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SUMMARY

Muscle atrophy contributes to the poor prognosis of
many pathophysiological conditions, but pharmaco-
logical therapies are still limited. Muscle activity
leads to major swings in mitochondrial [Ca2+], which
control aerobic metabolism, cell death, and survival
pathways.We investigated in vivo the effects ofmito-
chondrial Ca2+ homeostasis in skeletal muscle func-
tion and trophism by overexpressing or silencing the
mitochondrial calcium uniporter (MCU). The results
demonstrate that in both developing and adult mus-
cles, MCU-dependent mitochondrial Ca2+ uptake
has a marked trophic effect that does not depend
on aerobic control but impinges on two major hyper-
trophic pathways of skeletal muscle, PGC-1a4 and
IGF1-Akt/PKB. In addition, MCU overexpression
protects from denervation-induced atrophy. These
data reveal a novel Ca2+-dependent organelle-to-nu-
cleus signaling route that links mitochondrial func-
tion to the control of musclemass andmay represent
a possible pharmacological target in conditions of
muscle loss.

INTRODUCTION

Loss of muscle mass and performance, together with important

metabolic changes, occurs in pathophysiological conditions

such as aging (sarcopenia), disuse, denervation, starvation,

and cancer (cachexia). Therapeutic interventions aimed at pre-

serving muscle mass are of key importance, but they are still

limited. Skeletal muscle size is determined by the equilibrium be-

tween protein synthesis and degradation, which in turn is

controlled by different signaling. In particular, the insulin-like

growth factor 1-Akt/protein kinase B (IGF1-Akt/PKB) pathway
Ce
controls muscle size by impinging both on protein translation

via mammalian target of rapamycin (mTOR) and glycogen

synthase kinase 3b (GSK3b) and on protein degradation via

the ubiquitin-proteasome and autophagy-lysosome pathways

(Mammucari et al., 2008). In addition, a novel isoform of themito-

chondria-related PGC-1a family of transcription coactivators,

namely PGC-1a4, has been recently shown to trigger muscle hy-

pertrophy (Ruas et al., 2012).

Mitochondria play a central role in skeletal muscle function by

providing ATP largely consumed by SERCA activity and actomy-

osin contraction. The tight coupling of mitochondrial ATP pro-

duction to the requirements of a contracting muscle is ensured

by effects of the ubiquitous second messenger Ca2+ on aerobic

metabolism. In a wide variety of cell types, including primary cul-

tures of skeletal myotubes (Brini et al., 1997) and muscle fibers

in situ (Rudolf et al., 2004), cytosolic Ca2+ transients generated

by physiological stimuli elicit large increases in the [Ca2+] of the

mitochondrial matrix ([Ca2+]mt), which in turn stimulate

the Ca2+-sensitive dehydrogenases of the Krebs cycle. At the

same time, [Ca2+]mt rises have been shown to inhibit autophagy

(Cárdenas et al., 2010) and sensitize cells to apoptosis and

necrotic challenges (for review, see Rizzuto et al., 2012).

The recent identification of the mitochondrial calcium uni-

porter (MCU) (Baughman et al., 2011; De Stefani et al., 2011),

the highly selective channel responsible for Ca2+ entry into mito-

chondria, allows us to investigate in detail its role in different as-

pects of skeletal muscle biology. Genetic ablation of MCU in the

germline, however, displayed a mild phenotype (Pan et al.,

2013). A clear indication of the importance of MCU-dependent

mitochondrial Ca2+ accumulation in skeletal muscle function

was the recent identification of a mutation of MICU1, a direct

modulator of MCU, in patients with proximal muscle weakness,

learning difficulties, and extrapyramidal motor disorder (Logan

et al., 2014).

In this report, we investigated the role of MCU in skeletal mus-

cle by overexpressing or silencingMCU after birth in order to rule

out compensatory effects during prenatal development. The
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Figure 1. MCU Is Sufficient and Required for Mitochondrial Ca2+ Uptake in Skeletal Muscle Ex Vivo

(A) Flexor digitorum brevis (FDB) muscles were transfected with mtGCaMP6 and MCU-Cherry or shMCU. pmCherry-N1 or shluc was used as a control,

respectively. Seven days later, single myofibers were isolated and placed in culture.

(B) Immunofluorescence analysis shows colocalization of MCU-Cherry and mtGCaMP6 with the mitochondrial protein TOM20 in muscle fibers processed as

in (A). Scale bar, 5 mm.

(legend continued on next page)
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results show that MCU expression triggers hypertrophy, both

during post-natal growth and in adulthood, by controlling protein

synthesis through the PGC-1a4 and IGF1-Akt/PKB pathways.

Finally, MCU exerts a protective effect against atrophy, sug-

gesting that modulation ofmitochondrial Ca2+ uptakemay repre-

sent a novel area of therapeutic intervention to combat muscle

mass loss.

RESULTS

MCU Overexpression or Silencing In Vivo Affects
Mitochondrial Ca2+ Uptake in Muscle Fibers
In cultured cells, modulation of MCU expression determines the

amplitude of mitochondrial Ca2+ uptake upon physiological

stimuli (De Stefani et al., 2011). In this work, we decided to

specifically alter mitochondrial Ca2+ uptake in vivo by adeno-

associated virus (AAV) serotype 9-based transduction or muscle

transfection with MCU plasmids. To verify the efficacy of this

approach, we transfected adult flexor digitorum brevis (FDB)

mouse muscles in vivo with plasmids encoding a GFP-based

Ca2+ probe targeted to mitochondria, mtGCaMP6m (Logan

et al., 2014), in combination with a plasmid encoding mCherry

(control) or mCherry-tagged MCU (MCU-Cherry). Eight days

later, real-time imaging experiments were performed on

isolated single myofibers (Figure 1A). Both MCU-Cherry and

mtGCaMP6m colocalize with the mitochondrial protein TOM20

in muscle fibers (Figure 1B). After assessment of basal Ca2+ con-

centrations, a cytosolic and hence mitochondrial [Ca2+] rise was

evoked by discharging the sarcoplasmic reticulum (SR) pool with

caffeine. MCU overexpression caused a marked increase in the

caffeine peak and amodest elevation of the resting [Ca2+]mt (Fig-

ures 1C and 1D). Cytosolic Ca2+ levels were almost unaffected

by MCU, showing a small decrease that was statistically signifi-

cant for resting values (Figures 1E and 1F). The silencing exper-

iments gave coherent results. FDBmuscles were co-transfected

in vivo with plasmids encoding either shluc (control) or shMCU

and mtGCaMP6m. Ex vivo imaging experiments showed a

marked reduction of both [Ca2+]mt resting values and caffeine-

induced peaks in shMCU-transfected fibers (Figures 1G and

1H), while cytosolic Ca2+ values were virtually unaffected (Fig-

ures 1I and 1J). In order to mimic the physiological response of

innervated muscles, we also measured Ca2+ transients upon

K+-induced depolarization. Similarly to the caffeine experiments,

higher and lower [Ca2+]mt peaks were detected in MCU overex-

pression and silencing, respectively, although Ca2+ transients

were smaller and shorter than caffeine-evoked transients. Inter-

estingly, the opposite effect was detected in the [Ca2+]cyt peak,
(C) Left: representative traces of mitochondrial Ca2+ dynamics in a pmCherry-N1

stimulation. Right: mean mitochondrial [Ca2+] increase. n = 25.

(D) Resting mitochondrial [Ca2+]. n = 60.

(E) Left: representative traces of cytosolic Ca2+ dynamics. Right: mean cytosolic

(F) Resting cytosolic [Ca2+]. n = 25.

(G) Left: representative traces of mitochondrial Ca2+ dynamics in an shluc-Cherr

trace) fiber. Right: mean mitochondrial [Ca2+] increase. n = 36.

(H) Resting mitochondrial [Ca2+]. n = 36.

(I) Left: representative traces of cytosolic Ca2+ dynamics. Right: mean cytosolic

(J) Resting cytosolic [Ca2+]. n = 23. In each panel, data are presented as mean ±

See also Figure S1.

Ce
indicating a role of mitochondria as cytosolic Ca2+ buffers in vivo

(Figures S1A–S1D). Importantly, neither MCU nor shMCU

affected Dc (Figures S1E and S1F), thus ruling out an indirect

effect on the driving force for mitochondrial Ca2+ accumulation.

MCU Controls Muscle Size during Post-natal Growth
We thus investigated the role of MCU in both developing and

adult muscle. We first focused on developing muscle, in which

a greater plasticity could be expected. We injected hindlimb

muscles of newborn mice with AAV-MCU and analyzed the

muscles eight weeks later (Figure 2A). A striking phenotype

affecting muscle trophism was observed. MCU overexpression,

confirmed by western blotting of cytosolic and mitochondrial

fractions (Figure 2B) and by immunofluorescence (Figure 2C), re-

sulted in 47% increase in the average fiber area of MCU-infected

tibialis anterior (TA) compared to controls (Figure 2D). When

measured 1 month after injection, TA muscle fiber size was

28% greater than control fibers (Figure S2), indicating a progres-

sive event that starts early after injection and continues up to

2 months of age. To verify whether MCU-induced hypertrophy

affected also different fiber types, we investigated soleus mus-

cles, which are mitochondria-rich slow muscles. MCU triggered

41% hypertrophy compared to controls, suggesting that the

effect of mitochondrial Ca2+ uptake in hypertrophy is indepen-

dent of the number of mitochondria and of the overall metabolic

properties (Figure 2E). Next, we analyzed the effect of MCU

silencing. Newborn hindlimb muscles were injected with AAV-

shMCU and fiber size measured 2 months later. AAV-shMCU

was efficiently delivered to TAmuscle (Figure 2F) and decreased

MCU protein expression (Figure 2G). Fiber size was markedly

reduced both in TA and in soleus muscles (�30% and �28%,

respectively) (Figures 2H and 2I), highlighting the requirement

of mitochondrial Ca2+ signals for the maintenance of skeletal

muscle trophism.

Mitochondrial Structure and Function in MCU
Overexpression and Silencing
We then investigated the cellular changes that could underlie the

trophic effect of MCU. We first focused on the effect on mito-

chondrial morphology and volume by electron microscopy

(EM) and on their metabolic properties. In extensor digitorum

longus (EDL) fibers from adult control mice, mitochondria are

positioned almost exclusively at the I band on both sides of the

Z-lines (Boncompagni et al., 2009) (Figure 3A, arrows); in longitu-

dinal sections, their profiles appear round or oval, with parallel

cristae within a dark/electron dense matrix (Figure 3B). In

MCU-overexpressing EDL fibers, although many mitochondria
(control, black trace) or MCU-Cherry (red trace) expressing fiber upon caffeine

[Ca2+] increase. n = 18.

y-expressing (control, black trace) or shMCU-Cherry-expressing (shMCU, red

[Ca2+] increase. n = 23.

SEM. *p < 0.05, ***p < 0.001, t test (two-tailed, unpaired).
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Figure 2. MCU Controls Muscle Size during Post-natal

Growth

(A) Hindlimb muscles of newborn mice (4–6 days old) were injected with Flag-

tagged AAV-MCU or AAV-shMCU. AAV-LacZ and AAV-shluc were used as

negative controls, respectively. Two months later, muscles were isolated and

processed for further analysis.

(B) Immunoblotting of total protein lysates (T) and cytosolic (C) and mito-

chondrial (M) fractions of TA muscles infected with AAV-MCU. Anti-Flag

antibody was used to detect AAV-MCU. TOM20 was used as marker of outer

mitochondrial membrane, GRP75 for the mitochondrial matrix, and b tubulin

for the cytosol.

1272 Cell Reports 10, 1269–1279, March 3, 2015 ª2015 The Authors
appeared normal in shape and correctly localized with respect to

the sarcomere (Figure 3C, arrows), we found some atypical mito-

chondria, which form wavy stacks of cristae protruding as long

tentacles in inter-myofibrillar spaces (Figure 3C, arrowheads,

and enlargements in Figures 3D–3F). These mitochondria,

considered abnormal mitochondria in the quantitative analysis

(Figure 3I, column e), accounted for <10% of all mitochondria.

Further quantitative investigation revealed that the fiber volume

occupied bymitochondria increased from�3.5% to�4.5% (Fig-

ure 3I, column a), possibly due to the increase in the average

mitochondrial diameter (Figure 3I, column c). In MCU-silenced fi-

bers, the atypical wavy mitochondria observed in MCU-overex-

pressing fibers were never detected. In addition, the relative fiber

volume occupied by mitochondria was significantly reduced, in

parallel with a decreased number and size of these organelles

(Figure 3G, arrows and 3I, columns a–c). The frequency of

severely damaged mitochondria, i.e., presenting vacuoles and

disrupted cristae (Figure 3G, arrowheads) or containing myelin

figures (Figure 3H) and longitudinally oriented organelles (Fig-

ure 3G, star), was also increased (6.1% versus 1.5% of controls)

(Figure 3I, columns d and e).

Next, we investigated the effects on mitochondrial aerobic

metabolism, focusing on the Ca2+-regulated enzymatic steps,

such as pyruvate dehydrogenase (PDH). MCU overexpression

affected neither the phosphorylation levels of PDH (Figure S3A)

nor PDH activity (Figure 3J). A qualitative histochemical analysis

of the activity of SDH, COX IV, and NADH-TR in TA muscles did

not show significant differences between MCU-overexpressing

and control muscles. In addition, no difference was observed

in glycogen content, as shown by PAS staining (Figure S3C). A

comparative analysis of glycolytic (EDL) versus oxidative (soleus)

muscles further confirmed that MCU overexpression does not

qualitatively alter PAS and SDH activity (Figure S3D). Similar an-

alyses were conducted on AAV-shMCU-infected muscles. In

agreement with data on MCU-depleted muscles (Pan et al.,

2013), MCU silencing increased PDH phosphorylation (Fig-

ure S3B) and decreased PDH activity (Figure 3K), although no

significant changes in the histochemical pattern of SDH, COX

IV, and NADH-TR were observed (Figure S3E). The amount of

glycogen was also unaffected (Figure S3E). Overall, significant

differences in mitochondrial volume were detected, but no

obvious changes in structure and metabolic activity were

observed that could be directly correlated with an effect on mus-

cle size.
(C) TA muscle cryosections were immunostained with anti-TOM20 and anti-

Flag antibodies. Wheat germ agglutinin (WGA) was used to label the sarco-

lemma. Scale bar, 20 mm.

(D) Mean fiber size of TA muscles. More than 600 fibers were measured for

each muscle. n = 3.

(E) Mean fiber size of soleus muscles (>400 fibers per muscle; n = 3).

(F) Cryosection of AAV-shMCU infected TA muscle. shMCU was detected by

ZsGreen fluorescence. Scale bar, 50 mm.

(G) Immunoblotting of TA muscles infected with AAV-shMCU.

(H) Mean fiber size of TA muscles (>600 fibers per muscle; n = 3).

(I) Mean fiber size of soleus muscles (>500 fibers per muscle; n = 3). In each

panel, data are presented as mean ± SEM. *p < 0.05, **p < 0.01, t test (two-

tailed, paired).

See also Figure S2.
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Figure 3. Effects of MCU Modulation on Mitochondrial Structure and Function and on Hypertrophy-Related Pathways during Muscle

Development

(A–H) EM analysis of EDL muscles. Scale bars represent 1 mm (A, C, and G) or 0.1 mm (B, D–F, and H).

(I) Quantitative EM analysis. Values in columns a–d are shown as mean ± SD. In brackets is the total number of mitochondrial profiles evaluated in the analysis.

**p ˂ 0.01, t test (two tailed, paired) of three muscles per group.

(legend continued on next page)
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MCU Regulates Muscle Hypertrophy Signaling
Pathways
Since preliminary analysis showed no difference in autophagy

(data not shown; Figure S3F), we focused our attention on the

well-established hypertrophy pathways of skeletal muscle,

PGC-1a4 and the IGF1-Akt/PKB axis. PGC-1a is the master

regulator of mitochondriogenesis, and a novel PGC-1a isoform

(PGC-1a4) has been reported to trigger muscle hypertrophy

(Ruas et al., 2012). Analysis of the mRNA expression of the

Pgc-1a isoforms demonstrated that AAV-MCU triggers induc-

tion of both Pgc-1a1 and Pgc-1a4 (Figure 3L), thus revealing

both an enhanced mitochondriogenesis (in agreement with the

ultrastructural analysis) and a stimulation of the PGC-1a-related

hypertrophy pathway. Activation of IGF1-Akt/PKB triggers hy-

pertrophy, while its suppression determines muscle atrophy

(Schiaffino and Mammucari, 2011). In addition, IGF1-Akt/PKB

signaling is activated by PGC-1a4 (Ruas et al., 2012). Accord-

ingly, Akt was phosphorylated, and thus activated, by AAV-

MCU (Figure 3M). Specific Akt downstream targets were

phosphorylated: in detail, 4E-BP1 and GSK3b, two inhibitors of

protein translation (Schiaffino and Mammucari, 2011), were

phosphorylated, and thus inhibited, in AAV-MCU muscles (Fig-

ure 3M). These data suggest that MCU-mediated hypertrophy

is due to increased PGC-1a4 and IGF1-Akt/PKB-dependent

signaling. Finally, satellite cells also contribute to normal muscle

growth. Analysis of Pax7-positive nuclei demonstrated thatMCU

caused an increase in the average satellite cells number per fiber

(Figure S3G).

Next, we checked whether the same hypertrophy pathways

were also suppressed by MCU silencing. Pgc-1a4 expression

was decreased by AAV-shMCU, while Pgc-1a1 was unaffected

(Figure 3N). In addition, the Akt signaling pathway was inacti-

vated by shMCU, as demonstrated by decreased phosphoryla-

tion of Akt, 4E-BP1, and GSK3b (Figure 3O). Finally, satellite

cell number was decreased in shMCU-infected muscles (Fig-

ure S3H). Overall, the above data indicate that MCU-mediated

mitochondrial Ca2+ homeostasis regulates skeletal muscle size

during post-natal growth by directly impinging on specific mas-

ter regulators of hypertrophy.

MCU Acutely Controls Muscle Size in the Adult
Weproceeded to the analysis of adult muscle, where an effect on

muscle trophism could have direct relevance for the understand-

ing and potential targeting of age- and disease-related loss of

muscle mass. For this purpose, adult EDLmuscles were infected

with AAV-MCU or AAV-shMCU, and fiber size was measured

2weeks later (Figure 4A). AAV-MCU infection triggered a 37% in-

crease in fiber size (Figure 4B) while AAV-shMCU infection

caused a 31% decrease, thus demonstrating that mitochondrial
(J) PDH activity of AAV-MCU infected TA muscles. n = 4.

(K) PDH activity of AAV-shMCU infected TA muscles. n = 10.

(L) Real-time RT-PCR analyses of AAV-MCU infected TA muscles. n = 4.

(M) Left: immunoblotting of AAV-MCU infected TA muscles. Right: quantification

(N) Real-time RT-PCR analyses of AAV-shMCU TA infected muscles. n = 4.

(O) Left: immunoblotting of AAV-shMCU infected TAmuscles. Right: quantification

(two tailed, paired).

See also Figure S3.
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Ca2+ uptake is required for muscle trophism also in the adult

(Figure 4C).

Adult muscle size is regulated by a fine equilibrium between

protein synthesis and protein degradation of myofibrillar compo-

nents. We analyzed protein synthesis by ‘‘surface sensing of

translation’’ (SUnSET), a method based on the incorporation of

puromycin into nascent peptide chains that allows accurate

detection of protein synthesis rate in skeletal muscle in vivo

(Goodman et al., 2011). Puromycin was injected to adult mice in-

fected with AAV-MCU, and muscles were analyzed 30 min later.

Detection of puromycin with specific antibodies showed that

protein synthesis was strongly induced by MCU (Figure 4D). As

in developing muscle, the experiments in adult muscle also re-

vealed a marked effect of MCU on PGC-1a4 and the IGF1-Akt/

PKB axis. In particular, Pgc-1a4 was drastically upregulated

upon MCU overexpression and downregulated upon MCU

silencing (Figures 4E and 4F). In contrast to post-natal muscles,

the effects on total Pgc1-a and Pgc1-a1 levels were verymodest

and did not correlate with the Pgc1-a4 change, thus suggesting

a specific effect on the PGC1-a4-related hypertrophy pathway.

Similarly, analysis of the IGF1-Akt/PKB trophic pathway pro-

vided a coherent picture, with phosphorylation of Akt and down-

stream targets in MCU-overexpressing muscles (Figure 4G) and

the opposite effect upon MCU silencing (Figure 4H). Finally, the

number of Pax7-positive cells was unaffected byMCU, suggest-

ing a marginal role of the satellite cell compartment in MCU-

induced muscle hypertrophy in the adult (Figures S4A and S4B).

Finally, to get a broader view of theMCU-dependent transcrip-

tional changes and the pathways involved in the trophic effect,

we carried out RNA microarray analyses of single myofibers of

AAV-MCU- and AAV-shMCU-infected muscles, with respective

controls.

Cluster analysis, according to the self-organizing tree algo-

rithm (SOTA) (Herrero et al., 2001), revealed that AAV infection

per se affected most differentially expressed genes (clusters 1,

5, 6, 8, 9, and 10) (Figure 4I). However, these genes do not

play a role in muscle trophism, since infection with control AAV

did not affect muscle size (data not shown). The remaining clus-

ters included genes induced byMCU overexpression (clusters 2,

3, and 4) or silencing (clusters 7 and 11). Interestingly, genes acti-

vated 14 days after AAV-MCU infection (clusters 2 and 4) were

enriched for components of the cytoskeleton or genes involved

in sarcomere organization and Ca2+ homeostasis (Table S1).

Genes in clusters 2 and 4 were activated by AAV-MCU infection

and inhibited by MCU silencing (Figure S4C). A gene set enrich-

ment analysis (GSEA) revealed that several pathways involved in

hypertrophy were activated by MCU overexpression, including

the insulin and mTOR signaling pathways (Table S2). It is inter-

esting to note that most activated genes in response to MCU
by densitometry. n = 4.

. n = 4. In (J)–(O), data are presented asmean ±SEM. *p < 0.05, **p < 0.01, t test
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Figure 4. MCU Acutely Controls Muscle Size in the Adult

(A) EDL muscles of adult mice (2–3 months old) were infected with AAV-MCU or AAV-shMCU. AAV-LacZ or AAV-shluc was used as a negative control,

respectively. Two weeks later, muscles were isolated and processed for further analysis.

(B and C) Mean fiber size of AAV-MCU- and AAV-shMCU-infected muscles (> 300 fibers per muscle; n = 3).

(D) Protein synthesis analysis. EDL muscles were infected with AAV-MCU for 2 weeks. Puromycin was then intraperitoneally injected, and muscles were isolated

30 min later. Left: western blotting with anti-puromycin antibodies. Ponceau S staining was used as loading control. Right: quantification. n = 4.

(legend continued on next page)
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silencing (clusters 7 and 11) have mitochondrial functions

(Table S3).

MCU Protects from Skeletal Muscle Atrophy
Finally, we investigated whether MCU overexpression could

counteract conditions of disease-induced loss of muscle tro-

phism. Denervation atrophy was triggered by sciatic nerve sec-

tion, and Ca2+ signaling properties, together with muscle size,

were evaluated (Figure 5A). Upon denervation, the cytosolic

Ca2+ increase evoked by caffeine-induced SR releasewasmark-

edly larger, although it did not evoke a larger Ca2+ uptake by

mitochondria (Figures 5B and 5D), possibly due to the morpho-

logical remodeling of the fiber or alterations in the MCU complex

assembly or SR/mitochondria coupling. Mitochondrial Dc was

unchanged (Figure S5A). However, when MCU was overex-

pressed, mitochondrial Ca2+ uptake, induced by caffeine-

evoked SR release, was greatly enhanced, reaching peak values

that, due to the robust cytosolic rise, exceeded those of non-

denervated fibers (Figures 5B and 5D). As to resting values, a sig-

nificant difference (i.e., a higher [Ca2+]mt and lower [Ca2+]cyt
resting value) was detected only in MCU-expressing non-dener-

vated muscle, while denervated muscles exhibited a value

similar to controls, irrespective of MCU expression (Figures 5C

and 5E). The measurements of [Ca2+]mt and [Ca2+]cyt transients

upon K+-induced depolarization gave similar results (Figures

S5B and S5C).

We then evaluated muscle size. Denervation caused a 40%

reduction in TA mean fiber size, as expected. When MCU was

overexpressed, atrophy was reduced to �16% compared to

innervated control fibers (Figures 5F and 5G). Similar results

were obtained when denervation was induced in adult animals

in which MCU overexpression was induced by perinatal AAV

infection (i.e., the conditions of Figures 2 and 3). In this case, fiber

size was measured 3, 7, and 14 days post-denervation (Figures

5H and 5I). In control muscles, 17%, 30%, and 50% atrophy

was observed, respectively, while in AAV-MCU-infected mus-

cles, only 6%, 11%, and 22% reduction in fiber area was

measured, respectively. Overall, the above data indicate that

MCU overexpression can strongly counteract pathological

atrophy.

DISCUSSION

The recent molecular identification of MCU (Baughman et al.,

2011; De Stefani et al., 2011), and of its complex regulatory sys-

tem (De Stefani and Rizzuto, 2014), now allows us to molecularly

validate the broad literature supporting the pleiotropic role of

mitochondrial Ca2+ homeostasis in cell function and survival.

MCU-dependent mitochondrial Ca2+ accumulation was shown

to play a role in pancreatic b cells (Alam et al., 2012; Tarasov

et al., 2012), heart (Drago et al., 2012; Joiner et al., 2012), neu-
(E and F) Real-time RT-PCR analyses of AAV-MCU- and AAV-shMCU-infected m

(G and H) Left: immunoblotting of AAV-MCU and AAV-shMCU infected muscles.

(I) Expression pattern clustering according to the self-organizing tree algorithm (S

condition (7 days).

In (B)–(H), data are presented as mean ± SEM. *p < 0.05, **p < 0.01, t test (two t

See also Figure S4 and Tables S1, S2, and S3.

1276 Cell Reports 10, 1269–1279, March 3, 2015 ª2015 The Authors
rons (Qiu et al., 2013), and colon cancer (Marchi et al., 2013).

In this scenario, the very mild phenotype of the Mcu�/� mouse

was quite surprising (Pan et al., 2013). The observation that

viable mice could be obtained only in a mixed genetic back-

ground, while MCU ablation was embryonically lethal in the

inbred stains, points to yet-unresolved compensatory mecha-

nisms (Murphy et al., 2014). Interestingly, the Mcu�/� mice

show clear metabolic and functional alterations of skeletal

muscle, and a MICU1 mutation (with ensuing loss of MCU gate-

keeping, and hence increase in resting [Ca2+]mt levels) was iden-

tified in subjects with a pathology comprising learning difficulties

and early-onset proximal muscle weakness (Logan et al., 2014).

In our work, we bypassed embryonic development by utilizing

viral transduction and in vivo electroporation for directing an

MCU expression system or MCU small hairpin RNAs to the mus-

cle of living animals. Two stages (developing and adult skeletal

muscle) that exhibit intrinsic differences in plasticity and

signaling responses were independently assessed, and a clear

coherent phenotype was apparent, with some differences that

are worthy of attention. Indeed, in both cases, mitochondrial

Ca2+ accumulation via MCU positively correlated with the size

of muscle fibers, i.e., a marked increase and reduction was

observed in MCU-overexpressing and MCU-silenced fibers,

respectively. In developing muscle, an increase in satellite cells

was observed in MCU overexpressers (and a reduction in

MCU-silenced fibers), but this was not the case in adult muscle,

possibly due to the quiescent state of satellite cells in the adult.

This result indicates that an effect on the stem cell reservoir of

muscle is not the key mechanism underlying the MCU-depen-

dent increase in muscle mass.

We thus explored two different potential mechanisms for the

increase in fiber size: a purely metabolic effect and a regulation

of the anabolic/catabolic balance of skeletal muscle. The first

mechanism was unlikely for the following reasons: (1) PDH

activity, albeit defective in MCU-silenced muscles (as in the

Mcu�/� mouse), was unaffected by MCU overexpression; (2)

the hypertrophic response was very similar in oxidative and

glycolytic muscles, where the effect on mitochondrial meta-

bolism should play a relatively minor role; and (3) semiquantita-

tive analyses of aerobicmetabolism revealed nomajor alteration.

Nonetheless, electron microscopy (EM) analyses of MCU-

silenced fibers showed an overall reduction in mitochondrial

volume (and some mitochondrial damage), while MCU-overex-

pressing fibers showed increased mitochondrial volume and a

peculiar proliferation of cristae, thus suggesting a role of mito-

chondrial Ca2+ homeostasis in the regulation of organelle

biogenesis and morphology.

As to the anabolic/catabolic balance, we saw no difference

in vivo in the autophagic rate, which we expected could be

involved based on the induction of AMPK-dependent autophagy

by inhibition of mitochondrial Ca2+ uptake (Cárdenas et al.,
uscles. n = 4.

Right: quantification. n = 4.

OTA). Gene expression values are relative to the average expression in control

ailed, paired).
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Figure 5. MCU Protects from Skeletal Muscle Atrophy

(A) Adult mice muscles were transfected with plasmids encoding MCU-Cherry (for real-time imaging) or MCU-Flag (for fiber-size analysis). At the same time,

denervation was achieved by cutting the sciatic nerve high in the thigh. One week later, muscles were isolated and processed for further analysis.

(B) Mitochondrial Ca2+ uptake of denervated FDB muscles transfected with mCherry-N1 or MCU-Cherry (MCU) upon caffeine stimulation. Left: representative

traces. Right: mean mitochondrial [Ca2+] increase. n = 31.

(C) Resting mitochondrial [Ca2+]. n = 51.

(D) Cytosolic Ca2+ transients. Left: representative traces. Right: mean cytosolic [Ca2+] increase. n = 26.

(E) Resting cytosolic [Ca2+]. n = 32.

In (B)–(E), data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, t test (two tailed, unpaired).

(F) Immunofluorescence image of a denervated MCU-Flag (MCU)-transfected TA muscle section. Antibodies against Flag tag and dystrophin to mark the

sarcolemma were used. Scale bar, 100 mm.

(legend continued on next page)
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2010). We then drew on anabolic pathways. PGC-1a4, a novel

isoform of the transcriptional regulator of mitochondriogenesis,

PGC-1a, was shown to induce muscle hypertrophy, impinging

on major anabolic routes, such as the IGF1-Akt/PKB axis

(Ruas et al., 2012). Pgc1-a4 correlated with MCU expression

and with a cluster of genes involved in muscle hypertrophy.

This was particularly clear in the adult muscle, where other

Pgc1-a isoforms were not concomitantly modulated. As to the

downstream effectors, we could demonstrate MCU-dependent

phosphorylation of Akt and its downstream targets, 4E-BP1

and GSK3b. In agreement with these data, a marked increase

in protein synthesis was measured in experiments of puromycin

incorporation in nascent peptides.

Finally, MCU overexpression significantly counteracts dener-

vation atrophy by markedly increasing the [Ca2+]mt rises evoked

by SRCa2+ release and K+-induced depolarization. The clarifica-

tion of this novel pathway will thus represent an important task

for the future, with potential applications of utmost relevance

for the pharmacological targeting of muscle loss in disease

states and aging.

EXPERIMENTAL PROCEDURES

Expression Plasmids

MCU-GFP, MCU-Flag, MCU-Cherry, and mtGCaMP6m have been reported

previously (De Stefani et al., 2011; Logan et al., 2014; Raffaello et al., 2013).

pZac2.1, pZac2.1-LacZ, and pZacf-U6-luc-ZsGreen (shluc-ZsGreen) were

purchased from the University of Pennsylvania Vector Core.

For pZac2.1-MCU, MCU-Flag was amplified from MCU expression plasmid

(De Stefani et al., 2011) with the primers 50-CTCGAGGCCACCATGG

CGGCCGCCGCAGGTAG-30 (forward) and 50-GAATTCTCACTTATCGTCGT

CATCCTTGT-30 (reverse) and cloned into XhoI-EcoRI sites of pZac2.1.

For shMCU-ZsGreen, the MCU targeting sequence was inserted into

BamHI-EcoRI sites of shluc-ZsGreen with the primers 50-GATCGGATCCGA

GATGACCGTGAATCTTCAAGAGAGATTCACGGTCATCTCGGATCTTTTTG-30

(forward) and 50-AATTCAAAAAGATCCGAGATGACCGTGAATCTCTCTTGAA

GATTCACGGTCATCTCGGATCC-30 (reverse).
For shMCU-Cherry and shluc-Cherry, ZsGreen cassettes of shMCU-

ZsGreen and of shluc-ZsGreen were substituted with the mCherry cassette

of pmCherry-N1 (Clontech Laboratories) at NheI-NotI sites.

AAV Production

AAV-MCU and AAV-LacZ were produced from pZac2.1-MCU and pZac2.1-

LacZ, respectively; AAV-shMCU and AAV-shluc were produced from pZacf-

U6-MCU-ZsGreen and pZacf-U6-luc-ZsGreen, respectively. AAV vectors

were purchased from Vector BioLabs or prepared by the AAV Vector Unit at

ICGEB Trieste (http://www.icgeb.org/avu-core-facility.html), as described

previously (Arsic et al., 2004), with few modifications. The titer of recombinant

AAVs was determined by quantifying vector genomes (vg) packaged into viral

particles by real-time PCR against a standard curve of a plasmid containing

the vector genome (Zentilin et al., 2001); values obtained were in the range

of 1 3 1012 to 1 3 1013 vg/ml.

In Vivo AAV Infection, DNA Transfection, and Denervation

In vivo experiments were performed in accordance with the Italian law

D. L.vo n�26/2014.
(G) Fiber-size analysis of TA muscles upon denervation and MCU-Flag (MCU) ov

(H and I) AAV-MCU protects from atrophy in the adult when injected in the newbo

months later, the sciatic nerve was cut. TA muscle fiber size was analyzed 3, 7, a

muscles upon denervation (> 200 fibers per muscle; n = 3).

In (G) and (I), data are presented as mean ± SEM. *p < 0.05, **p < 0.01, t test (tw
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AAV Infection

For experiments in the newborn, 1010 vg were injected into the hindlimb of 4- to

6-day-old male CD1mice. Muscles were subsequently analyzed 1 or 2months

post-injection as reported in Results. An average of 64%of fibers were positive

for the AAV infections. For experiments in the adult, male CD1mice were used.

EDLmuscles were isolated through a small hindlimb incision, and 1010 vg were

injected along the muscle length. Muscles were analyzed 15 days post-injec-

tion. An average of 72% of fibers were positive for the AAV infections.

DNA Transfection and Denervation

The TA and FDB muscles of adult male CD1 mice were transfected as previ-

ously reported (DiFranco et al., 2009; Sandri et al., 2004). Denervation was

achieved by cutting the sciatic nerve high in the thigh.

Microarray Data

Raw data are available in the GEO database (accession number GSE60931).

Detailed microarray methods are described in Supplemental Experimental

Procedures.

ACCESSION NUMBERS

The GEO accession number for the microarray data reported in this paper is

GSE60931.
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rn. (H) Hindlimb muscles of newborn mice were injected with AAV-MCU. Two

nd 14 days after denervation. (I) Fiber-size analysis of AAV-MCU-infected TA
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