrest of the cell cycle, which has the purpose of
repairing or eliminating damaged cells by restoring tissue homeostasis [24–26]. However,
senescent cells can significantly increase, leading to biological ageing and the development
of diseases. The process of senescence is triggered by various intrinsic and extrinsic stimuli,
including genomic instability, epigenetic alterations, telomere modifications, mitochondrial
dysfunction, stem cell exhaustion, mitogenic signals, oncogenic activation, radiation, oxida-
tive stress, inflammation, tissue damage signals and nutrient deprivation [27]. All these
stimuli lead to the upregulation of p53/p21, proteins with a central role in DNA repair and
cell cycle regulation, p16/retinoblastoma protein (Rb) pathway activation and markers asso-
ciated with activation of the DNA damage response (DDR), such as p38 mitogen-activated
protein kinase (MAPK) and phosphorylated histone 2AX (cH2AX) [28,29].

Age increases the susceptibility to a wide variety of diseases, which can be considered
as degenerative pathologies because they lead to the tissues’ normal functionality loss.
Examples include neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s
disease, Huntington’s disease, cardiovascular disease, musculoskeletal decrements and
cancer [30,31]. Furthermore, evidence has shown that the senescence-associated secretory
phenotype (SASP) can promote malignant phenotypes in culture and tumour growth
in vivo [32]. Moreover, the accumulation of senescent cells has been also associated with
the accelerated degeneration of bones and joints and skeletal muscle frailty [33].

Senescence has also been shown to be key in the pathophysiology of CVDs, such as
atherosclerosis, myocardial infarction and cardiac fibrosis. Indeed, it was found that cardiac
cells exhibit a SASP, which induces the release of soluble signalling factors, proteases and
extracellular matrix (ECM) components in the surrounding environment that contribute to
cardiovascular damage initiation and progression [34,35].

Numerous studies have shown that cardiovascular ageing is largely characterised
by cardiomyocyte hypertrophy, increased senescence, cardiac fibroblast and endothelial
dysfunction and decreased cardiac function. In particular, senescent cardiomyocytes
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show augmented cellular stressors, such as inflammation, ROS levels, DNA damage,
endoplasmic reticulum stress, mitochondrial dysfunction, telomere shortening and SASP.
All these factors determine contractile dysfunction loss and hypertrophic growth, which
negatively affect myocardial function [35–39]. Of note, it was observed that patients who
develop ventricular arrhythmias after acute myocardial infarction exhibit cardiomyocytes
with a senescent phenotype characterised by increased telomere shortening [40]. Moreover,
human appendages from patients with atrial fibrillation (AF) and in sinus rhythm show a
higher expression of senescence markers such as p53 and p16 compared to controls, which
correlate with prothrombotic and inflammatory protein expression, providing evidence of
a strong correlation between AF progression and human atrial senescence [41].

In addition, an ageing heart may undergo fibrotic remodelling with senescent fibrob-
lasts showing changes in the expression of genes regulating inflammation, extracellular
matrix organization and angiogenesis. This leads to a higher proinflammatory response,
autophagy and contractile dysfunction [42,43].

Senescence could also alter myofibroblast functionality: several studies have shown that
senescent myofibroblasts, positive to senescence-associated beta-galactosidase (SA-β-gal), accu-
mulate in the perivascular fibrotic areas of transverse aortic constriction-treated mice [44,45]
and in the heart after myocardial infarction [45]. This was accompanied by the upregulation
of the senescence regulator, p53, which was significantly upregulated in the infarcted heart
or hypoxia-treated fibroblasts [45].

The dysregulation of p53 also appears to be involved in other age-related pathologies,
such as hypertrophy cardiopathy. Specifically, it was found that p53 upregulation in
pathological hypertrophy leads to the ubiquitylation and proteasomal degradation of
Hypoxia-inducible factor 1α (HIF1α) through the E3 ubiquitin-protein ligase, MDM2,
promoting heart failure [46–48].

Several pieces of evidence have demonstrated that senescence plays a key role in
promoting vascular EC dysfunction through the dysregulation of the cell cycle, oxidative
stress, altered calcium signalling and vascular inflammation (Figure 1). Senescent EC usu-
ally shows a flatter and enlarged phenotype with a polypoid nucleus. These changes could
affect cytoskeleton structure, angiogenesis, proliferation and cell migration [18,20,49–51].
Of note, senescent EC shows increased endothelin-1 (ET-1), which promotes inflammation,
the impairment of vascular relaxation and collagen accumulation [34,52–54]. At the same
time inflammation, oxidative stress and reduced NO availability represent the main drivers
of EC senescence, as reported in a recent study showing that prolonged Tumour Necrosis
Factor α (TNF-α) exposure induces EC premature senescence, which is then blunted by the
inhibition of NF-κB activation [20,55–57].

Diabetes, which is strictly associated with inflammation, oxidative stress and im-
paired endothelial function, has also been shown to accelerate vascular senescence and,
consequently, favour the occurrence of CVD [19–22,58].

Several in vitro studies demonstrated that high-glucose-induced senescence in EC is
accompanied by a reduction in NO synthesis [59,60], and interestingly, the upregulated
expression of p22phox, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
component, which increases superoxide production, seems to be involved [61]. Moreover,
high blood glucose levels also promote the accumulation of advanced glycation end prod-
ucts (AGEs) and, consequently, an increase in glycated proteins [62]. The latter has been
associated with premature EC senescence and a reduction in NO bioavailability despite a
three-fold increase in endothelial nitric oxide synthase (eNOS) expression [63].

Of note, animal models, such as Zucker diabetic rats and streptozotocin diabetic
mice, show vascular cell senescence associated with an increase in SA β-Gal activity and
p16INK4a and p53 expression [64–70].
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Figure 1. Endothelial cell senescence: Senescence is triggered by various stimuli, including changes
in telomeric structure, oxidative stress, mitochondrial dysfunction, inflammation and DNA damage,
which contribute to cell cycle arrest through the activation of the p53/p21CIP1 or p16INK4A/hosphor-
Rb tumour suppressor pathways. In addition, senescent cells exhibit activation of the senescence-
associated secretory phenotype (SASP) characterised by the increased lysosomal activity and accumu-
lation of β-galactosidase. The SASP leads to the upregulation and release of growth factors, cytokines
and proteases that can exert detrimental effects.

In addition, several in vitro studies have highlighted the key role of the deacetylase
Sirtuin 1 (SIRT1) in p53 activation through the regulation of acetylation. Indeed, SIRT1
leads to the inactivation of p53-driven DNA damage responses, which plays a major role in
contributing to endothelial senescence [19,71–74]. Notably, the link between SIRT1 and p53
appears to be crucial in the phenomenon known as endothelial glycaemic memory, which,
as better described in the following paragraph, contributes to the occurrence of CVD in
diabetic patients, even when glycaemic control has been achieved [75,76].

Glycaemic Memory and Endothelial Senescence

The findings of the Diabetes Control and Complications Trial (DCCT), the follow-up
observational Epidemiology of Diabetes Interventions and Complications (EDIC) and
10-year UKPDS follow-up studies in patients with type 1 (T1D) or type 2 (T2D) diabetes
mellitus suggest that early exposure to hyperglycaemia prompts individuals to the develop-
ment of diabetic complications—a phenomenon referred to as glycaemic memory [75–77].
According to that, EC exposed to a hyperglycaemic environment keep showing an altered
phenotype even when an ideal glycaemic control has been achieved, contributing to the
development of vascular complications in diabetic patients [6,78–81].

Notably, post-translational modification, such as the acetylation of p53, has been
demonstrated to be involved in the “glycaemic memory” correlated with endothelial
senescence. In detail, a study conducted by Zhang and colleagues showed that transient
hyperglycaemic stress induces a persistent premature cellular senescence in EC, despite
the subsequent restoration of normoglycaemia. This phenomenon was mediated by the
deacetylase, SIRT1, and the acetyltransferase, p300, which modulate p53 activity. Specif-
ically, three days of high-glucose incubation followed by three days of normal glucose
induced a persistent downregulation of SIRT1 and the upregulation of acetyltransferase
p300, which in turn drives the hyperacetylation and activation of p53, contributing to the
maintenance of p53/p21-mediated senescent “memory” [73].

In this regard, our recent study contributed to strengthening the concept of the gly-
caemic memory of endothelial senescence. Thoroughly, we observed that EC isolated from
the umbilical cords of gestational diabetic (GD-HUVECs) women compared to EC isolated
from control women revealed an impaired antioxidant enzymatic defence, as well as in-
creased basal and stimulated ROS levels associated with decreased nuclear localization of
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nuclear factor erythroid 2–related factor 2 (Nrf2)—an essential transcriptional factor regulat-
ing the antioxidant defence gene expression [82]. Furthermore, we found that GD-HUVEC,
exposed to in vivo chronic hyperglycaemia, shows reduced SIRT1 activity, together with an
increase in p300-mediated p53 acetylation compared to control cells. Finally, in agreement
with the data from Zhang and colleagues, we demonstrated that p300 silencing reduced
both the high-glucose-increased protein levels of p300 and acetylated p53 in control cells
and their elevated basal levels in GD-cells, thus, indicating the possible involvement of
SIRT1/P300/P53/P21 pathway in the early senescent GD-HUVEC phenotype [80].

Furthermore, several studies highlighted the role of p300 in establishing glycaemic
memory also through epigenetic modifications, such as histone acetylation [79,83–86]. In the
DCCT and EDIC trials, chromatin and DNA analysis performed in T1D patients revealed
that monocytes from patients who developed complications during the subsequent EDIC
follow-up study showed significant enrichment of histone 3 lysine 9 acetylation (H3K9ac),
a gene-associated activation mark, located at key inflammatory loci [87,88]. In support
of this evidence, it has been observed that prolonged exposure to specific inflammatory
stimuli, such as TNF-α or lipopolysaccharides, determines an increase in histone 3 lysine 27
acetylation (H3K27ac) mediated by p300 at the gene enhancers imprinting a memory, which
induce these cells to respond faster and stronger to a second inflammatory stimulation [89].

Therefore, we believe that a deep discernment of p300 function in inflammation
and oxidative stress, the two main drivers of diabetes-related endothelial dysfunction, is
urgently needed to support new pre-clinical and clinical studies.

3. Protein Lysine Acetylation by p300 in Diabetes

Several studies have pointed out the key role of acetylation in diabetes [90], which is a
reversible reaction consisting of the transfer of an acetyl group from acetyl-coenzyme A
(acetyl-CoA) to the ε-amino group of lysine residues [91–93]. Histone lysine acetylation is
an epigenetic modification that is able to regulate gene transcriptional activity by inducing
chromatin relaxation [91]. However, lysine acetylation also occurs in non-histone proteins,
which modulate cellular processes, including gene transcription, cell cycle, cell division,
DNA damage repair, signalling transduction, protein folding, protein aggregation and
autophagy [94–96].

Acetylation is mainly controlled by histone acetyltransferases (HATs) and histone
deacetylases (HDACs). HATs are classified into the following families: general control
non-depressible 5 (GCN5), CREB-binding protein (CBP)/p300 and Moz, Ybf2/Sas3, Sas2
and Tip60 (MYST families). While the NAD+-dependent SIRT family is the most common
type of HDAC [97].

The acetyltransferase, p300, regulates several cellular processes, including prolifer-
ation, migration, differentiation, senescence and apoptosis [98–100]. It drives histone
acetylation, playing an important role as an epigenetic regulator through chromatin re-
modelling. In detail, p300 transfers the acetyl group from acetyl-CoA to histone lysine
residues, leading to chromatin relaxation, which makes DNA more accessible for gene
transcription [101,102]. It also functions as acetyltransferase for non-histone targets, such
as transcription factors, enhancing their DNA-binding activity [73,80,103,104].

Importantly, p300 is involved in regulating numerous transcription factors, including
NF-κB [105]. The N- and C-terminal domains of both CBP and p300 functionally interact
with the region of p65 containing the transcriptional activation domain, playing an impor-
tant role in the cytokine-induced expression of various immune and inflammatory genes
and ECM proteins [106–108]. p300 also regulates myocyte enhancing factor 2 (MEF2) and
GATA binding protein 4 (GATA4) [109]. Furthermore, p300 may control cellular processes
by regulating protein–protein interactions as a coactivator. It is the case of the hypoxia gene
transcription that requires the binding of p300 to hypoxia-inducible-factor-1alpha (HIF-
1alpha) and some inflammatory gene promoters, which are bound by the p65 interacting
with p300 [110–112].
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4. Role of p300 in Diabetic Cardiovascular Complications

Numerous studies have documented the physiological role of p300 in development
and heart diseases, such as accelerated cardiac hypertrophy, cardiomyopathy, matrix re-
modelling or fibrogenesis and heart failure [113]. The involvement of p300 acetyltransferase
activity in mammalian heart development was highlighted by studies showing that mice
with a mutation of p300, causing the lack of acetyltransferase domain, are characterised by
embryonic lethality [114] and cardiomyopathy-associated cardiac dysfunction [115].

Recently, lysine acetylation has emerged as a major mechanism underlying diabetic
vascular complications [116–120]. Indeed, supporting this idea, it has been demonstrated
that acetyltransferase p300 may accelerate cardiac ageing by affecting ECM remodelling.
This could be explained by the fact that p300 plays an essential role in profibrogenic
cytokine transforming growth factor beta (TGF-β)-induced synthesis of type I collagen. In
particular, the interaction of p300 with phospho-Smad2/3 turned out to be essential for
matrix protein collagen synthesis and secretion by fibroblasts [121].

Additionally, p300 was significantly elevated in myofibroblast-like cells derived
from the primary culture of mouse cardiac EC in response to profibrogenic cytokine
TGF-β. On the contrary, the dissociation of p300 from the transcription initiation complex
at the collagen gene promoter blunts profibrogenic signalling-induced type I collagen
synthesis [122]. Interestingly, small acetyltransferase inhibitors suppress p300 activity in
fibroblasts, reducing TGF-β-associated H3K9ac, myofibroblast differentiation and matrix
protein synthesis [123]. Furthermore, p300 is known to control the transcription of a variety
of genes involved in cardiac hypertrophy.

Gusterson and colleagues demonstrated that inhibition of p300 activity arrests car-
diomyocyte hypertrophy induced by phenylephrine. On the other hand, p300 overexpres-
sion promotes this adverse cardiac phenotype [124,125]. It was also shown that phenyle-
phrine induces the expression of p300, the acetylation of GATA4 and its binding to the ET-1
promoter in cardiomyocytes [126].

Notably, p300 levels are significantly elevated also in angiotensin (Ang) II-induced hy-
pertensive myocardial tissues and are associated with increased H3K9ac and cardiac hyper-
trophy and fibrogenesis [127]. Moreover, p300-driven H3K9ac also appears to be involved
in cardiomyopathy associated with loss-of-function mutations of Short-chain enoyl-CoA
hydratase (ECHS1)—a key mitochondrial enzyme for fatty acid β-oxidation [128].

In vascular smooth muscle cells (VSMCs), it was also observed that p300 modulates the
pro-atherogenic effect of 12(S)-Hydroxyeicosatetraenoic acid (12(S)-HETE) by mediating
IL-6 and MCP-1 expression through p300-driven H3K9/14ac [129].

Recently, several studies pointed out the importance of p300 as a regulator of diabetes-
associated CVD [36,85,113,130–133]. In fact, the expression of p300 was found to be remark-
ably elevated in the hearts of diabetic rats compared with normal controls. Accordingly, an
increase in hypertrophy in neonatal rat cardiomyocytes exposed to high levels of glucose
was observed [134]. Among the factors contributing to diabetic cardiopathy, there is also
the accumulation of ECM that is responsible for the increase in fibrosis, in which p300
plays a key role by activating TGF-β via the acetylation of Smad2 [135]. Diabetes favours
the production of ECM proteins also through the activation of NF-κB and the activator
protein 1 (AP-1) signalling pathway, which appears to be regulated by p300 in diabetic
rats [136]. This was also supported by an in vitro study demonstrating that p300 regulates
the expression of vasoactive factors and ECM proteins in EC exposed to high glucose
through histone acetylation [137].

As mentioned above, the tight interconnection between p300 and SIRT1 may regulate
accelerated vascular ageing associated with hyperglycaemia. In this regard, EC exposed to
high glucose and tissues from diabetic animals showed downregulation of SIRT1, which, in
turn, leads to the reduction in mitochondrial antioxidant enzymes in a p300- and Forkhead
box O1 (FOXO1)-mediated pathway [138].

The essential role of p300 and SIRT1 in high-glucose-induced vascular senescence
was further confirmed in a cellular model of hyperglycaemia, evidencing the direct role
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of p300 in the activation of p53 and, consequently, p21 [73,80]. Additionally, p300 seems
also to be involved in vascular tone regulation, as suggested by the fact that p300-mediated
hyperacetylation of lysine residues in VSMCs has been associated with impairing VSMCs-
dependent vasodilation in advanced T2D [130].

4.1. Inflammation

Diabetes is associated with augmented inflammation, which has been proven by a
consistent body of evidence as one of the main drivers of atherosclerotic CVD [4,139]
and is characterised by the increased activity of inflammasomes and increased levels of
proinflammatory cytokines [140,141].

The role of p300 appears to be crucial in the regulation of NF-κB—one of the main
mediators of the inflammatory pathway [142]. Lan and colleagues demonstrated in a
T2D nephropathy mouse model that p300 leads to the activation of the NF-κB signalling
pathway and the production of proinflammatory cytokines by a direct interaction with the
subunit, p65 [103,143]. In diabetic mice, it was also shown that p300-driven H3K9/14ac
modulates c-Jun N-terminal kinase (JNK)-downstream genes, such as connective tissue
growth factor (CTGF), plasminogen activator inhibitor-1 (PAI-1) and fibronectin 1, and that
the inhibition of p300 by a curcumin analogue (C66) was able to prevent renal injury and
dysfunction in diabetic mice [144].

Several in vitro studies supported the key role of p300 in vascular inflammation
associated with hyperglycaemia. Chen and colleagues demonstrated that glucose ex-
posure increased p300 expression, histone acetylation and p300 binding to ET-1 and to
fibronectin promoters in EC. This suggests that glucose-induced p300 upregulation regu-
lates the gene expression of vasoactive factors and ECM proteins in EC through epigenetic
mechanisms [137].

Moreover, in vitro studies have shown that the p300-driven acetylation of H3K9 re-
cruits NF-κB to the promoters of proinflammatory genes, such as IL-6, IL-8 and
cyclooxygenase-2 (COX-2) [145,146].

It was also found that high glucose increases the p300-driven acetylation of histones
H3K14, H3K18, H3K23, H4K5 and H4K16 in retinal glial cells. These changes are positively
correlated with the induction of the proinflammatory molecules ICAM-1, Inducible Nitric
Oxide Synthase (iNOS) and Vascular Endothelial Growth Factor (VEGF). Of note, both the
acetylation and expression of the inflammatory proteins can be inhibited by modifying
HAT/HDAC activity [117].

The regulating Forkhead box O3a (FOXO3a) acetylation by p300 is another mechanism
involved in diabetes-induced inflammation: diabetes-induced FOXO3a acetylation prevents
its binding to gene target promoters, increasing NOD-, LRR- and pyrin domain-containing
protein 3 (NLRP3) inflammasome activation. This mechanism was then reverted by C646,
a p300 inhibitor [147].

4.2. Oxidative Stress

Diabetes enhances oxidative stress and compromises antioxidant defences, as evi-
denced by increased superoxide generation and reduced Superoxide dismutase (SOD)
activity catalase (CAT) and glutathione (GLT) [148]. Chronic hyperglycaemia also dimin-
ishes endothelial NO bioavailability, resulting in vascular homeostasis impairment, which,
in turn, leads to a prothrombotic and proinflammatory state [149].

It is well known that eNOS plays a central role in vascular homeostasis by regulating
the synthesis of NO and that the impairment of enzyme activity is involved in the patho-
genesis of diabetic endothelial damage [150]. In this regard, histone acetylation appears
to be highly implicated in the regulation of eNOS gene expression in EC; H3K9ac and
H4K12ac at the eNOS promoter are functionally relevant to its expression, as confirmed
by the treatment of cells with trichostatin A, a histone deacetylase inhibitor, which was
associated with the increased acetylation of histones H3 and H4 at the eNOS proximal
promoter [151].
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In support of these results, the involvement of p300 in the regulation of eNOS was
demonstrated. In detail, Chen and colleagues have shown that the acute stimulation of
endothelial eNOS mRNA transcription by laminar shear stress is dependent on the NF-kB
subunits, p50 and p65, which in turn bind to a shear stress response element (SSRE) in the
human eNOS promoter. This is mediated by the activation of p300, which acetylates p65
and the histones, H3 and H4, in proximity to the human eNOS SSRE, promoting an opened
chromatin structure and allowing gene transcription [152].

A recent study indicated a key role of histone acetyltransferase p300 in diabetes-
accelerated renal damage. Interestingly, the authors observed that kidneys of diabetic
C57BL/6J mice treated with C646, a pharmacological inhibitor of p300, showed significant
downregulation of H3K27ac and diabetes-induced expression of NADPH oxidase (NOX),
known to be the main trigger of ROS production [153].

SIRT1, antagonizing p300, has been shown to inhibit transcriptional factors, such as
NF-κB, MAPK, Matrix metallopeptidase 9(MMP-9), FOXO3a and p53. On the other hand, it
increases Cardiac sarcoplasmic reticulum Ca2+-ATPase2a (SERCA2a), extracellular signal-
regulated protein kinase (ERK1/2), eNOS activity, proliferator-activated receptor-gamma
coactivator α (PGC-1α) and AMP-activated protein Kinase (AMPK) [154]. The overexpres-
sion of SIRT1 was also able to decrease superoxide production and increase antioxidant
enzyme SOD activity in diabetic ischaemic reperfused heart tissue [155]. Importantly, as
mentioned above, SIRT1 plays a major role also in the regulation of eNOS activity by
reducing eNOS acetylation and increasing its activation [156].

In VSMCs, HDAC1/2 and p300 proteins were found to bind the promoter’s sites of
active NOX1/4/5 genes. H3K27 acetylation was increased at the promoters of NOX genes
in high-glucose-exposed VSMCs [157].

5. Histone Acetyltransferase Inhibitors: Future Prospective

Considering the possibility of interfering with epigenetic modifications [131], Histone
acetyltransferase inhibitors (HATis) could be explored as new potential drugs targeting the
epigenetic mechanisms involved in vascular damage associated with diabetes [158].

Some compounds, such as metformin, already used in clinical practice and estab-
lished as a first-line drug in the treatment of T2D patients, have shown some epigenetic
effects [159]. Metformin may inhibit HATs through the activation of AMPK [160]. Further-
more, a recent study demonstrates that metformin can restrain phenylephrine-induced
hypertrophic responses by inhibiting p300 activity in cardiomyocytes [161].

Interestingly, the activity of some pharmacological inhibitors targeting epigenetic
modifiers for the treatment of cancer, such as JQ1 [162], has also been investigated in
experimental models of diabetes complications. Notably, it was able to inhibit An-gII-
regulated genes in vitro, as well as AngII-induced hypertension in mice [86].

To date, studies on the potential effect of drugs with proven cardio-renal benefits
in diabetes, such as glucagon-like peptide 1 agonists (GLP1-as) and sodium-glucose co-
transporter-2 inhibitors (SGLT2is), on p300 regulation are lacking. However, a recent study
showed that liraglutide, a GLP1-a that has been reported to exert protective effects against
myocardial ischaemia–reperfusion injury, displays a beneficial effect on renal ischaemia–
reperfusion injury by decreasing histone acetyltransferase activity [163].

Regarding SGLT2i, the new drugs, β-hydroxybutyrate and dapagliflozin, have shown
some effects on oxidative stress and cardioprotection, respectively, through epigenetic
mechanisms [164,165]. Therefore, this evidence supports a further investigation to better
define the effect of these drugs on the regulation of p300 expression and/or activity.

Among natural compounds, there is garcinol—a potent p300 inhibitor—that was able
to mitigate high-glucose-induced inflammation in retinal cells, suggesting its potential use
in the prevention of diabetic retinopathy [117,166].

A recent study demonstrated that epigallocatechin gallate (EGCG), the major bioactive
polyphenol present in green tea, attenuates vascular inflammation via a repressive epige-
netic effect on the NF-κB signalling pathway. In detail, this compound was able to block
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the recruitment of p65, p300 and HDAC1-3 in the promoters of IL-6, C-reactive Protein
(CRP), ICAM-1, vascular cell adhesion molecule 1 (VCAM-1), IL-1α and IL-1β [142].

Curcumin has been considered a potential epidrug for diabetes because of its hypogly-
caemic, hypolipidaemic and epigenetic effects in various rodent models [167]. Interestingly,
a study conducted by Jung-Mi Yun and colleagues suggests that curcumin could improve
glucose metabolism and prevent diabetic complications by activating HDAC-2 and in-
hibiting p300, which, in turn, reduce NF-κB signalling and vascular inflammation [168].
Furthermore, curcumin, through the modulation of the PKC-α and MAPK pathways, de-
creased the mRNA expression of transcriptional coactivator p300, the accumulation of
ECM proteins and controlled oxidative stress and apoptosis in the heart of diabetic rats;
this resulted in the attenuation of cardiomyocyte hypertrophy, myocardial fibrosis and left
ventricular dysfunction [169].

Unfortunately, important evidence gaps remain before implementing the use of these
substances in a clinical setting. These are mainly due to the lack of specificity in chromatin
modifiers, implicating the unspecific and undesirable modulation of transcriptional pro-
grams with wide effects on cellular pathways. In addition, the safety of these approaches
remains to be proven.

6. Conclusions

In summary, the evidence analysed and reported in this review supports the idea that
p300 may be a relevant actor in diabetes-induced vascular inflammation and oxidative stress,
which promote endothelial senescence, driving atherosclerotic cardiovascular disease.

As shown in Figure 2, it may modulate vascular alterations through both epigenetic
mechanisms and transcription factor acetylation. Specifically, p300 may regulate the acti-
vation of the inflammatory signalling pathway by interacting directly with NF-κB or by
inducing its acetylation. This suggests a crucial role of p300 as an important bridge between
NF-κB p65 and the transcriptional machinery. Recently, the role of p300 as an epigenetic
modifier that is able to regulate the upstream activation of inflammatory cytokines and
oxidative stress in the setting of CV complication in diabetes has also emerged. Indeed,
recent evidence unveiled a new function of p300 driving histone acetylation in establishing
the so-called glycaemic memory, which turned out to be a key process in establishing
permanent vascular damage.

Cells 2022, 11, x FOR PEER REVIEW 10 of 17 
 

10 
 

 
Figure 2. p300 mechanisms underlying vascular inflammation and oxidative stress and the role of 
some HAT inhibitors. 

Author Contributions: N.D.P. was the lead researcher of this paper, and A.P. supervised all work 
performed. All authors (N.D.P., P.D.T., D.M., G.F. and A.P.) were involved in the conception and 
design of the article, as well as the drafting of the manuscript. The selection for study inclusion and 
data regarding each article was extracted by N.D.P. All authors (N.D.P., P.D.T., D.M., G.F. and A.P.) 
critically reviewed the submitted manuscript to ensure the accuracy of the study’s inclusion and 
interpretation. All authors (N.D.P., P.D.T., D.M., G.F. and A.P.) are accountable for every aspect of 
the work and ensure that the studies and points made in this manuscript are accurate and are com-
pletely factually based. All authors have read and agreed to the published version of the manuscript.  

Funding: This research was founded by the PON-MISE Sustainable Growth Funding-DD27 Sep-
tember 2018 (prog. n. F/180021/01-04/X43). Domitilla Mandatori was supported by PON R&I 
“Ricerca e innovazione” 2014–2020. 

Institutional Review Board Statement: Not applicable.  

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The author declares no conflicts of interest. 

References 
1. Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature 

review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018, 17, 83. https://doi.org/10.1186/s12933-
018-0728-6. 

2. The Emerging Risk Factors Collaboration; Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; In-
gelsson, E.; Lawlor, D.A.; Selvin, E.; et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A 
collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. https://doi.org/10.1016/s0140-6736(10)60484-
9. 

3. Grant, P.J.; Cosentino, F. The 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collab-
oration with the EASD: New features and the ‘Ten Commandments’ of the 2019 Guidelines are discussed by Professor Peter, J. 
Grant and Professor Francesco Cosentino, the Task Force chairmen. Eur. Heart J. 2019, 40, 3215–3217. 

4. Paneni, F.; Beckman, J.; Creager, M.A.; Cosentino, F. Diabetes and vascular disease: Pathophysiology, clinical consequences, 
and medical therapy: Part I. Eur. Hear. J. 2013, 34, 2436–2443. https://doi.org/10.1093/eurheartj/eht149. 

5. Pandolfi, A.; De Filippis, E. Chronic hyperglicemia and nitric oxide bioavailability play a pivotal role in pro-atherogenic vascu-
lar modifications. Genes Nutr. 2007, 2, 195–208. 

6. Di Fulvio, P.; Pandolfi, A.; Formoso, G.; Di Silvestre, S.; Di Tomo, P.; Giardinelli, A.; De Marco, A.; Di Pietro, N.; Taraborrelli, 
M.; Sancilio, S.; et al. Features of endothelial dysfunction in umbilical cord vessels of women with gestational diabetes. Nutr. 
Metab. Cardiovasc. Dis. 2014, 24, 1337–1345. https://doi.org/10.1016/j.numecd.2014.06.005. 

7. Gimbrone, M.A.; Garcia-Cardena, G., Jr. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 
118, 620–636. 

8. Henry, R.M.; Ferreira, I.; Kostense, P.J.; Dekker, J.M.; Nijpels, G.; Heine, R.J.; Kamp, O.; Bouter, L.M.; Stehouwer, C.D. Type 2 
diabetes is associated with impaired endothelium-dependent, flow-mediated dilation, but impaired glucose metabolism is not: 
The Hoorn Study. Atherosclerosis 2004, 174, 49–56. https://doi.org/10.1016/j.atherosclerosis.2004.01.002. 

Figure 2. p300 mechanisms underlying vascular inflammation and oxidative stress and the role of
some HAT inhibitors.

Lastly, several in vitro and in vivo pre-clinical studies shed light on the potential use of
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study p300 as a potential therapeutic target that may contribute to the clinical management
of diabetic vascular complications.
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