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Abstract

OBJECTIVES: Interest in the clinical usefulness of machine learning for risk prediction has bloomed recently. Cardiac surgery patients are
at high risk of complications and therefore presurgical risk assessment is of crucial relevance. We aimed to compare the performance of
machine learning algorithms over traditional logistic regression (LR) model to predict in-hospital mortality following cardiac surgery.
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METHODS: A single-centre data set of prospectively collected information from patients undergoing adult cardiac surgery from 1996 to
2017 was split into 70% training set and 30% testing set. Prediction models were developed using neural network, random forest, naive
Bayes and retrained LR based on features included in the EuroSCORE. Discrimination was assessed using area under the receiver operating
characteristic curve, and calibration analysis was undertaken using the calibration belt method. Model calibration drift was assessed by
comparing Goodness of fit v2 statistics observed in 2 equal bins from the testing sample ordered by procedure date.

RESULTS: A total of 28 761 cardiac procedures were performed during the study period. The in-hospital mortality rate was 2.7%.
Retrained LR [area under the receiver operating characteristic curve 0.80; 95% confidence interval (CI) 0.77–0.83] and random forest model
(0.80; 95% CI 0.76–0.83) showed the best discrimination. All models showed significant miscalibration. Retrained LR proved to have the
weakest calibration drift.

CONCLUSIONS: Our findings do not support the hypothesis that machine learning methods provide advantage over LR model in predict-
ing operative mortality after cardiac surgery.

Keywords: Machine learning • Mortality prediction • Neural network • Random forest • Naive Bayes

ABBREVIATIONS

AUC Area under the receiver operating characteristic
curve

CI Confidence interval
LR Logistic regression
ML Machine learning
STS Society of Thoracic Surgeons

INTRODUCTION

Preoperative assessment of surgical risk is of crucial importance
in cardiac surgery due to the high risk of intraoperative and post-
operative complications. Risk models can help health professio-
nals to advise patients during the decision-making process, as
well as in monitoring surgical performance and cost–benefit
analyses.

Several risk stratification models have been developed to pre-
dict in-hospital mortality following cardiac surgery, for example
as the European System for Cardiac Operative Risk Evaluation,
EuroSCORE [1, 2] and the North American Society of Thoracic
Surgeons (STS) score [3]. However, a main limitation of these
scores is overestimation of risk in high-risk patient subgroups [4,
5]. This can potentially translate into risk-averse practice, falsely
reassuring conclusions about surgeon and centre performance,
and impaired decision-making.

Current risk scoring systems are based on logistic regression
(LR). Development of LR models requires input from the model-
ler to address complex interaction among features and non-
linear relationships of features with the outcome. For instance,
the contribution of advanced age to mortality risk may not be
constant across the spectrum of comorbidities. If features’ inter-
actions are overlooked in an LR model, its prediction ability will
be negatively affected. In contrast, machine learning (ML) algo-
rithms require less input from the modeller and interactions
among features and non-linear relationships can be learnt auto-
matically from the data [6]. However, the extra flexibility of ML
algorithm requires larger sample to train the model.

Despite research on the utility of ML methods to improve pre-
diction in health care has exponentially increased, ML methods
have not been widely adopted in the clinical practice. Moreover,
recent reports have challenged the additional value of ML in the
development of clinical prediction models in a variety of clinical
conditions [6].

The objective of this study was to compare ML algorithms with
LR model in the prediction of in-hospital mortality after cardiac
surgery, based on the set of features included in the EuroSCORE [1].

METHODS

The present study was approved by Health Research Authority
and Health and Care Research Wales. Data were obtained from
the National Adult Cardiac Surgery Audit (NACSA) data set,
which prospectively collects clinical information for all major
heart operations carried out in the UK. In the present analysis,
we used a subset of patients who underwent cardiac surgery at
University Hospitals Bristol NHS Trust between 1 April 1996 and
30 December 2017.

Missing or conflicting data for in-hospital mortality were
obtained via record linkage to the Office for National Statistics
census database. For records where data required to calculate a
EuroSCORE variable were missing, it was assumed that the risk
factor was not present (equal to the reference level). Missing pa-
tient age at the time of surgery was imputed as the median pa-
tient age for the corresponding financial year.

Statistical analysis and models

The primary end point was in-hospital mortality following car-
diac surgery. Numerical variables were summarized as mean and
standard deviation or median and interquartile range and com-
pared using t-tests or Mann–Whitney tests. Categorical variables
were tabulated as frequencies and percentages and compared
using v2 test.

Procedures were ordered chronologically, the first 70% of
records (1 April 1996–27 September 2011) were used for training
and hyperparameter selection through five-fold cross-validation.
Final model performance was evaluated using the remaining 30%
(27 September 2011–30 December 2017). All prediction models
were developed using the 17 features included in the original
EuroSCORE [1], which include information prior to surgery on a
range of patient, cardiac and operative factors. The features are
age, gender, chronic obstructive pulmonary disease, extracardiac
arteriopathy, neurological dysfunction, previous cardiac surgery,
creatinine >200mmol/l, active endocarditis, critical preoperative
state, unstable angina, left ventricular function, recent myocardial
infarction, pulmonary hypertension, emergency surgery, com-
bined surgery other than coronary artery bypass graft, surgery on
thoracic aorta and postinfarct septal rupture.
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We fitted an LR (retrained LR) model to the EuroSCORE risk
factors. We used the following ML approaches:

• Neural network is a computational learning system that uses
a network of functions to understand and translate a data
input of one form into a desired output. ML algorithms
including neural networks generally do not need to be pro-
grammed with specific rules that define what to expect
from the input. The neural network algorithm instead learns
from processing many labelled examples (i.e. data with
‘answers’) that are supplied during training and uses this an-
swer key to learn what characteristics of the input are
needed to construct the correct output. Once a sufficient
number of examples have been processed, the neural net-
work can begin to process new, unseen inputs and success-
fully return accurate results. The more examples and variety
of inputs provided during training, the more accurate the
results typically become because the algorithm learns with
experience. The basic unit of computation in a neural net-
work is the neuron, often called a node or unit. It receives
input from some other nodes, or from an external source
and computes an output. Each input has an associated
weight (w), which is assigned on the basis of its relative im-
portance to other inputs. The node applies a function f to
the weighted sum of its inputs [i.e. f (w1 + w2 + w3 . . .],
which can introduce non-linearity into the output of a neu-
ron (depending on the function chosen). Nodes are
arranged in layers. Nodes from adjacent layers have connec-
tions or edges between them. All these connections have
weights associated with them. Neural network consists of 3
types of nodes, which fall within 3 corresponding layers: (i)
input layers: these nodes take input data (i.e. numbers, texts,
etc.); (ii) hidden layers: are responsible for number crunch-
ing, i.e. mathematical operation, to detect patterns data.
There can be one or multiple hidden layers; (iii) output layer:
takes input from the hidden layer(s) to generate the desired
output [7, 8]. In common with many ML approaches, neural
networks were not specifically designed for time-related
events, but as research rapidly moved forward new methods
have been introduced for this purpose [9]. In our model, the
number of hidden layers and nodes per hidden layer was
configured manually in response to model discrimination
[area under the receiver operating characteristic curve
(AUC)] evaluated with cross-validation. The final model con-
figuration used for evaluation was: input layer n = 18 nodes,
hidden layer one n = 90 nodes, hidden layer two n = 36
nodes and output layer one node.

• Random forest represents an ensemble of several decision
trees. Decision trees build classification or regression models
in the form of a tree structure. This approach breaks down a
data set into smaller and smaller subsets while at the same
time an associated decision tree is incrementally developed.
The final result is a tree with decision nodes and leaf nodes.
A decision node has 2 or more branches, while a leaf node
is a terminal node that represents a classification or decision.
The topmost decision node in a tree corresponds to the
best predictor called root node, which splits the records into

mutually exclusive classes. After the root node, there are in-
ternal nodes that lead to other internal nodes or to 2 or
more terminal leaf nodes. An item is classified according to
which leaf node is reached. Each item can be trained using
resampling methods (i.e. bootstrapping) [10, 11]. Random
forest has several parameters that have to be set by the user,
e.g. number of trees in the forest (estimator), maximum
number of levels (depth) in each decision tree, minimum
number of data points placed in a node before the node is
split and minimum samples of leaf. When new data are pre-
sented, each tree of the random forest votes for a class and
the final prediction is based on the class receiving the ma-
jority of the votes. In our model, we manually tuned param-
eters in response to model discrimination (AUC) evaluated
with cross-validation (estimators n = 700, maximum depth
n = 10, minimum samples split n = 5, minimum samples leaf
n = 20).

• Naive Bayes is based on the Byes theorem. It is called ‘naive’
because it assumes each feature contributes independently to
the probability of classification. The final prediction of the
model is the a priori probability modified by the likelihood of
each predictor [12]. In our model, we used default parameters.

Full model configurations and discrimination are provided in
Supplementary Material, Table S1. Models were developed and
evaluated using scikit-learn v0.21.2 and TensorFlow v1.14.0
through Anaconda Python 3 v2019.07.

Discrimination was assessed by calculating model AUC with its
relative 95% confidence interval (CI) using bootstrapping (2000
repetitions) (pROC R-package v1.15.3). The assessment of calibra-
tion, i.e. the model’s ability to provide reliable predictions, is cru-
cial to test risk models. Statistical techniques, such as the
Hosmer–Lemeshow statistics and the Cox calibration test, are all
non-informative with respect to calibration across risk classes. To
better characterize the calibration of new models, we used the
calibration belt model [13]. In this new approach, the relation be-
tween the logits of the probability predicted by a model and of
the event rates observed in a sample is represented by a polyno-
mial function, whose coefficients are fitted and its degree is fixed
by a series of likelihood-ratio tests. This method also enables CIs
to be computed for the curve, which can be plotted [13] (R-pack-
age givitiR v1.3) (R-package ResourceSelection v0.3.5). The cali-
bration belt produces a trend with the 95% CI containing the line
of equality. Open-source code is available from: https://github.
com/MRCIEU/cvd-mortality-ml.

We also reported the performance of the original EuroSCORE I
and EuroSCORE II for completeness. We were able to calculate
the EuroSCORE II [2] only in 1889 (21.9%) patients for whom
exact values of serum creatinine were available.

RESULTS

Participants

A total of 28 761 cardiac procedures were included in the final
data set (Supplementary Material, Fig. S1). Patients younger than
18 years at the time of surgery were excluded (n = 41) to avoid
the inclusion of congenital abnormalities. The outcome and full
set of features were available for all records after imputation. The
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overall percentage of missing data in the EuroSCORE variables
was very low (1.7%) and records of age were missing in 86
patients. Patient characteristics are presented in Table 1. All fea-
tures included in EuroSCORE I were robustly associated with the
outcome in univariable analyses, except of elevated systolic pul-
monary pressure. In-hospital mortality rate was 2.7% (n = 786).

Model discrimination

Results of model selection and hyperparameter tuning using the
training set are reported in Supplementary Material, Table S1.

Discrimination ability of models selected in the testing set is pre-
sented in Fig. 1. Retrained LR showed good discrimination (AUC
0.80; 95% CI 0.77–0.83). Among the ML classifiers, random forest
showed the best discrimination ability (0.80; 95% CI 0.76–0.83),
which was comparable to retrained LR model. Neural network
and naive Bayes AUC were 0.77 (95% CI 0.73–0.80) and 0.77
(95% CI 0.74–0.80), respectively. Original EuroSCORE I and II
AUC were 0.76 (95% CI 0.73–0.79) and 0.77 (0.70–0.84),
respectively.

Probability calibration

Retrained LR had strong evidence against the null hypothesis of
well-calibrated probabilities when applied to our data (Fig. 2A).
Among the contemporary classifiers, neural network and random
forest also showed poor calibration (Fig. 2B and C), although the
latter produced probabilities that did not depart far from the line
of equality. Naive Bayes produced probabilities that suggest very
poor calibration. EuroSCORE I showed poor calibration (Fig. 3A)
while EuroSCORE II was well calibrated, although the sample size
and event number were smaller increasing the possibility of a type
II error (Fig. 3B). To evaluate calibration drift in the retrained LR
and ML models, the test data set was divided into 2 equal bins
ordered by procedure date with approximately equal number of
events (n = 102 vs n = 105). Hosmer–Lemeshow goodness of fit v2

statistics was calculated for the first and second quantiles (Table 2).
Retrained LR had the weakest change in test statistic between
quantiles (+15.9%) and therefore weakest calibration drift. Random
forest had the second smallest effect (+21.2%). EuroSCORE II had
too few events and could not be reliably evaluated.

DISCUSSION

The main finding of the present study is that when trained on the
same set of variables, ML algorithms do not improve prediction

Table 1: Distribution of features included in the EuroSCORE stratified for in-hospital mortality in patients who underwent adult car-
diac surgery from 1996 to 2017

Alive (N = 27 934) Dead (N = 786) P-
value

Age (years), mean (SD) 65.29 (12.10) 69.38 (11.85) <0.001
Female gender, n (%) 7149 (25.59) 286 (36.39) <0.001
Serum creatinine >_200 mmol/l, n (%) 332 (1.19) 56 (7.12) <0.001
Extracardiac arteriopathy, n (%) 2346 (8.40) 131 (16.67) <0.001
Pulmonary disease, n (%) 3370 (12.06) 146 (18.58) <0.001
Neurological dysfunction, n (%) 593 (2.12) 27 (3.44) 0.018
Previous cardiac surgery, n (%) 1734 (6.21) 128 (16.28) <0.001
Recent myocardial infarct, n (%) 6665 (23.86) 226 (28.75) 0.002
LVEF 30–50%, n (%) 5539 (19.83) 226 (28.75) <0.001
LVEF <30%, n (%) 1391 (4.98) 129 (16.41) <0.001
Systolic pulmonary pressure >60 mmHg, n (%) 836 (2.99) 28 (3.56) 0.414
Active endocarditis, n (%) 285 (1.02) 23 (2.93) <0.001
Unstable angina, n (%) 2554 (9.14) 155 (19.72) <0.001
Emergency operation, n (%) 884 (3.16) 208 (26.46) <0.001
Critical preoperative state, n (%) 417 (1.49) 128 (16.28) <0.001
Ventricular septal rupture, n (%) 53 (0.19) 32 (4.07) <0.001
Other than isolated coronary surgery, n (%) 10 461 (37.45) 464 (59.03) <0.001
Thoracic aortic surgery, n (%) 1363 (4.88) 148 (18.83) <0.001

LVEF: left-ventricle ejection fraction; SD: standard deviation.

Figure 1: ROC curve of EuroSCORE I and II, logistic regression and machine
learning classifiers: neural network, naive Bayes and random forest using
EuroSCORE I features. The axes are true positive rate against 1—false positive
rate. The area under the curve provides a measure of discrimination accuracy.
The dashed line represents no classification discrimination ability. AUC: area
under the receiver operating characteristic; CI: confidence interval; ROC: re-
ceiver operating characteristic.
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over LR model. Both LR and random forest models proved to be
associated with good discrimination ability but substantial misca-
libration. However, these 2 models showed the least calibration
drift.

Interest in risk prediction models has bloomed in clinical use
to aid in multidisciplinary shared decision-making. They are
also used for benchmarking outcomes and both monitoring
innovations. All this applies especially in an era of expanding

Figure 2: External probability calibration of logistic regression (A), neural network (B) and random forest (C) using the calibration belt method. The method regresses
true mortality on classifier probability of mortality (via logit function) using polynomial logistic regression. All models showed significant miscalibration (P < 0.001).

Figure 3: External probability calibration of EuroSCORE I (A) and EuroSCORE II (B) using the calibration belt method. The method regresses true mortality on classifier
probability of mortality (via logit function) using polynomial logistic regression. EuroSCORE I (P < 0.001) but not EuroSCORE II (P = 0.64) showed significant model
miscalibration.

Table 2: Evaluation of calibration drift

Model v2 (G1) v2 (G2) Change (%)

Logistic regression (retrained) 12.45 14.81 15.9
Naive Bayes 1242.96 2126.79 41.6
Neural network 2.51 7.00 64.2
Random forest 15.53 19.70 21.2
EuroSCORE I 15.94 26.93 40.8

The test data set was divided into 2 equal bins ordered by procedure date with approximately equal number of events (n = 102 vs n = 105). Goodness of fit v2 statis-
tics were calculated for the first (G1) and second (G2) groups.
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multimodal therapy for coronary artery and valve disease where
risk prediction plays an important role in determining which
patients would benefit most from surgery or percutaneous ther-
apy. Moreover, national cardiac surgical registries have been
established in many countries and they are used to develop risk
prediction model with improved performance for local popula-
tions. Two of the most used risk stratification models in cardiac
surgery the European System for Cardiac Operative Risk
Evaluation version (EuroSCORE and EuroSCORE II) [1, 2] and the
STS-PROM Score [3] were developed based on LR. The
EuroSCORE I and II have been extensively criticized [14] including
poor performance in external validation particularly for high-risk
subgroups [15, 16]. This has been partially attributed to the small
proportion (10%) of patients aged 75 years and above in the ref-
erence data set [17]. On the other hand, STS provides superior
discrimination when compared to EuroSCORE II, but it
shows suboptimal calibration, especially in the high-risk sub-
group [18, 19].

Calibration drift can be attributed to improvement in periopera-
tive management of patients; however, it is possible that poor cali-
bration of EuroSCORE II and STS score can be partially attributed
to the fact that these LR-based models overlook complex interac-
tions among features and non-linear relationship. ML methods
can capture interaction among features and non-linearity without
input from the modeller, and this can potentially result in
improved prediction. A recent systematic review [20] on the appli-
cation of ML methods in cardiovascular diseases acknowledged
the potential premise of ML in certain applications such as auto-
mated imaging interpretation. However, the advantage of ML
methods over traditional risk stratification tools remains unclear.
Mendes et al. [21] found that neural networks did not outperform
LR when predicting mortality in patients after coronary artery by-
pass grafting. Other studies have suggested an advantage from ML
methods over LR. Random forest has been shown to provide bet-
ter discrimination when compared to LR, EuroSCORE and
EuroSCORE II [22, 23]. Ghavidel et al. [24] found that decision trees
achieved better discrimination power when compared to
EuroSCORE and retrained LR. Nilsson et al. [25] found that neural
networks using 34 features determined a small improvement in
accuracy in mortality risk prediction when compared to LR and
EuroSCORE. Recently, Kilic et al. [26] reported that a new ML
method (i.e. extreme gradient boosting) may improve prediction
in cardiac surgery when compared to the STS risk models. These
discordant results can partially be explained by the fact that ML
methods and in particular neural network need far more events
per variable to be trained and therefore their application should
only be considered if very large data sets are available [27]. An im-
portant limitation of available studies is that they focused on
model discrimination while calibration has been inconsistently
reported. Discrimination does not assess the model accuracy in in-
dividual risk predictions (calibration), which is crucial when using a
predictive model to inform decisions about individual patient.
Thus, a model might perform well based on discrimination meas-
ures while suffering substantial miscalibration [28].

The present study was designed to get insights into the useful-
ness of ML methods to improve individual risk prediction in car-
diac surgery. We used a large data set collecting information on
the set of features included in the EuroSCORE, and we assessed
both model discrimination and calibration. We failed to show
any significant advantage from ML methods over traditional LR

model based on the same set of features included in the original
EuroSCORE.

There are possible explanations for the lack of advantage from
ML model over LR observed in the present study. We had a lim-
ited number of events (hospital deaths) to train and test predic-
tion models despite the large original sample. This may have
limited our ability to exploit the superiority of ML methods in
identifying patterns of features related to the outcome.
Moreover, automatic ML model hyper-tuning could not be per-
formed as dedicated technology required was not available. Age
at the time of surgery was the only continuous variable included
in the models and this may have limited the ability of ML models
to capture non-linear interaction for continuous variables. We
did not train models using features included in the EuroSCORE II
because preoperative creatinine value was reported as dichotom-
ous variable (<200 or >_200 mmol/l) while the actual value, which
is part of the EuroSCORE II, was available only for a minority of
patients. Similarly, we could not use the set of features of the
STS-PROM score because our data set did not include some of
the items needed for its calculation. The present analysis aimed
to compare the performance of different algorithms based on the
same set of features. Therefore, data-driven variable selection to im-
prove model performance was not performed. Finally, we limited
our analysis to in-hospital mortality to be consistent with current
prediction models [2, 3], but we cannot exclude that ML algorithms
can improve the prediction of long-term outcomes [29].

CONCLUSION

In conclusion, the present findings suggest that the application of
ML algorithms alone is unlikely to determine a substantial gain in
prediction of in-hospital mortality following cardiac surgery if a
small set of structured clinical data is available. A precise estima-
tion of individual risk is likely to be achieved only by the identifi-
cation of new powerful predictors that can explain more of the
variance observed.

SUPPLEMENTARY MATERIAL
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