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Franzini-Armstrong, Clara, and Feliciano Protasi. Ryanodine Receptors of Striated Muscles: a Complex Channel 
Capable of Multiple Interactions. Physiol. Rev. 77: 699-729, 1997. -The ryanodine receptor (RyR) is a high-conduc- 
tance Ca2’ channel of the sarcoplasmic reticulum in muscle and of the endoplasmic reticulum in other cells. In 
striated muscle fibers, RyRs are responsible for the rapid release of Ca2’ that activates contraction. Ryanodine 
receptors are complex molecules, with unusually large cytoplasmic domains containing numerous binding sites for 
agents that control the state of activity of the channel-forming domain of the molecule. Structural considerations 
indicate that long-range interactions between cytoplasmic and intramembrane domains control channel function. 
Ryanodine receptors are located in specialized regions of the SR, where they are structurally and functionally 
associated with other intrinsic proteins and, indirectly, also with the luminal Ca2’-binding protein calsequestrin. 
Activation of RyRs during the early part of the excitation-contraction coupling cascade is initiated by the activity 
of surface-membrane Ca2’ channels, the dihydropyridine receptors (DHPRs). Skeletal and cardiac muscles contain 
different RyR and DHPR isoforms and both contribute to the diversity in cardiac and skeletal excitation-contraction 
coupling mechanisms. The architecture of the sarcoplasmic reticulum-surface junctions determines the types of 
RyR-DHPR interactions in the two muscle types. 

I. INTRODUCTION 

The ryanodine receptor (RyR) is a Ca2’ channel of the 
endoplasmic reticulum [or sarcoplasmic reticulum (SR) in 
the case of muscle cells] with a very large cytoplasmic 
domain, with high affinity for ryanodine, a neutral plant 
alkaloid. Ryanodine receptors have considerable se- 
quence and general structure similarities with the other 
intracellular channels, the inositol 1,4,5-trisphosphate 
(InsP3) receptors, with which they share the task of releas- 
ing Ca2’ from the internal stores (231). Ryanodine recep- 

tors, however, have higher conductivity than InsP3 recep- 
tors, and thus they are employed in situations that need 
fast release of large quantities of Ca2’, such as during 
excitation-contraction (e-c) coupling in muscle. 

In striated muscles, RyRs interact with several other 

proteins, and thus both their structure and their function 
must be understood within this complex set of interac- 
tions. Ryanodine receptors are located at high density in 
a special domain of the SR membrane, the junctional face 
membrane, belonging to the junctional SR (jSR). Within 
this domain, RyRs are associated, either directly or indi- 
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FIG. 1. Reconstitution of purified ryanodine re- 
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ceptor (RyR) isoform RyRl into a planar lipid bi- 
layer reveals a high-conductance channel with prop- 
erties essentially identical to those of Ca2’ release 
channel of heavy sarcoplasmic reticulum (SR). Cur- 
rents were recorded in presence of 6 PM Ca2’ (top), 
0.02 ,uM Ca”’ (middle), and 0.02 PM Ca2’ plus 2 
mM ATP (bottom). Ca2+ and adenine nucleotides 
greatly increase channel’s open probability. [From 
Lai et al. (160).] 

+2mMATP 

rectly, with other structural components of the jSR, 
calsequestrin, triadin, and junctin, with which they may 
functionally interact. The junctional face membrane is 
closely apposed to, and forms a specialized junction with, 
the external cell membranes [the surface membrane and 
its invaginations, the transverse (t) tubules]. The junctions 
between SR and external membranes allow interactions 
between RyRs and proteins of the surface membrane, the 
dihydropyridine receptors (DHPRs). Finally, RyRs are sta- 
bly bound to one small protein, FKBP12 (FK506 binding 
protein, see sect. IIIA), and they are modulated by calmod- 
ulin (CaM) and cytoplasmic solutes. Several reviews (15, 
59,201,206,236,304) thoroughly cover the properties and 
pharmacology of RyRs; a collection of monographs deals 
with properties and distribution of RyRs (298); and the 
proceedings of a recent symposium on channels include 
RyRs and InsP3 receptors (56). 

tionship between a Ca”+ release channel of heavy SR and 
the fast Ca”’ release that plays a role in the activation of 
muscle contraction in skeletal and cardiac muscle. 

Large structural components of the SR, the feet, are 
located in the junctional face membrane of skeletal (36, 
60, 92, 93, 216) and cardiac (295, 296) muscle, facing the 
external membranes. A high-molecular-weight component 
of the jSR (or perhaps a doublet of proteins) was isolated 
and identified as the spanning protein by immunoelectron 
microscopy (33, 147, 148). Thus evidence for the location 
of Ca2’ release sites in the jSR and for a high-molecular- 
weight component playing a major role in the junction 
was already in place before RyRs were isolated. 

II. RYANODINE RECEPTOR: THE MOLECULE 

A. Isolation and Characterization 
of Ryanodine Receptors 

Intact RyR molecules were first isolated and purified 
in skeletal (127, 130, 159, 160) and cardiac (9, 129, 131, 
132, 267) muscles, after mild 3-[ (3-cholamidopropyl)di- 
methylammoniol-propanesulfonate (CHAPS) solubiliza- 
tion of the heavy SR and using [3H]ryanodine as a selective 
marker. They were subsequently found in smooth muscle 
(116, 170, 346; see Ref. 186 for a review) and are now 
known to be present in a large variety of cell types (see 
Refs. 297-299 for reviews). They are very large (30s) com- 
plexes constituted by homotetramers of -560-kDa poly- 
peptides. The large size of the molecule allows single- 
step purification by sucrose density gradient (160), but The way for the isolation of the RyR and its identifi- 

cation as the SR Ca2’ release channel was paved by sev- combined procedures have been used. These include se- 
era1 key observations on the properties of the heavy SR. quential column chromatography on heparin-agarose and 
The heavy SR is the higher density fraction of the reticu- hydroxyapatite (130); immunoaffinity purification (127) 
lum containing the jSR and the internal Ca2’ binding pro- and either ion-exchange chromatography or heparin-agar- 
tein calsequestrin (36, 203) and also intact triads (41). ose column chromatography combined with density gradi- 
Ryanodine and doxorubicin, agents that have profound 
effects on muscle contraction by causing and/or inhibiting 
liberation of Ca2’ from the SR, bind with high affinity to 
a high-molecular-weight component of the heavy SR (85, 
253, 255, 354, 356), which also binds CaM (279). Heavy 
SR, but not light SR, rapidly releases Ca2+ (203), due to 
the presence of channels with high permeability for mono- 
valent and divalent cations (289) that are activated by 
adenine nucleotides and Ca2’ and inhibited by Mg2+ (274, 
288; Fig. 1). These experiments established a direct rela- 

ent centrifugation (114,128) have also been used. A simple 
one-step procedure (286) and an affinity purification pro- 
cedure based on the strong binding between RyR and 
FKBP12 have been devised (344). 

The purified receptor, incorporated in a planar lipid 
bilayer functions as a Ca2’ channel (9, 20, 37, 121, 127, 
160,275, see 162 for review), with characteristics identical 
to the Ca”+ release channels previously identified in the 
heavy SR (288,289) and in SR in situ (300). The full-length 
rabbit skeletal RyR cDNA has been functionally expressed 
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FIG. 2. Negatively stained purified RyRl from rabbit skeletal muscle. Protein has 4 equal large subunits in form 

of a quatrefoil, identical in size and shape to feet of junctional SR. A smaller central region, also composed of 4 equal 
subunits, is intramembrane channel-forming domain. [From Lai et al. (160).] 

in COS and Chinese hamster ovary (CHO) cells (48, 251, 
310) and shown to form a channel with the appropriate 
properties (48). Identification of RyR as Ca” release chan- 
nels relies on the assumption that the channel activity is 
due to the major protein composing the purified fraction 
(the RyR) and not to a minor contaminant. Reconstitution 
of the purified RyR into proteoliposomes allowed observa- 
tion of channel function on a macroscopic scale, conflrm- 
ing the channel identity of RyRs (169). The presence of a 
single high-affinity site for ryanodine within a tetramer 
identifies the tetramer as a single functional entity or 
channel (160). The hereditary defect in malignant hyper- 
thermia has been traced to the RyR (184, 213). 

The isolated RyR is a large molecule, -29 X 29 X 12 
nm, with four equal subunits roughly approximated by 
four spheres that are closely associated to form a four- 
leaf clover or quatrefoil (21, 130, 131, 160, 332; Fig. 2). 
Structural comparison of the isolated channel and of the 
feet allowed direct identification. The overall size of the 
feet and their quatrefoil structure (82, 174,216) are identi- 
cal to those of the isolated RyR. In addition to the large 
domain, corresponding to the feet, the isolated molecule 
has a smaller central region constituted of four equal 
lobes, rotated by -45” relative to the larger domain. Be- 
cause the small domain is not visible in the in situ mole- 
cule, it is logical to assume that it represents the intra- 
membrane, channel-forming, portion of the RyR. Indeed, 
a small quatrefoil, with four equal lobes, is visible within 
the jSR membrane after freeze fracturing (21). Because 
ryanodine binds close to, but not within the presumed 
transmembrane domain, the molecule is often called RyRI 
Ca2’ release channel complex. Foot protein is another 
name that identifies the molecule based on the structure 
of its cytoplasmic domain. 

With the use of the quatrefoil shape and the charac- 
teristic large size of the feet as unique identification mark- 
ers for RyRs, the molecule has been identified in a large 
variety of muscles from vertebrates and invertebrates 
(174). A RyR has also been identified in two muscles from 
crustaceans (91, 239, ZSO), characterized in Caenorhab- 
ditis elegans (153), and identified and sequenced in Dro- 
sophila (113, 312). Ryanodine receptors have been de- 
tected in almost all cell types, although at variable levels 
of expression (see sect. Iti). 

One question remains unsolved: What is the relation- 
ship between the RyR and the 106-kDa protein that can be 
isolated by ryanodine-affinity chromatography and forms 
channels with conductance and pharmacology compara- 
ble to those of the RyR (118, 276, 349)? 

Identification of the cytoplasmic domains of RyRs as 
feet has a very important implication. Feet are located in 
regions of the heavy SR that form junctions with surface 
membrane and t tubules. Therefore, the cytoplasmic do- 
mains of RyRs, constituting the feet, allow a direct con- 
nection between the Ca2’ release channel and the exterior 
membranes. The latter part of the review covers the role 
that this connection plays in e-c coupling, the series of 
steps that link depolarization of the surface membrane to 
contraction of the myofibrils, via release of Ca2’ by RyRs. 

B. Ryanodine Receptor Isoforms: 
Tissue Distribution 

1. Three ryanodine receptor isoforms 
in a variety of tissues 

Three types of RyR with specific tissue distribution 
are now recognized (104; see Refs. 297, 299 for reviews). 
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The currently accepted terminology is based on the timing 
of purification of the RyRs from various tissues and the 

identification of the three isoforms by molecular probes. 
Thus RyRl, also called the skeletal type, is the isoform 
first detected (189) and then fully sequenced (313, 353) 
in skeletal muscle; RyR2, the dominant form in cardiac 

muscle, was subsequently sequenced (228, 244); and 
RyR3, sometimes called the brain isoform, was first de- 
tected (228) and later fully sequenced in brain (112) and 
epithelial cells (103). Sequence comparison of the tree 

isoforms in a single species reveals a homology of 67, 67, 
and 70% between RyRlLRyR2, RyRlLRyR3, and RyR2/RyR3 
(112), respectively, but a phylogenetic tree generated from 
the optimal alignment of full-length RyR sequences avail- 
able in 1996 indicates overall closer relationships between 

RyRl and RyR3 than RyRl and RyR2 (326). 
The RyRl isoform is primarily expressed in all skele- 

tal muscles (5, 161, 237, 313, 326, 352) and in some parts 
of the brain, most prominently in Purkinje cells of the 

cerebellum (99, 104, 157, 168, 245), and is also present 
in some smooth muscle (230). The RyR2 isoform is the 
predominant form in cardiac muscle (228, 244) and is also 
the most widely distributed isoform in the brain (99, 104, 

157, 158, 168). Indeed, the major form of RyR purified 
from brain is identified as RyR2 immunologically and by 
analysis of proteolytic products (200). Some expression 
of RyR2 in smooth muscle has also been found (230). The 
RyR3 isoform is a minor component of the brain, where 

it is the least widely distributed of the three isoforms. The 
RyR3 isoform is immunologically distinct from RyRl and 
RyR2 (143). RyR3 is present in skeletal muscle, but it is 
particularly abundant in selected skeletal muscles from 
some species (see sect. IIBZ). Smooth muscle expresses 

RyR3 (230), but in minor amounts (189). 
The dominant form of RyR in cardiac muscle is RyR2 

(69, 228, 244). Both RyRl and RyR3 are at such extremely 
low levels (112) that they can be truly detected only by 

ribonuclease protection assays (103) and reverse tran- 
scription-polymerase chain reaction amplification (168). 
Much of the RyR3 is attributable to smooth muscle cells 
of intracardiac coronary vessels, which are quite numer- 
ous, but weak hybridization of the working myocardium 

and of the conducting Purkinje system for cRNA probes 
for RyR3 indicates a minor presence of this isoform in 
myocardial cells (232). A detailed search for functional 
variations in RyR composition of SR isolated from various 
regions of the heart has shown channels with indistin- 

guishable conductance and pharmacology, indicating that 
no region of the heart has a noticeably high presence of 
channels other than RyR2 (345). Thus myocardium is the 
muscle with the purest RyR composition, despite the fact 

that feet are located in two distinct regions of the SR: the 
jSR and corbular SR (see sect. IvC). 

So far, few variations from the three isoforms have 
been found. First. a gene encoding a partial sequence of 

RyR3 expresses a protein that does not respond to caf- 
feine (103). Second, a transcript from the COOH-terminal 
region of the RyR gene has been identified in brain (314). 
This shortened version of the molecule would lack the 
receptor regions for agents that affect channel activity. 
Third, alternative splicing has been found to introduce 
complexity in the RyR family. Two alternately spliced RyR 
transcripts were found in embryonic, slow- and fast- 
twitch rabbit skeletal muscle, regardless of the develop- 
mental stage (355). The difference between the two is 
very small: one of the transcripts lacks five amino acids, 
and it is not yet known if both mRNAs are expressed. 
Tissue-specific and developmentally regulated splicing 
have been detected for RyR3 (193, 219) and RyRl (101). 
The latter involves modulatory segments with binding 
sites for Ca2+, CaM, and ATP. 

It is likely that further variations exist but have not 
yet been detected, due to the difficulty of fully sequencing 
this very large molecule. However, the positive results 
with hybridization analysis and immunolabeling across 
tissue types certainly indicate that RyR types are highly 
conserved. In this respect, it is interesting to contrast RyR 
with another large protein, myosin, which spans at least 
11 families, each comprising a large number of isoforms. 

2. One versus two ryanodine receptors 
in skeletal muscle 

Muscles in nonmammalian vertebrate, bird, amphib- 
ian, reptile, and fish muscle contain two RyR isoforms, 
initially called cy and p (5, 161, 221, 233, 240). Molecular 
approaches have shown that the skeletal muscle @iso- 
form of chicken and frog is actually RyR3, the isoform 
initially identified in the brain, whereas the cu-isoform is 
recognized as homologous to RyRl (58, 104, 237, 246). In 
frog and bullfrog, the cu-isoform has 80% sequence similar- 
ity to rabbit skeletal RyRl, and the P-isoform has 85- 
86% similarity to rabbit brain RyR3, whereas they diverge 
considerably from cardiac RyR2 (237, 246). Use of the 
appropriate antibodies confirms that CY- and p-isoforms of 
chicken differ from RyR2 (7), replacing initial evidence 
to the contrary. In fish, the homology of cu-isoform with 
RyRl has also been confirmed, but the /3-isoform has not 
been characterized at the molecular level (234). The pres- 
ence of RyR3 instead of RyR2 in skeletal muscle came as 
a surprise, in view of the fact that developing skeletal 
muscle transiently expresses cardiac type DHPR and myo- 
fibrillar proteins. Diversity of RyRs in muscle fibers and 
its significance are well covered in a recent review (304). 

The RyRl and RyR3 isoforms (cw and ,O) are present in 
approximately equal amounts in nonmammalian skeletal 
muscle. The two isoforms are clearly located within the 
same muscle fiber in a position corresponding to that of 
the triads (5, 161, 240; Fig. 3), and both are equally en- 
riched in the triad fraction (221, 233). However, although 
immunolabeling suggests a close proximitv of the two 
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FIG. 3. Two ryanodine binding proteins coexist in same muscle fiber in bullfrog skeletal muscle. Consecutive, 
longitudinal section of muscle was stained with monoclonal antibodies (monoclonal antibody 32E in A and monoclonal 
antibody 26G in B) recognizing specific regions of (Y- and fl-RyR isoforms, or RyRl and RyR3. [Prom Olivares et al. 

isoforms, the resolution is not sufficient to detect whether 
they are actually located within the same triad. Given the 
approximately equal amounts of the two proteins, and 
the fact that all triads appear structurally equal in these 
muscles, it is logical to assume that cx and p coexist within 
the same junction. So far, no evidence for heterotetramers 
were found by immunoprecipitation studies with specific 
antibodies (see Ref. 304 for a review). Indeed, two types 
of channels with distinct properties are present in muscles 
that express the two isoforms (see sect. 1rB3), and this 
would not happen if the two isoforms were freely mixing. 

Interestingly, although most muscles in fish, reptiles, 
and birds express RyRl and RyR3, major groups of rep- 
tiles and some fast muscles in fish have a single isoform, 
the CY or RyRl (22; Fig. 4). The muscle-derived heater 
tissue has a single isoform, predicting a fast muscle origin 
for these cells (23). 

IExtraocular muscle 

ISwimbladder muscle 

Mammalian skeletal muscles also contain a second 
(RyR3) isoform in addition to the dominating RyRl type, 
but at a 20- to 50-fold less concentration (104, 168, 315; 
see Ref. 297 for a review). It is not clear whether the 
two isoforms are present in the same muscle fibers, but 
location of both in the triadic microsomal fraction has 
been shown (58). For the moment, we assume that the 
two isoforms are intercalated in the junctions. However, 
it is clearly not excluded that RyR3 is segregated over 
some small regions of the SR. Indeed, a small percentage 
of RyRs are located at a small distance from the junctional 
face in mammalian muscle, although within the triad (68). 
The relative amounts of RyR3 vary widely between mam- 
malian skeletal muscles, being higher in diaphragm and 
soleus and lower in the abdominal and tibialis anterior 
muscles of a variety of mammals (58). Interestingly, the 
fast-twitch extensor digitorum longus muscle has no 

IExtraocular muscle 

FIG. 4. Phylogenetic distribution of RyR 
expression patterns in skeletal muscle. Mus- 
cles with a predominant expression of RyRl 
(or o) are present in more advanced phyla, 
but also in some very fast-acting muscles of 
fish. Isoform distribution in invertebrates has 
not been explored. (Courtesy of B. A. Block.) 
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RyR3, and this compares with the fact that in fish the fast 
muscles lack RyR3 (233). Immunologic cross-reactivities 
and mobility in sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis gels indicate more interspecies variations 
in the RyRl than in the RyR3 isoforms. The latter indeed 

seems to be very highly conserved (222). 
So far, only one type of RyR has been detected in 

muscles of invertebrates (91, 239, 280). The invertebrate 
RyR has properties closer to RyR2 and RyR3 than RyRl. 

3. Speci@c properties of ryanodine receptor isoforms 

Both RyRl and RyR2 can be isolated in large quanti- 
ties from skeletal and cardiac muscle, thus allowing stud- 
ies of their individual and ensemble properties and a rigor- 
ous definition of their characteristics. Properties of RyR2 
from different species are more similar to each other than 
those of RyRl and RyR2 from the same species, indicating 
that general channel behavior is truly significant in the 
function of skeletal and cardiac muscle (see Ref. 304 for 
a review). 

The RyR2 channels are more sensitive to activation 
by micromolar Ca”+ and less sensitive to inactivation by 
millimolar Ca2 + than RyRl (54, 166, 209, 211, 258), and 
this also results in differential effect of Ca2’ on ryanodine 
binding to the two channels (see Ref. 206 for a review). 
Skeletal muscle channels, on the other hand, are more 
effectively activated by adenine nucleotides and more 
readily inhibited by Mg”+ (204, 207, 209). Responses to 
pharmacological agents also differ, with RyRl being more 
easily blocked by ruthenium red whereas RyR2 is more 
readily activated by danorubicin and caffeine (211, 352). 
However, caffeine at low concentration activates Ca”+- 
induced Ca” release (CICR) in all three types of RyRs 
(see Ref. 59 for a review). Overall, the cardiac channel is 
more readily activated and more reluctant to close than 
skeletal muscle. It is likely that RyR isolated from the 
brain (202) is RyR2, due to the low content of RyRl and 
RyR3, relative to the RyR2 in this organ. It is interesting, 
however, that the channel purified from brain seems to 
have unusual properties, such as the requirement for caf- 
feine and the single effect of ryanodine, which acts only 
as a blocker (202). Single channels mildly sensitive to 
InsP3 have also been detected (11). These are not types 
of behavior that one would expect from a cardiac-type 
channel. 

Because RyR3s are more highly expressed in some 
skeletal muscles than in the brain, most of their properties 
are deduced from muscle studies. Differences between 
RyR3 and RyRl can be indirectly detected in studies of 
single-channel properties of muscle fibers that contain the 
A+ and p-isoforms. Avian and amphibian skeletal muscles 
have two distinct sets of Ca”+ release channels that differ 
in Ca”+ sensitivity (31, 221, 252). One type, presumably 
the cy or RyRl, has properties closely related to those of 
the rabbit RvRl: it is activated bv relativelv high Ca2’ 

0.8 

0.6 

O 0.4 a, 

FIG. 5. Open probability (P,) of RyR channels from toadfish white 
swimming muscle shows 2 types of channels with different conductance 
(520 and 380 pS) and Ca2’ dependence, as expected from a muscle 
containing both cy- and P-RyR isoforms. Comparison with channels from 
fast extraocular muscles, containing only cy-isoform, identifies this as a 
channel that has a higher conductance and a narrower bell-shaped re- 
sponse to Ca2+. a-Isoform in fish has been identified with RyRl. [From 
O’Brien et al. (234).] 

concentrations and is inhibited at higher Ca”+ concentra- 
tions. The other type, presumably the p or RyR3, has a 
wider sensitivity to Ca”‘. Thus 0 or RyR3 channels of 
skeletal muscle are functionally more similar to RyR2 than 
RyRl, i.e., a- and P-RyRs in fish also differ in their Ca”+ 
sensitivities, indicating a similarity between P-RyR and 
RyR3 in these animals (234; see Ref. 22 for a review) 
(Fig. 5). Excitation-contraction coupling in en/en chick 
embryos, which lack RyRl as a result of a null mutation 
but express low levels of RyR3, is dependent on extracel- 
lular Ca2+, confirming the RyRl is needed for skeletal 
type e-c coupling (133). An initial characterization of RyR3 
isolated from brain, taking advantage of its cross-reactiv- 
ity for antibodies against the skeletal p-isoform, indicates 
properties similar to those of the muscle RyR3 isoform 
(224). 

However, some recent data do not agree with the 
assessment of the differences between skeletal cy - and p- 
isoforms given above. In bullfrog skeletal muscle, the two 
types of RyRs seem to have similar Ca2’ dependence, 
although sensitivity of the ,&isoform was increased in the 
presence of 1 M NaCl (223). In dyspedic myotubes from 
mice carrying a null mutation of the gene for RyRl (315), 
RyR3 channels respond to caffeine, Ca2’, and adenine 
nucleotides, but contrary to the fish RyR3 (234), they have 
a much lower sensitivity to Ca”’ than RyRl. One possibil- 
ity for the difference is that mouse muscle RyR3 were 
tested in situ, where their properties may be affected by 
intrinsic modulators. 

-4. Why skeletal muscle has two 
ryanodine receptor isoforms 

What is the meaning of the coexistence of two RyR 
isoforms in approximately equal amounts in some skeletal 
muscle fibers? The phylogenetic distribution of RyR iso- 
forms in vertebrates indicates that this condition is “primi- 
tive,” whereas a dominant isoform is present in more ad- 
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vanced organisms and/or in the fast-acting muscles of 
some of the lower vertebrates (233; see Ref. 22 for a re- 
view) (Fig. 4). The RyRl isoform is a channel readily inac- 
tivated by Ca2+ and thus more likely to turn itself off 
during a cycle of activity, whereas RyR3, with its extended 
sensitivity to Ca”, may be more readily activated and 
more capable of a sustained activity. On the basis of these 
observations and on the different sensitivity to Ca”+ of 
the CY- and P-isoforms, it is proposed that the RyRl isoform 
evolved to allow rapid cycles of muscle activity (234). It 
will be interesting to see whether a continued exploration 
of functional characteristics and phylogenetic relation- 
ships of RyR channels in invertebrate muscles dedicated 
to rapid activity will confirm this intriguing hypothesis. 

C . Sequence and Primary Structure 
of Ryanodine Receptors 

Primary sequences of the three known RyR isoforms 
predict molecules of +OOO amino acids and -560 kDa 
(112, 228, 244, 313, 326, 353). This is slightly larger than 
the mass of the peptides constituting the purified mole- 
cule (127, 130, 131, 160), and definitely larger that the 
doublet of -350 kDa that was obtained in early studies 
(148). The latter is clearly due to proteolysis, to which 
the molecule is particularly prone. 

Hydropathy plots indicate a large hydrophilic NH2- 
terminal region, thought to constitute the cytoplasmic do- 
main of the molecule or “foot” and a smaller, mostly hy- 
drophobic COOH-terminal region, predicted to form the 
intramembrane channel. This is in good agreement with 
the general structure of the molecule. The membrane- 
crossing region is the most highly conserved domain of 
the molecule (112, 228, 244, 313, 326, 353) and has strong 
similarity with the same region of the InsP3 receptor (100, 
214). In the foot region, four repeated motifs of - 120 
residues, occurring in 2 tandem pairs, are located in corre- 
sponding positions in the 3 isoforms (112, 228, 244, 353). 
These four stretches are missing in the InsP3 receptor, 
suggesting that their insertion (followed by duplication) 
in the RyR sequence contributed to the evolutionary diver- 
gence between the two molecules. 

There is some disagreement on the number of mem- 
brane crossings of the COOH-terminal region of the mole- 
cule. Model 1 (313) predicts a molecule with 4 intramem- 
brane domains of -20 amino acids each (Ml-M4) located 
in the COOH-terminal “tenth” with the Ml between amino 
acids 4564 and 4580. Model 2 (324,353) proposes 10 mem- 
brane crossings in the COOH-terminal “fifth” (Ml-Ml0 be- 
tween amino acids 3978 and 4932) and 2 additional ones 
in the middle of the molecule (M’ and M’ ‘, respectively, 
at amino acids 3123-3143 and 3187-3205). Model 3 (24) 
proposes six membrane crossings in the COOH-terminal 
regions and four more in the foot region, but at locations 
different from model 2. Model 4 (326) supports the pres- 

ence of at least six membrane-spanning regions, based on 
the alignment of the human RyR2 and on the cytoplasmic 
position of the epitope to a monoclonal antibody. All mod- 
els generally agree on the position of the most hydropho- 
bic domains closest to the COOH-terminal. 

Predictions of the three models have been put to the 
test, and the results are more often in favor of model 1. 
Experimental evidence supports the commonly predicted 
cytoplasmic location of NH2- and COOH-terminals (105, 
192). Thus the molecule requires an even number of mem- 
brane crossings. 

Extensive proteolysis of the isolated RyR shows nu- 
merous cleavage sites in the proposed foot region of the 
molecule, whereas the highly hydrophobic region of the 
molecule constitutes a large fragment (46, 55, 187). The 
Ml-M2 and M3-M4 loops of model 1 contain several nega- 
tively charged amino acids (187), consistent with their 
proposed luminal location in that model. It is suggested, 
however, that the Ml segment of model 1 may need to be 
five amino acids longer (4559-4580) to fully cross the 
membrane (187). Binding of a hydrophobic probe after 
calpain hydrolysis confirms that the majority of the trans- 
membrane segments are located in large fragments at the 
COOH-terminal, but also indicates a weak hydrophobic 
segment in the middle of the molecule, in partial support 
of model 2. 

Antibodies against specific amino acids sequences in- 
dicate two luminal regions (amino acids 4581-4640 and 
4860-4886) (105). The luminal position at amino acids 
4860-4886 discriminates between models 1 and 2, fa- 
voring the former. In addition, an antibody assigns a lumi- 
nal location to amino acids 4879-4898, which constitute 
one of the putative membrane-spanning regions in model 
2. This also implies that a second putative membrane seg- 
ment (amino acids 4789-4820) should not exist, since the 
total number of membrane crossings should be even and 
also because this crossing would result in a luminal loca- 
tion of Arg-4756, which is a cytoplasmic tryptic cleavage 

site (34). 

D. Ryanodine Receptor Channel: Its Function 
and Modulation 

1. Agents affecting 
channel activity 

ryanodine receptor 

Activity of the SR Ca2+ release channel is modulated 
by a variety of agents (see Refs. 59, 206, 236 for reviews). 
Calcium in the micromolar range and adenine nucleotides 
at millimolar concentrations are activators, acting equally 
to increase the channel open probability and to induce 
rapid Ca2+ release from the SR, whereas Mg2+, also in 
millimolar concentrations, is an inhibitor (124, 204, 205, 
207,209,225,257,288,289; see Ref. 84 for a review). These 
experiments provide a direct link between the activity of 
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the Ca2+ release channel and the role of the SR in rapid 
Ca2+ release. Under appropriate, not necessarily physio- 
logical, conditions, Ca2’ triggers a sudden, massive re- 

lease of Ca2’ from the SR both in skinned fibers (see Refs. 
75, 76 for reviews) and in the isolated SR (204, 238). This 
CICR is a property of the SR Ca2’ channels, as well as of 
InsP3 receptors. 

Several pharmacological agents have become tools 
for studying the function of RyR channels, and also for 
locating their presence in cells: caffeine, an activator of 
the channel; ruthenium red, a blocker; ryanodine and dox- 
orubicin, agents with dual effects. 

Caffeine at concentrations in the millimolar range 
induces muscle contracture and reduces the Ca2+ accumu- 
lation ability of the SR. The effect is stronger in the heavier 
SR fraction and is seen as a reduced coupling between 

ATP hydrolysis and Ca2’ accumulation, indicating leaky 
vesicles (338, 339). Caffeine action on the muscle fiber is 
also due to its effect on the SR, since caffeine does not 
change membrane polarization (65) and the drug can act 
directly on skinned muscle fibers. Indeed, caffeine allows 

CICR to occur in skinned skeletal fibers even at Mg2+ 
concentrations that would normally inhibit this phenome- 
non, by acting directly on the Ca2+ release channels of 
the heavy SR (124, 209, 274; see Refs. 75, 76 for reviews). 

This is confirmed by the Ca2’ dependence (272, 273) and 
ryanodine inhibition of caffeine action (78). However, al- 
though there is agreement that caffeine at low Ca2’ con- 
centrations increases frequency of open-channel events 
(242, 272, 273, 287), there is some disagreement on 
whether the duration of the events is also affected. Figure 

6 illustrates the effect of caffeine on the single-channel 
properties of the cloned expressed RyR, showing a defi- 
nite increase in mean open time. The effect of caffeine 
on binding of ryanodine is related to its effect on channel 
opening (see sect. 11D2). However, caffeine may have two 

modes of action (287). At relatively low concentrations 
(<2 mM), the effect of caffeine is dependent on the pres- 
ence of Ca2+, and it may simply be due to an increased 
sensitivity of the Ca2’ activation site. At higher caffeine 
levels, the channels open in the absence of Ca”+ and with 

different kinetics, while maintaining the same permeabil- 
ity, indicating a more direct effect of caffeine. 

Ruthenium red is an agent that completely blocks 
CICR (178, 204, 218, 238, 289) and is often used as a tool 

to check for RyR-dependent Ca2’ leaks from the SR. 
Calmodulin is a cytoplasmic, Ca2+-dependent enzyme 

regulator. Millimolar CaM inhibits Ca2’ release from the 
heavy SR of cardiac and skeletal muscle (209), and it 
partially reduces single-channel open time without affect- 

ing the unitary conductance (291). The effect occurs in 
the absence of ATP, and thus it is not mediated by channel 
phosphorylation (98). Recent experiments, however, indi- 
cate a more complex response of the channels to CaM 
and a possible role of this protein in modulating channel 

activity during contraction. The effect of CaM on the chan- 
nels is Ca2+ concentration dependent; at the concentra- 
tions prevalent in a relaxed muscle, CaM increases open 
probability of the RyR channel and SR Ca2’ release by 
severalfold, whereas at the higher Ca2’ concentrations to 
be expected during muscle activation, it has the opposite 
effect (32,106,325). This dual mode of action is confirmed 
in skinned muscle fibers, where CaM enhances CICR at 
low Ca2’ concentrations and inhibits it at high concentra- 
tions (126). Calmodulin binding to the channel is also Ca”+ 
dependent. It is estimated that at low Ca2+ concentration 
(<O. 1 PM), 16 CaMs bind with high affinity to one tetra- 
mer, whereas at higher Ca2’ concentrations, 4 CaMs bind 
(325). However, under conditions similar to those during 
contraction and relaxation, the half time of CaM dissocia- 
tion is very slow so that during a contraction-relaxation 
cycle most of the CaM remains bound (325). However, 
CaM rate of activity is not known, and thus it is not clear 
whether it may exert its inhibitory modulation during a 
short contraction. Thus the effect of CaM on possible 
positive or negative feedback of Ca2’ on the RyRs during 
contraction (see Ref. 277 for a review) cannot be pre- 
dicted. 

In addition to its direct action, CaM may affect chan- 
nel activity through Ca2+/CaM-dependent protein kinase 
(CaMKII). Phosphorylation by CaMKII affects channel ac- 
tivity and the effect of CaM on it (111, 117, 119, 175, 
291, 335). Opposite effects of phosphorylation reported 
in these papers may have to do with the site of phosphory- 
lation and/or ionic conditions of experiments. Both car- 
diac and skeletal channels need to be phosphorylated to 
be active under physiological Mg2+ concentrations (111, 
196), but it is not known whether phosphorylation plays 
a modulatory role during e-c coupling in either muscle. 
Because phosphorylation of the cardiac channel seems to 
play a role opposite to the direct action of CaM at high 
Ca2’ concentration, the exact interplay of these effects 
during muscle activity remains to be ascertained. 

Doxorubicin is a widely used chemotherapeutic 
agent, which can cause a cardiomyopathy, possibly due 
to sensitization of RyRs to activation by two physiological 
agents, Ca2+ and ATP (254, 256, 356), followed by an ac- 
tual decline in RyR density (66). Doxorubicin has been 
used as a high-affinity label for the RyR (354). The effect 
on the isolated channel is an initial activation, followed 
by an irreversible inhibition, which occurs with a time 
delay, but not in a concentration-dependent manner (241). 
Dithiothreitol protects against the final inhibitory action, 
indicating importance of sulfhydryl groups for the func- 
tional integrity of the channel (241). 

2. Complex action of ryanodine 

Ryanodine is a neutral plant alkaloid derived from 
the stem and root of Ryana speciosa, a plant native of 
Trinidad. Its action is complex; in the whole animal and 
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when applied to an intact muscle, ryanodine can produce 
either flaccidity or an intense contracture, whose onset is 
accelerated by activity (see Ref. 136 for a review). The 
reason for these apparently contradictory effects is the 
direct, dual action of ryanodine on the heavy SR (85) 
and on the SR Ca”+ release channels (290). Low and high 
concentrations of ryanodine have opposite effects on Ca’+ 
retention by the heavy SR; at low concentrations, ryano- 
dine results in Ca” loss, whereas at higher concentra- 
tions, it has a blocking action similar to that of ruthenium 
red (79,85,306,351). Corresponding to these two actions, 
heavy SR has high-affinity (85, 163, 258) and low-affinity 
(198) sites for ryanodine. The above observations, and 
particularly the high affinity for ryanodine, provided the 
basis for the identification and purification of the RyR. 

At low concentrations (< 10 PM), ryanodine locks the 
channels in a partially open subconductance state (275, 
290). This effect is strongly dependent on the channel condi- 
tion at the time of ryanodine binding. Ligands known to 
open channels and stimulate Ca2’ release from the SR (PM 
Ca2’ or mM ATP, caffeine) stimulate ryanodine binding to 
the high-affinity site (53; see Ref. 59 for a review). Calcium, 
which has both activating and inactivating effect on RyRs, 
also dually affects ryanodine binding (162, 211, 258). This 
is thought to be due to better accessibility of the high- 
affinity ryanodine binding site in the open channel. Thus 
ryanodine binding can be used as a probe of channel confor- 
mation and properties (352; see Ref. 208 for a review). 

As the concentration of ryanodine is increased, the 
affinity of RyRs for ryanodine decreases (198, 211, 258). 

The effect has been described as an allosteric negative inter- 
action between four initially identical binding sites (one on 
each monomer). The first ryanodine molecule binds with 
high affinity to the open channel, blocking it into the par- 
tially open configuration (see above), and reducing binding 
to the other sites. Three more binding steps follow, each 
with increasingly lower affinity, indicating a different con- 
formational state, until one ryanodine per monomer is 
bound and a long-lived state is reached, in which ryanodine 
is occluded and the channel is totally blocked (30, 39, 259). 
The effect occurs equally well after cross-linking with bi- 
functional reagents, indicating that the decreased ryanodine 
affinity is the result of interactions within the tetrameric 
molecule (39). However, the action of some cross-linkers 
results in a tetramer that is capable of binding ryanodine 
at high affinity and of occluding it, but has lost the low- 
affinity sites (284). Pretreatment with 100 mM ryanodine 
decreases maximum binding of high-affinity sites and in- 
duces loss of the low-affinity ones, perhaps by uncoupling 
the four negatively cooperative binding sites. Oxidation of 
critical receptor thiols is implicated in the process (351). A 
closer look at dissociation constants implies the presence 
of two distinct binding sites, which are allosterically or 
sterically coupled (336, 337). 

3. Ryanodine recep tom and inositol 
l&5- trisphosphate receptors have 
different phamnacological procfiles 

Inositol 1,4,5-trisphosphate is a specific activator of 
a class of widely distributed intracellular Ca2* release 
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channels closely related to the RyRs (16, 72, 100). The 
InsP3 receptors are tetramers with a general configuration 
similar to that of RyRs, including the large cytoplasmic 
domains (43). Some cells (most notably smooth muscle 
and Purkinje cells) express both RyRs and InsPB receptors 
at high levels, but the two receptors are located in differ- 
ent areas of the cell and with different distributions (150, 
334). Most cells have a prevalence of either one or the 
other of the two Ca2+ release channels (see Refs. 17, 122 
for reviews). 

The pharmacological profiles of RyRs and InsP3 re- 

ceptors are quite different (70, 71). For example, ruthe- 
nium red and relatively high concentrations of ryanodine 
totally block the RyR channel, but neither has an effect 
on the InsP3 receptor (72, 247). Caffeine, the facilitator of 
CICR in the RyR, is an inhibitor of the InsP3 receptor 
activity (19). Heparin is a competitive inhibitor of InsP3 
on the InsP3 receptor (195), but it activates isolated RyRs 
in a Ca2+-dependent manner (20). 

After the observation that InsP3 induces Ca2+ release 
from the isolated SR (329) and in skinned muscle fibers 
(328), it was proposed that InsP, may directly affect the 
SR Ca2+ release channels and play a role in e-c coupling. 
The evidence for and against this hypothesis has been 
well reviewed (see Ref. 134). The hypothesis, however, 
has fallen into disfavor, following inability of other labora- 
tories to confirm a definite effect of InsP3, particularly on 
frog fibers (167) and on single SR channels (72). However, 
large-conductance SR channels (presumably RyRs) of 
Chilean frogs seem to respond quite readily to InsPs (302). 
Heparin microinjected into single intact skeletal muscle 
fibers has no effect on depolarization-activated contrac- 
tions (249), but it does block InsP3-induced Ca2’ release 
in smooth muscle (156), a tissue rich in InsP3 receptors 
(195). Some effect of heparin on e-c coupling may depend 
on its action on the t-tubule DHPR, rather than on the 
RyR (165). 

E. Developmental Regulation 

Ryanodine receptors are expressed early during mus- 
cle differentiation, and they are regulated by growth fac- 
tors, similar to myofibrillar proteins (4, 189, 188). Ryano- 
dine receptors are detected in a tetrameric form as early 
as embryonal day -4 (E4) in chick myocardium (69), and 
feet are visible as early as E2.5 by electron microscopy 
(263). 

Differential regulation of a- and ,&RyR isoforms in 
skeletal muscle has been shown in the chicken (305). The 
cu-isoform is expressed first in breast muscle, and it is the 
only form detected between El0 and E15. Around E15, 
the ,&isoform first appears, and both are then synthesized 
at increasingly higher levels while the fibers mature. Note 
that the appearance of the ,&isoform coincides approxi- 
matelv with the transition between myotubes and muscle 
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FIG. 7. Locations of proposed (solid syn-tbols) and experimentally 

demonstrated (open symbols) calmodulin (CaM) binding sites. Circles, 
RyRl; squares, RyR2; triangles, RyR3. Consensus has been reached on 
general location of 3 CaM binding sites (CaMl-CaM3), located in region 

preceding most hydrophobic domain of molecule, which starts at amino 
acid 4564 for RyRl. Some disagreement exists on details, and also on 
total number of binding sites. 

fibers, when t tubules suddenly differentiate and the 
amount of jSR increases rapidly (309). This developmental 
regulation is important in understanding the phenotype 
of the crooked neck dwarf (en> mutation in the chicken. 
Cn/cn is an autosomal recessive mutation, resulting in 
severe musculoskeletal developmental defects and even- 
tual muscle degeneration (194). The mutation has been 
traced to a failure to make normal cu-RyR (see Ref. 304 
for a review). This in turn affects the synthesis of the p- 
isoform, which appears somewhat later than usual and at 
lower densities (3). Interestingly, the p-isoform is ex- 
pressed at approximately normal levels in cultured en/en 
myotubes (6). This mutation offers the unique opportunity 
of finding out whether the ,0-isoform alone can substitute 
for the Q-combination in the formation of junctions be- 
tween SR and external membranes. 

F. Functional Domains 

Potential binding sites for solutes that modulate the 
RyR channel, such as CaM, Ca”‘, ruthenium red, ATP, 
and ryanodine, have been postulated on the basis of the 
primary structure and experimentally probed. 

In the case of CaM, some agreement between pre- 
dicted and demonstrated binding sites has been reached 
(Fig. 7). Three most likely CaM-binding stretches of the 
RyR have been proposed and experimentally identified in 
the hydrophilic region of the molecule (32, 47, 106, 112, 
187, 210, 228, 244, 313, 353). However, there is no agree- 
ment on the total number of CaM binding sites; up to six 
per monomer have been proposed (47,347), and four have 
been experimentally confirmed at low Ca2+ concentra- 
tions (325). 

The first two CaM binding sites, CaMl and CaM2, are 
located next to M’ and M”, the two putative membrane- 
spanning regions in the middle of the molecule (see model 
2). This proximity of CaMl and CaM2 to transmembrane 
regions is model dependent. A third CaM binding site, 



July 1997 RYANODINE RECEPTORS 709 

CaM3, is in proximity of the highly hydrophobic region of 
the molecule, which seems to be very important in the 
modulation of the channel activity (see also the location 
of Ca2’, ryanodine, and ATP binding sites, Figs. 8 and 9). 
The location of CaM3 implies that the effect of CaM on 
the channel activity may involve its action on putative 
transmembrane segments. Proximity of CaM and Ca2’ 
binding sites also implies that these regions are important 
for the control of channel activity. 

Calcium binding sites span a long region of the pri- 
mary structure (Fig. 8). Three possible high-affinity Ca2+ 
binding sites per monomer were proposed on the base of 
E-F hand-related sequences in the molecule in the region 
just preceding Ml in model 1, amino acids 4253-4499 
(313), but disclaimed by other investigators (353; Fig. 8). 
A possible low-affinity site at amino acids 187% 1923 for 
RyRl (353), two others between amino acids 1336 and 
2021 for RyR2 (ZZS), and one at amino acids 3934-3945 
for RyR3 (112) have been proposed. Putative Ca2’ binding 
sites have been functionally probed with peptide-derived 
antibodies. A small decrease in CICR was found with an 
antibody against a general region (amino acids 4380- 
4625) (83, 324). A stronger and more specific effect was 
found by carefully focusing on shorter segments, and a 
short stretch (amino acids 4489-4499) was identified by 
the strong effect of its antibody on Ca2’ and caffeine sensi- 
tivity of the channel (49, 50). This stretch coincides ex- 
actly with one of the predicted E-F handlike segments 
(313). The channel-antibody complex is still responsive 
to ruthenium red, ryanodine, Mg2+, and ATP, indicating 
that the sites of action of these compounds are not identi- 
cal to the Ca2’ binding site. This, however, may be incom- 
patible with the Mg2+ and Ca2’ competition at the activa- 
tion site (see Ref. 206). Interestingly, this stretch contains 
a proline-glutamate repeat sequence only in skeletal mus- 
cle and constitutes one of the sites of variability between 

RyRl and RyR2 (326). 
The additional Ca2’ binding sites, which also bind 

ruthenium red, were localized between residues 1861- 
2094 and 3657-3776 (47). Two Ca2+ binding sites are 

(313) - on 

8 g;i\ - 
0 

n n 

2 (49) - 0 

L (112) - A 
2 (324) - o-o 
g (50) - 0 

(47) - O-O 0 

I I I I 

N-terminal 1,000 2,000 3,000 4,000 C-terminal 

Amino Acid Residues 

FIG. 8. Locations of proposed (solid symbols) and experimentally 
demonstrated (open symbols) Ca2’ binding sites. Symbols are as in Fig. 
7. Site closest to COOH-terminal has been proposed on basis of some 
similarity to an E-F hand and thus is the most likely candidate for a 
high-affinity site involved in Ca2’ -induced Ca2’ release (CICR). Indeed, 

this is site recognized by antibodies that affect CICR. 
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FIG. 9. Locations of proposed (solid symbols) and experimentally 
demonstrated (open symbols) ATP binding sites. Symbols are as in Fig. 
7. Although there is some agreement on proposed sites, experimental 
confirmation is still scarse. Comparison with Figs. 7 and 8 clearly empha- 
sizes a major modulatory site between residues 3614 and 4457 (47,313). 

closely related to consensus CaM binding sites CaM2 and 
CaM3, and one is closely related to an experimentally 
demonstrated CaM binding site (compare Figs. 7 and 8). 

Predictions of ATP binding sites (Fig. 9) cluster in 
three areas of the molecule, but little consensus exists on 
the actual location (24, 112, 228, 244, 313, 353). Experi- 
mentally, an ATP binding site is found in the COOH-termi- 
nal 76-kDa tryptic fragment (350). 

Not much is known about the location of the ryano- 
dine-binding sites. With one exception (46), there is gen- 
eral agreement that ryanodine binds to the 76-kDa 
COOH-terminal portion of the molecule (266, 285, 342). 
More specifically, both high- and low-affinity binding 
sites were found in the 14s region obtained by trypsin 
digestion of the receptor, which is contained within the 
76-kDa fragment, constituting the COOH-terminal region 
of the molecule, after Arg-4475 (343). This stretch of the 
molecule contains the strongly hydrophobic region and 
the “modulator-binding region” immediately preceding 
it. Strong tryptic digestion of SR vesicles results in com- 
plete loss of ryanodine binding, without affecting Ca2’ 
accumulation activity (285), indicating a location close 
to the channel but not within a membrane-spanning seg- 
ment. The binding site for neomycin, a potent inhibitor 
of skeletal muscle SR Ca2’ release, is also in the 14s 
fragment (337). 

In cardiac RyR, a phosphorylation site was detected 
in correspondence to amino acid Ser-2809 (342), as pre- 
dicted (244). The skeletal isoform is not significantly 
phosphorylated at that site. In fact, the sequence sur- 
rounding residue Ser-2809 in the skeletal muscle recep- 
tor is quite different from the cardiac sequence so that 
antibodies raised against the cardiac amino acid 2805- 
2819 sequence do not react with the skeletal isoform 
(342). The phosphorylation of the partially purified RyR 
activates the channel, suggesting that the phosphoryla- 
tion by CaMKII may represent an important mechanism 
for regulating intracellular Ca2’ release in heart and 
brain. It is not clear, however, if the activation of the 
channel requires the phosphorylation of just one or all 
four RyR subunits (342). 
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G. Three-Dimensional Structure 
of Ryanodine Receptors 

Isolated RyRs are appropriate objects for single parti- 
cle computer imaging techniques that allow complete 
three-dimensional structural reconstructions. This was 
initially done on negatively stained RyRs (332) and then 
on frozen hydrated molecules, thus avoiding drying arti- 
facts (243, 264, 265, 281, 331, 333; Fig. 10). Two powerful 
approaches, conical tilt and angular reconstruction, have 
been used to obtain three-dimensional images at a fairly 
high level of resolution (-3 mn), which provide excellent 
details of the cytoplasmic domains and some features of 
the intramembrane region (243, 264, 265, 281, 330; see 
Ref. 333 for a review). The cytoplasmic quatrefoils are 
highly hydrated structures, with numerous canals and 
pathways cursing between loosely assembled protein do- 
mains. The molecule has the architecture of a scaffolding, 
providing a mechanical linkage between SR and surface 
membranes, while allowing excellent opportunity for flow 
of solutes (Ca2’). Radially arranged canals might provide 
direct routes for Ca2’ exiting from the central channel to 
the periphery of the molecule. Protein domains located 
in proximity of the corners of the molecule are the far- 
thest, in the 2 direction, from the SR membranes and 
thus are most likely to interact with external membrane 
proteins (264). Interestingly, this region of the molecule 
is at a considerable distance from the channel region, 
suggesting that molecular interactions between external 
membranes and the channels may require long-range 
events (332). The four corners of the molecule have a 
complex outline with several grooves that seem appro- 
priate for interdigitating with neighboring molecules, an 
interaction presumably needed for grouping of RyRs into 
the ordered arrays, as seen in situ (see Ref. 94 for a re- 
view). The height of the cytoplasmic domain, -12 nm, is 
sufficient to span the distance between SR and exterior 
membranes, thus establishing direct physical continuity 
between the two. 

The intramembrane domain is clearly delineated 
from the cytoplasmic assembly but shows fewer details. 
The proposed intramembrane domain is -7 nm tall, and 

FIG. 10. Closed and open states of RyR are visualized 
after 3-dimensional reconstruction from electron micro- 
graphs of frozen hydrated molecules. In presence of Ca” 
and ryanodine, open channel shows a pore that is not seen 
in closed state. Also, 4 corners of molecule are slightly 
rearranged, indicating long-range interactions within mole- 
cule. [Modified from Orlova et al. (243).] 

it is expected to have a small luminal region. It is esti- 
mated that the 12 membrane crossings proposed in model 
2 of the RyR (324) would fit into the observed membrane 
domain. A solvent-filled channel at the end farthest from 
the cytoplasmic domain is thought to represent the lumi- 
nal mouth of the channel pore (264). 

Low concentrations of ryanodine in the presence of 
Ca2’ block the channel in a partially open configuration. 
Differences between the resting and partially open chan- 
nels embedded in ice have been detected (243; Fig. 10). 
The open channel has a visible opening on the luminal 
side of the intramembrane assembly, where none was 
visible in the closed configuration. In addition, the mem- 
brane assembly is rotated by 4” in relation to the cyto- 
plasmic domain, and the four corners of the cytoplasmic 
domain farthest from the channel are slightly modified 
(243). This is a further indication of long-range molecular 
interactions between the cytoplasmic assembly and the 
channel domain of RyRs. 

The first step in assigning the position of functional 
sites to the quaternary structure has been taken with the 
localization of a CaM binding site using labeling with small 
gold clusters (330). The gold clusters are located near the 
corners of the cytoplasmic assembly, at a position that is 
at considerable distance both in the X-Y and 2 directions 
from the channel region of the molecule. Because CaM 
affects channel activity, these results also indicate that 
distant portions of the molecule may interact with each 
other. Unfortunately, it is not at the moment possible to 
know which of the CaM binding sites were occupied in 
the structural experiments. 

Finally, the power of these imaging techniques is 
demonstrated by visualizing the position of the small 
FKBPl2 protein, which has a stabilizing action on the 
channel (331; see sect. IILA). 

III. PROTEIN-PROTEIN INTERACTIONS 
OF RYANODINE RECEPTORS 

A. FKBP12: a Stabilizing Factor 

The channel behavior of isolated RyRs is not always 
consistent with the behavior of the in situ Ca” release 
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channel. Ryanodine receptors purified from rabbit muscle 

(121, 160, 173) or cloned and expressed in nonmuscle 
cells (48) may show up to four equal subconductance 
states. In the early observations it was questioned whether 
this may be the result of the isolation procedure inducing 

some denaturation of the molecule. It is likely, instead, 
that this behavior is due to the loss of a small molecule 
associated with the foot, the FK506 binding protein or 
FKBP12. FKBPE, a -1%kDa protein, is a member of the 

immunophilin family, ubiquitously expressed proteins 
that act as cytosolic repressors for immunosuppressing 
drugs (FK506, rapamycin). FKBPlZ is associated with the 
RyR (57), with which it copurifies coimmunoprecipitates, 

and colocalizes in the jSR (135). This tight binding has 
been used to devise a new purification procedure for RyRs 
(344). The molar ratio of FKBP to RyR is l:l, i.e., one 
FKBP protein is bound to each of the four subunits of the 
RyR-channel complex. A cardiac-specific form of FKBP12, 

with a slightly higher molecular weight, is associated with 
RyRZ in cardiac muscle (164, 32 1). 

FKBP12 can be dissociated from the RyR and recon- 
stituted by titration with FK506 (322, 323). In the absence 

of FKBPE, the channels show an increased open proba- 
bility and extended opening events at subconductance 
levels, resulting in increased mean ensemble current, 
leaky vesicles, and increased sensitivity to caffeine (2, 

322), while maintaining their basic pharmacological prop- 
erties (51, 197). AI1 this indicates a stabilizing effect of 
FKBP12 on the channel. A key confirmation came from 
the expression of RyRs in Sf9 cells (28). The purified 
FKBPlZ-free channels readily open in response to caf- 

feine, showing five discrete conductance levels: fully 
open, three-quarters open, one-half open, one-quarter 
open, and closed (Fig. 11). Coexpression of FKBP12, on 
the other hand, results in channels that are either fully 
open or fully closed, and the mean duration of fully open 

events (75 ms) is longer than in the FKBPE-free channel 
(4.4 ms). Sensitivity to caffeine is higher for the FKBPE- 
free channels, indicating that FKBP12 also regulates the 
closed state of the channel. Basically, in the absence of 
FKBP12, the channel is more easily opened, but it fails to 

stabilize in the fully open configuration. FKBP12, and its 
absence, helps to show that the four subunits, under ex- 
perimental conditions, can behave semi-independently, 
while confirming that all four subunits contribute to the 

normal function of the channel, strongly supporting the 
evidence derived from ryanodine-binding studies. 

A second action of FKBPE is to make the channel 
into a rectifier, favoring lumen to cytoplasm currents and 

blocking the reverse (51, 180). The InsP, receptors are 
also associated with FKBP12 and are stabilized by its pres- 
ence (35). 

Rapamycin, a drug that inhibits prolyl isomerase ac- 

tivity of FKBP and dissociates it from cardiac RyRZ, af- 
fects properties of these channels at the submicromolar 
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FIG. 11. Effect of FKBP12 on single-channel properties of purified 
recombinant RyRl, after activation by 5 mM caffeine. A: in absence of 
FKBP12, open events are frequent and fairly prolonged, but of variable 
amplitude (left>. Amplitude histograms show 5 discrete conductance 
levels, from fully closed to fully open (tight). B: after addition of recom- 
binant FKBP12, channels show only 2 conductance levels (left), which 
correspond to closed and fully open configurations (tight). Note that 
duration of fully open events is longer in RyR-FKBP12 complex. [From 
Brillantes et al. (28).] 

level (145). Interestingly, the observed increase in open 
probability occurs earlier than a decrease in current am- 
plitude, suggesting either two different actions of rapa- 
mycin or the effect of the gradual stripping of FKBP from 
the channels. Given the low concentration at which rapa- 
mycin affects RyR2, the question is whether immunosup- 
pressant drugs may act on the RyR-regulated Ca” release 
of other cells. 

A novel compound derived from a sponge (Bastadin 
5, from Ianthella basta) stabilizes the channel in its high- 
affinity configuration for ryanodine, without affecting af- 
finity of the activation site for Ca2’ or the response to 
caffeine (182). The effect of Bastadin is antagonized by 
FK506, and Bastadin enhances FKBP12 dissociation in the 
presence of FK506. This agent promises to reveal a novel 
modulatory site on FKBPE. 

The location of FKBP12, directly visualized by cryo- 
electron microscopy, is just outside the boundary of the 
cytoplasmic domain of RyR, at a distance of - 10 nm from 
the transmembrane domain forming the channel (331). 

B. Interactions of Ryanodine Receptors 
With Other Junctional Sarcoplasmic 
Reticulum Proteins 

1. Triadin 

Ryanodine receptors seem to be associated with 
DHPRs (Ca” channels of exterior membranes; see sect. 
IVB) on the cytoplasmic side and with calsequestrin (a 
Ca2+ binding protein; see sect. 11183) on the luminal side 
of the SR. In the search for proteins that may be involved 
in these interactions, a protein of 95 kDa, named triadin 
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FIG. 12. Model for membrane topol- 
ogy of triadin and for its interactions 
with RyR and dihydropyridine receptor 
(DHPR). In this model, trladin crosses 
SR membrane 4 times (1 as an a-helix 
and 3 as a P-sheet). Interaction sites 
with RyR and with II-III loop of al-DHPR 
and S-S bonds creating triadin oligomers 
are indicated. NH2- and COOH-terminals 
are cytoplasmic. [From Fan et al. (80).] 

Triadin 

(40), has been closely examined. Triadin is greatly en- 
riched in the jSR (27) and is present in skeletal as well 
as cardiac SR (26). This unusual intrinsic protein of the 
jSR tends to form large multimers through luminal disul- 
fide bonds. For this reason, triadin does not dissolve well 
in a mild detergent (CHAPS) but is solubilized after reduc- 
tion to the monomer by 2-mercaptoethanol (40). Triadin 
is a fairly abundant protein (1:l molar ratio with RyRs), 
located in the jSR and absent from the longitudinal SR 
(26, 38, 87, 108, 110, 155). Three triadin isoforms have 
been detected in both skeletal and cardiac muscles, and 
the molecule is also present in other tissues (110, 250). 
The NHz-terminals of different triadins have significant 
homology, but the COOHterminals are quite different 
(250). Like RyRs, triadin is a substrate for &M-dependent 
kinase (63). 

Interest in triadin comes from the fact that it interacts 
with other junctional proteins, but a consensus on which 
of these interactions is significant has not been reached. 
Triadin was first found to form a complex with DHPRs 
(27) and then to bind to RyRs in overlay experiments 
(151). This led to the proposal that triadin might mediate 
the interaction between RyRs and DHPRs, thus allowing 
the two proteins to be linked within the junction despite 
their relatively low affinity (40, 152; Fig. 12). Data in sup- 
port of this hypothesis are 1) the immunoprecipitation of 
triadin with monoclonal antibodies for DHPR and RyRs 
(220); 2) the effects of antitriadin antibodies on Ca2’ re- 
lease from the SR (25); 3) the positions of the intermolecu- 
lar disulflde bonds, of binding sites for DHPRs; and 4) 
the cytoplasmic location of tryptic and fusion peptides 
epitopes for various monoclonal antibodies (80, 81). Im- 
portant is the observation that a cytoplasmic (II-III) loop 
of aI-DHPRs, apparently critical in its functional interac- 
tion with RyRs, binds to various triadin fusion peptides 
(81). In a model accounting for these results, triadin re- 
peatedly crosses the jSR membrane and cross-links to 
itself on the huninal side, whereas one of its cytoplasmic 
loops reaches out to connect DHPRs and RYRs on the 
cytoplasmic side 180, 81; Fig. 12). 

A different interpretation of triadin location in the 
junctional membrane is based on its primary sequence 
and hydropathy plot (155). From these data the molecule 
is predicted to have a short cytoplasmic NH2-terminal (47 
amino acids), a single spanning membrane region (21 
amino acids), and a long, highly charged COOH-terminal 
tail on the luminal side (109, 155), although some other 
short membrane-spanning segments may exist (80,81; Fig. 
13). The positively charged residues are considered opti- 
mal for a possible interaction with calsequestrin. The hy- 
pothesis is supported by the Ca2’ dependence of 
calsequestrin binding to affinity columns based on triadin 
fusion proteins for the luminal domain of the molecule 
(107). Conserved putative luminal regions of cardiac tri- 
adin also bind calsequestrin (110). In addition, the NH2- 
and COOH-terminals of triadin are on opposite sides of 
the SR membrane (190), as predicted by Reference 155. 
The sequence homology observed between cardiac and 
skeletal triadin isoforms in the NHz-terminal segment and 
in some portions of the COOH-terminal end are used to 
support the hypothesis that this molecule does not carry 
a skeletal muscle-specific function, as confirmed by bind- 
ing of cardiac calsequestrin to skeletal triadin. This would 
imply that triadin does not participate in the DHPR-RyR 
link, since the link seems to exist in skeletal but not in 
cardiac muscle (107; see also sect. WC). 

There is general agreement that triadin binds to the 
RyR (40,107,110,152), although two different interaction 
sites, one luminal and one cytoplasmic, are predicted. If 
the interaction is luminal, then the numerous positive 
charges of triadin (155) and the negative charges of two 
huninal RyR loops (Ml-M2 and M3-M4) may acquire a 
significance (187). The interaction between these two 
molecules may depend on the state of activity of the chan- 
nel and on the redox state of hyperactive sulfhydryl 
groups (171, 172). 

2. Junctin 

Junctin was first identified as a 26-kDa calsequestrin 
binding protein in cardiac and skeletal muscle (217). The 
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FIG. 13. Alternative model for relationship between triadin and 
other junctional proteins, proposing that triadin has a single transmem- 
brane region, a short (47 amino acids) cytoplasmic NHz-terminal, and a 
large positively charged luminal COOH-terminal region. The latter would 
interact with negatively charged calsequestrin and with a luminal loop 

of RyR. Note that RyR and its interaction with DHPR are illustrated 
essentially as in Reference 313. [From Guo et al. (log).] 

protein is enriched in the jSR, and it binds lz51-labeled 
calsequestrin intensely, particularly in the absence of Ca” 
(137). The predicted structure from the 210-amino acid 
sequence indicates a protein with a short cytoplasmic 
NH,-terminal domain and a highly charged luminal do- 
main. Junctin has sufficient homology with the transmem- 
brane region of triadin and aspartyl P-hydroxylase to indi- 
cate belonging to the same family. Immunofluorescence 
indicates localization of junctin at the junctions of cardiac 
and skeletal muscle (hence the name), and it is proposed 
that the protein may be responsible for anchoring 
calsequestrin to the jSR membrane (137). It was not 
shown if junctin, like triadin, binds to RyRs. However, 
junctin is absent from corbular SR in cardiac muscle, even 
though this compartment contains both calsequestrin and 
RyRs (138). 

3. Calsequestrin 

Calsequestrin is an acidic luminal protein of the jSR 
(139-142, 199, 203) named for its high capacity for Ca” 
binding (see Ref. 183 for a review). The major function 

of calsequestrin and of its nonmuscle cell homolog, calret- 
iculin, is to increase the endoplasmic reticulum-SR total 
capacity for Ca” (212). Although calsequestrin is an en- 
tirely luminal protein, it is clearly anchored to the jSR 
membrane (62,95, 296; Fig. 14). This ensures the location 
of calsequestrin near the Ca2’ release channels, both in 
skeletal and cardiac muscle. However, association of 
calsequestrin to the junctional face membrane may be 

more structurally complex and have deeper functional 
implications than just a convenient proximity. In isolated 
heavy SR, calsequestrin and feet tend to cluster on the 
same side of the vesicles (29, 36). In addition, RyRs and 
calsequestrin remain associated with each other, and with 
other minor components of the junction, under conditions 
that extract other intrinsic proteins of the SR, such as the 
Ca2+-ATPase (41, 60). This has led to the hypothesis that 
some relationship exists between calsequestrin and RyRs. 
The positively charged segments of triadin and junctin are 
now suggested as possible intermediaries for this associa- 
tion. 

A functional interaction between calsequestrin and 
other proteins of the jSR with some role in Ca2’ release 
has been proposed. The fluorescence intensity of confor- 
mational probes associated with junctional face mem- 
brane proteins, but not with calsequestrin, vary with the 
Ca” concentration in a manner that is dependent on the 
presence of calsequestrin (125). In addition, a transient 
increase in free luminal Ca2’ concentration is observed 
when Ca2’ release is triggered by caffeine in isolated SR 
vesicles containing calsequestrin but not in those where 
calsequestrin was extracted (123), as if the activity of 
RyRs affects calsequestrin affinity for Ca2’. Finally, a loss 

FIG. 14. Deep-etch rotary shadowed replica of junctional region 
from toadiish swimbladder muscle. At tubule (T) runs from lef to right 
in image. Immediately below t tubule is lumen of junctional SR QSR), 
Illled with a network of calsequestrin. Short strands join calsequestrin 
to jSR membrane (arrows). Bar, 0.2 pm. [From Franzini-Armstrong et 
al. (95).] 
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in responsiveness to Ca” of heavy SR vesicles that have 
been deprived of calsequestrin by treatment with EDTA 
or ethylene glycol-bis(/?-aminoethyl ether)-N,N,N’,N’-tet- 
raacetic acid has been interpreted as an evidence of 
calsequestrin interaction with the RYRS, even while ac- 
knowledging that the isolated RyRs do not need 

calsequestrin for their activity (149). Heterogeneity in RyR 
channel desensitization has been proposed to be due to 
interactions with other SR proteins (179). 

Calsequestrin forms an early association with the jSR. 
The association is not dependent on the presence of feet, 
because it occurs normally in mouse muscle fibers lacking 
RyRl and expressing extremely low levels of RyR3 (308). 
However, in the developing junctions of cardiac muscle, 
clustering of calsequestrin at the junctions follows with 
a small temporal delay the formation of assemblies of feet 
(263). 

membranes that initiate e-c coupling events. Alternatively, 
the jSR may be present in the interior of the muscle fibers 
without bearing any relationship to exterior membranes, 
so that its feet face the cell cytoplasm. This is the so-called 
corbular or extended jSR (see Ref. 294 for a review). In 
skeletal muscle, jSR obligatorily forms junctions, and ex- 
ceptions, if any, are very rare. In cardiac muscle, part of 
the jSR forms junctions, but corbular and/or extended 
jSR is also present in amounts that vary from a small 
percentage to as much as 70% of the feet-bearing SR (see 
Ref. 294 for a review). Evidence for release of Ca2’ at the 
sites of SR-t tubule junctions in the intact muscle fibers 
has come indirectly from the local stimulation experi- 
ments in skeletal muscle (120) and, more directly, in re- 
cent times, by the use of Ca2’ indicators and confocal 
microscopy (52, 77, 154,282). Junctions between domains 
of the endoplasmic reticulum and the plasmalemma, me- 
diated by feet, have also been shown in the Purkinje cells 
of the cerebellum (115). 

RECEPTOR INTERACTIONS IN 
IV. RYANODINE RECEPTOR-DIHYDROPYRIDINE 

EXCITATION-CONTRACTION COUPLING 

During activation of muscle contraction, release of 
Ca2’ from the SR through the RyRs is initiated by depolar- 
ization of the exterior membranes of the cell: the surface 
membrane and its invaginations and the t tubules. A spe- 
cific functional link exists between events in the exterior 
membranes and the response of the internal membrane 

sections they appear as evenly spaced densities. Rows of 
Feet are disposed in arrays (82, 174) so that in thin 

feet are seen in skeletal and cardiac muscle junctions (92, 
296; Fig. 15, A-C) and in SR-surface junctions of Purkinje 
cells in the cerebellum (115). In muscles containing cy- 
and ,&isoforms, the two probably coexist within the same 
array. Examples of feet in junctions of dyspedic skeletal 
muscle have been detected, indicating that RyR3 may also 
be able to assemble into arrays in the absence of RyRl 
(308, 315). The crooked neck dwarf mutation in the 

system. The 

channels (DHPRs) play a major role in defining this inter- 

geometry of the SR in relation to the exterior 
membranes 

action. This section briefly covers structure and geometry 

and the action of the exterior membrane Ca2’ 

of the jSR and then focuses on the interactions between 
RyRs and DHPRs (see Refs. 42, 88, 94, 270 for reviews). 

A. Architecture of Junctional Sarcoplasmic 
Reticulum and Its Relationship 
to Exterior Membranes 

The junctional face membrane of the jSR bears the 
RyRs, whose hydrophilic domains (feet) face the cyto- 

chicken, which results in loss of RyRl but sustained in 
vivo level of RyR3 expression (6), has not yet been fully 
examined by electron microscopy. Extensive arrays of 
feet are also found in muscles of invertebrates, but the 
relationship of invertebrate to vertebrate isoforms has not 
been established. 

The arrangement of feet has been well defined in 
the arrays of skeletal muscle and body muscles of some 
invertebrates (see Ref. 94 for a review). The two disposi- 
tions are slightly different but are both based on a similar 
interaction between the corners of cytoplasmic domains, 
resulting in an orthogonal array with overlap between the 
subunits of alternate feet. Although the centers of the feet 
define an orthogonal pattern, the feet themselves have a 

plasm, and is associated with calsequestrin on its luminal 
side. Other proteins of the junctional complex (triadin, 
junctin) are also associated with this membrane. The jSR 
has two possible relationships with exterior membranes 
(Fig. 15). In most cases, the cytoplasmic side of the jSR 
is closely apposed either with the t tubules or with the 
surface membrane, forming junctions called triads, dyads, 
and peripheral couplings. Feet cross the narrow space 
between the two membranes, called junctional gap, and 
they appear to directly connect SR to exterior membranes. 
In this position the feet, or cytoplasmic domains of RyRs, 
provide a link between the Ca2’ release channel located 
in the jSR membrane and components of the exterior 

slightly skewed position. Formation of the array is an 
intrinsic property of the RyR, since expression of RyRl 
in CHO cells results in ordered aggregates of feet (310). 
Inositol 1,4,5-trisphosphate receptors in Purkinje cells are 
arranged in a disposition similar to that of feet arrays, but 
with smaller spacings due to their smaller size (146). 

B. Dihydropyridine Receptors and 
Excitation-Contraction Coupling 

The primary event in the activation of striated muscle 
contraction is depolarization of the surface membrane. 
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FIG. 15. Electron micrographs of triads in skeletal muscle (A and B, 3 arrows) and a peripheral coupling in cardiac 
muscle CC. between arrows). Evenly sDaced densities or feet. remesenting junctional domains of RyRs, fill junctional 
gap. Bar; 0.1 pm. [From Pr&asi et al. <263).] 

This in turn is sensed by voltage sensors, whose activity 
is detected in the form of a charge movement (278; see 
Ref. 277 for a review). The dihydropyridine-sensitive L- 
type Ca2’ channels of exterior membranes (DHPRs) are 
responsible for charge movement and the initiation of 
e-c coupling in skeletal muscle (1, 268, 318). The effects 
of charge movement are somehow felt by the RyRs, which 
become permeable to Ca2’, thus initiating the next step, 
Ca2’ release. The DHPRs have five subunits (~yi, LYE, /3, y, 
and S), and a1 is the channel-forming, voltage-sensing, 
dihydropyridine-sensitive portion of the molecule (see 
Ref. 42 for a review). The ai-DHPR is structurally similar 
to the voltage-sensitive Na+channels, with four transmem- 
brane domains (I-IV), each formed by six membrane- 
spanning segments (Sl-S6) (215, 320). The cardiac al- 
DHPR is a related oligomeric complex, whose al-subunit 
has 66% homology with the skeletal counterpart and the 
same general transmembrane topology, but larger COOH- 
and NHz-terminals (215). Motion of a positively charged 
portion of the DHPR (S4 in each domain) has been pro- 
posed, and later confirmed, to be responsible for charge 
movement providing the triggering signal that induces ac- 
tivation of RyRs in skeletal muscle (12, 320). 

Three animal models bearing specific mutations of 
key e-c coupling components have played, and will con- 
tinue to play, a key role in unraveling the interactions 
between DHPRs and RyRs in e-c coupling. One is the 
dysgenic mouse. In this spontaneously generated mutant, 
a single nucleotide deletion (nucleotide 4010) causes a 
shift in the translational reading frame for crl, the channel- 
forming subunit of DHPR (44). This leads to loss of charge 

movement, currents, and e-c coupling (13, 14). The three 
functions are restored by transfection with cDNA for (Ye- 
DHPR, indicating that they reside in this molecule (1,318). 

A second model is the transgenic mouse, resulting 
from a targeted mutation of the gene for RyRl (311). Mu- 
tated, dyspedic, fibers lack e-c coupling and feet, but junc- 
tions between SR and exterior membranes are formed, 
although in a limited number (308). 

A spontaneous mutation of RyRl in chicken results 
in the crooked neck dwarf phenotype (3). The RyR3 iso- 
form is expressed at later stages of development, but the 
fibers do not fully recover structure and function (6). 

Basic differences in e-c coupling events in skeletal and 
cardiac muscles are due to differences in the interaction 
between DHPRs and RyRs, which in turn are based on 
different properties of both DHPRs and RyRs. In skeletal 
muscle, despite a well detectable charge movement, the 
Ca” current is slow and of small magnitude (Pig. 16A). The 
current peaks after tension development, and e-c coupling 
can occur normally in the absence of extracellular Ca2’. 
Calcium transients, due to Ca” release from the SR, are fast 
and display a sigmoidal dependence of membrane voltage. 
Activation of RyR may be due to a direct action of the 
voltage sensor on the Ca” release channel. In cardiac mus- 
cle, on the other hand, the kinetics of DHPR activation are 
fast (Pig. 16B), Ca2’ currents precede contraction and are 
of large amplitude, Ca” permeation through the channels 
is a prerequisite of contraction, and Ca2’ transients are slow 
and have a bell-shaped dependence on voltage parallel to 
that of Ca2’ currents Activation of cardiac RyRs may be by 
the indirect means of CICR (see Refs. 340,341 for reviews). 
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25 ms 

FIG. 16. Ca”’ currents of skeletal (A) and cardiac (B) 
DHPRs differ significantly in kinetic properties. C: skeletal- 
cardiac q-DHPR chimera (CSk3) constructed by substitut- 
ing skeletal II-II loop (thick line) into a cardiac DHPR. 
Channel expressed in dysgenic myotubes is capable of 
cardiac-type Ca2+ currents (yight) but results in skeletal- 
type excitation-contraction coupling, independent of ex- 
tracellular Ca2 + . Vertical calibration corresponds to 1.5 nA 

(A), 15 nA (B), and 10 nA (C). [From Tanabe et al. (317).] 

One possible explanation for the small Ca” currents 
of skeletal muscle DHPRs was sought in the existence of 
two isoforms of the q-subunit (64). It was proposed that 
the most abundant form, missing the COOH-terminal, acts 
only as a voltage sensor, whereas the full-length, longer 
transcript codes for a DHPR capable of opening its activa- 
tion channel (see Ref. 42 for a review). However, the 
truncated version expressed in the dysgenic mouse can 
act both as voltage sensor and Ca”+ channel (E), and the 
conclusion is that skeletal DHPRs are excellent voltage 
sensors but sluggish Ca”+ channels. Indeed, DHPRs recon- 
stituted in lipid bilayers have very low average probability, 
when stimulated by a voltage change (181). 

Cardiac-skeletal chimeras of the a ,-subunit, ex- 
pressed in dysgenic myotubes, have kinetic characteris- 
tics of either one or the other type, depending on the type 
of repeat I present in the chimera (316). More specifically, 
the S3 segment and the linker connecting S3 and S4 in 
the repeat I (226) are determinant of DHPR activation 
kinetics. 

C. Spatial Relationship Between Ryanodine 
Receptors and Dihydropyridine Receptors: 
Clues to Excitation-Contraction Coupling 

Dihydropyridine receptors are located in the surface/ 
t-tubule membranes at sites of surface-SR junctions and 
face RyRs in skeletal and cardiac muscle and in cell lines 
derived from them (38, 86, 89, 263, 303, 348; Fig. 17). In 
this position, DHPRs are appropriately located to initiate 
the coupling between electrical signal and release of Ca”+ 
from the jSR. Indeed, development of e-c coupling mecha- 
nism and the appearance of DHPR-RyR associations are 
simultaneous in skeletal muscle myotubes (86). The CQ- 
subunit is responsible for anchoring DHPRs to the junc- 
tional regions, since in its absence (in dysgenic muscle) 
the cy2-subunit remains diffuse in the exterior membrane/t 

tubule (90). Biochemical evidence for a complex involving 
DHPRs and RyRs has been obtained (191), but it has not 
been confirmed structurally. 

The specific location of DHPRs relative to the neigh- 
boring RyRs differs in skeletal and cardiac muscle, in a 

manner that is highly correlated with functional variations 
in e-c coupling mechanisms between the two muscles. In 
skeletal muscle, DHPRs are clustered in groups of four, 
or tetrads (Fig. 18, A and C). The tetrads are positioned 
in exact correspondence of the feet so that each DHPR 

is located immediately above one of the RyR subunits and 
thus available for a direct interaction (21, 96). However, 
unexpectedly, tetrads are associated with alternate feet. 
This disposition is found in several different types of fi- 
bers, and it is not dependent on the presence of two differ- 
ent RyR isoforms, so unattached feet can be RyRls, as 
well as, probably, RyR3 (see Ref. 304 for further discus- 

sion). Identification of tetrads as groups of four DHPRs 
is based on the absence of tetrads in developing dysgenic 
muscle in vivo and in vitro (97, 307) and the restoration 
of tetrads after transfection with the cDNA for skeletal 
DHPR (307). One problem remains and that is an inconsis- 
tency between the ratio of DHPRs to RyRs predicted from 

structural considerations and the measured ratios of high- 
affinity [ 3H] PN200 - 100 and [“HI ryanodine binding. The 
alternate position of tetrads and feet results in an overall 
ratio of 2 DHPRs/RyR. Measured ratios vary in muscles 

from different sources and are mostly smaller than 2:l (8, 
18, 185). The observation that tetrads, although precisely 
located in correspondence of alternate feet, are often in- 
complete, i.e., they miss one or more particles, reduces 
but does not eliminate this discrepancy. A small subpopu- 

lation of “strong” triads resistance to dissociation and 
containing a higher density of DHPRs exists in rabbit skel- 
etal muscle, indicating that DHPR levels may vary locally. 
However, it is not clear where these are located in the 
muscle fiber (27, 151), and structural evidence for local 
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FIG. 17. Confocal images of cryosections from left ventricle of adult chicken myocardium immunolabeled for 
DHPRs (A) and RyRs (B). Images show discrete foci of 2 molecules marking location of peripheral couplings at cell 
periphery. Faint labeling by RyR antibody in interior of cell marks position of extended jSR. Bar, 10 ,um. [From Protasi 
et al. (263).] 

C 

FIG. 18. A and B: freeze fractures of surface membrane from developing skeletal and adult cardiac muscles, 
showing DHPR clusters at sites of peripheral couplings. In skeletal muscle (A), DHPRs form groups of 4 (tetrads). 
Spacing between tetrads indicates a 1:2 correspondence of tetrads to feet. In cardiac muscle (B), DHPRs are randomly 
disposed within cluster. C and D: modeling of disposition of DHPRs (black circles) relative to underlying arrays of feet 
(represented by 4 gray circles). In skeletal muscle (0, best fit between arrays of tetrads and feet is obtained by exact 
superimposition of DHPR tetrads (4 black circles) over alternate feet. In cardiac muscle (D), DHPRs have a random 
dlspositon and thus are not consistently located relative to feet. Note, however, that each DHPR is in very close 
proximity to one or more feet. Bar, 0.1 mm. [A from Franzini-Armstrong et al. (97); B from Protasi et al. (263).] 
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Two-component model of calcium release 

Sarcoplasmic reticulum 

FYG. 19. Two-component model for Ca” release from SR. Alternate 

disposition of tetrads over feet implies that alternate feet are differently 
activated. One possibility, shown here, is that one RyR is directly acti- 

vated by a tetrad of DHPRs, whereas the other is activated indirectly 
by CICR (see Ref. 271). In muscles with 2 isoforms, RyRl would be 

directly coupled to foot, whereas RyR3 would be indirectly activated. 
However, in mammalian muscle, it must be assumed that coupled and 

uncoupled feet are both represented by RyRls. [From Block et al. (22).] 

variations in DHPR has not been directly obtained, for 
technical reasons. 

An allosteric model for the control of one RyR by four 
DHPRs fits reasonably well the e-c coupling properties of 
skeletal muscle (269). However, as a result of the associa- 
tion of tetrads with alternate feet (Fig. l&Z’), some RyRs 
have the possibility of interacting directly with four 
DHPR, while the remaining feet are denied the interaction 
(21, 96, 262) (Fig. 19). Schemes in which the activity of 
alternate feet is directly initiated by interaction with 
DHPRs, whereas other are activated by CICR, have been 
proposed (see Refs. 22, 271 for reviews) (Fig. 19). Evi- 
dence both for and against Ca’+-dependent mechanisms 
in addition to voltage-dependent effects and for voltage- 
dependent influence on Ca’+-dependent release have been 
presented (8, 10, 67, 248; see Ref. 277 for a review). 

Ryanodine receptors dictate the positioning of 
DHPRs into tetrads but are not necessary either for the 
formation of junctions between SR and exterior mem- 
branes, nor for the clustering of DHPRs in proximity of the 
junction. Developing myotubes from mice with a targeted 
mutation for RyRl (311) form feetless (dyspedic) junc- 
tions in which calsequestrin-containing SR is closely ap- 
posed to surface membrane and t tubules (308). In addi- 
tion, in a newly developed cell line carrying a similar tar- 
geted mutation of the RyRl gene, DHPRs cluster at sites 
of the dyspedic junctions but remain randomly disposed, 
and do not form tetrads (F. Protasi, C. Franzini-Arm- 
strong, and P. D. Allen, unpublished data). 

In cardiac muscle, like in skeletal muscle, DHPRs 
are clustered at the SR-surface junctions (38, 263, 303). 
Indeed, the areas of surface membrane occupied by 
DHPRs are equal in size to the areas of SR associated 

with arrays of feet (263). However, there is no evidence 
for a direct association of DHPRs into tetrads (Fig. 18, B 
and 0) and for a specific positioning of DHPRs relative 
to the feet in cardiac muscle. The apparent lack of specific 
association between DHPRs and RyRs in peripheral cou- 
plings of cardiac muscle is in keeping with the lack of a 
direct functional interaction of DHPRs with RyR2. How- 
ever, clustering of RyRs and DHPRs into closely apposed 
patches of membrane increases the chance that a RyR 
can be affected by the Ca” current flowing through a 
nearby DHPR, thus allowing privileged DHPR-RyR com- 
munication (283). 

Cardiac muscle presents an additional e-c coupling 
puzzle, due to the presence of extended jSR or corbular 
SR. These are SR sites containing high densities of 
calsequestrin and RyR2 (144,140, 141), which do not face 
DHPRs (Fig. 20). In some avian myocardium, extended 
jSR constitutes a large proportion of the jSR, and thus it 
is expected that its RyRs participate in Ca2’ release (see 
Ref. 294 for a review). Clearly, this must be activated by 
some indirect means, such as a “saltatory conduction,” 
that permits the spread of CICR from one site to the next 
(294). This hypothesis is supported by the observation 
that the distance between extended jSR sites is very small 
in avian muscle, thus favoring interactions from one site 
to the next (unpublished data). 

Because the RyR3 isoform is normally combined with 
the RyRl in skeletal muscle, it is not possible to know 
how it is activated under normal conditions. However, in 
cultured myotubes from cn/cn chicks, RyRl is absent, 
whereas RyR3 is well expressed. CnJm myotubes show 
Ca2’ transients that are dependent on the presence of 
outside Ca2’, remain localized, and rise slowly (133). It is 
not entirely clear whether these transients arise from the 
interaction of the cardiac-type DHPRs present in these 
myotubes with RyR3. 

D. Functional Dihydropyridine Receptor- 
Ryanodine Receptor Interactions 
Are Isoform Dependent 

The type of e-c coupling, skeletal (independent of 
extracellular Ca”‘) versus cardiac (dependent on intracel- 
lular Ca2’), is determined by the DHPR isoform present 
in the cell. Expression of the skeletal-type (rl-DHPR in 
dysgenic myotubes, either after nuclear injection of the 
appropriate cDNA (1, 13,318; see Ref. 14 for a review) or 
after fusion with wild-type fibroblasts (45, 61), restores 
skeletal-type e-c coupling. Transfection with cDNA for 
cardiac DHPR @CARDl) results in cardiac-type e-c cou- 
pling, despite the presence of RyRl in these cells (319). 
The expressed DHPRs maintain their native relationships 
between Ca” transients and Ca2’ currents (102). Activity 
of other Ca2’ channels fails to elicit e-c coupling in dys- 
genie myotubes (1, 327). 
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FIG. 20. Cross section through a cardiac myocyte from ventricle of finch. This muscle has no t tubules. JSR is 
either located at surface membrane, to form peripheral couplings (between arrows), or within interior of fiber, where 
it forms an extensive Z-line level network of extended jSR (see arrowheads). One extended jSR segment is indicated 
between arrowheads. Bar, 0.5 pm. (Courtesy of J. R. Sommer.) 

With the use of skeletal-cardiac chimeras, in which 
the cytoplasmic loops of the cardiac (Y~-DHPR are gradu- 
ally substituted with their skeletal counterparts, the puta- 
tive cytoplasmic loop between the II and III intramem- 
brane segments (residues 666-791) was shown to be the 
major determinant of e-c coupling type (317; Pig. 16, C 
and 0). In vitro experiments have not only confirmed the 
importance of the II-III loop but have also shown directly 
that this portion of the DHPR affects behavior of RyRs. 
However, several apparent inconsistencies between the 
results of different laboratories, and also between in vivo 
and in vitro results, exist. Peptides containing amino acids 
666-791 do activate RyR channels in vitro, increasing 
open probability and ryanodine binding (176). However, 
contrary to what happens in vivo, peptides from skeletal 
and cardiac II-III loops are equally active on RyRl. A 
shorter peptide, comprising amino acids 666-726, and a 
phosphorylatable site at Ser-687, was found to have good 
activity, under the control of phosphorylation (177). How- 

ever, this peptide does not overlap with the critical 17- 
amino acid segment, identified by in vivo experiments, 
which is located at amino acids 727-743 (229). Finally, 
two adjacent peptides within the loop have been identi- 
fied. One, at amino acids 671-690, has an activating effect, 
and the other, at amino acids 724-760, inhibits the effect 
of the former (73, 74). Clearly, the II-III loop of DHPRs 
controls the state of activity of RyRl, but the interaction 
may be quite complex, very likely including various activi- 
ties within the same segment as well as contributions by 
other loops. In addition, the RyR also has its voice in the 
RyR-DHPR interactions, since the complete skeletal II-III 
loop has no effect on RyR2 (177). 

Although the above experiments strongly support the 
hypothesis of a molecular interaction between DHPRs and 
RyRs in skeletal muscle, retrograde interaction from RyR 
to DHPR gives further backing to this theory of e-c cou- 
pling. Dyspedic myotubes lacking RyRl have greatly re- 
duced Ltype Ca2’ currents, but the maximum immobiliza- 
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tion-resistant charge movement related to surface area is 
comparable to that of control myotubes (227). Transfec- 
tion with cDNA for RyRl brings the ratio of Ca” current 
to charge movement back to the normal value (229). The 
inference is that dyspedic myotubes express DHPRs, and 
a retrograde action of RyR controls their gating. Thus the 
“mechanical” hypothesis of skeletal muscle e-c coupling, 
requiring direct interaction between surface membrane 
and SR components (278), has come of age at approxi- 
mately the right time (-21 years after its proposal). 

V. CONCLUSIONS 

Paradigms for the identification of RyRs have been 
defined in striated muscles. Ryanodine binding and its 
effect, sequence, immunoreactivity, structure, channel 
conductivity, and pharmacology can be used to identify a 
member of this family of Ca2’ release channels of the 
internal membranes. With the use of any of these clues, 
it is clear that RyRs are present in all cells, together with 
InsP3 receptors. However, striated muscle cells have con- 
siderably more RyRs than InsPs receptors, whereas non- 
muscle cells have the opposite ratio. Interestingly, smooth 
muscle and Purkinje cells of the cerebellum are rich in 
both types of Ca”+ release channels. In smooth muscles, 
the two types of channels are involved in two distinct 
pathways for the activation of contraction (see Refs. 292, 
293 for reviews). The rationale for the high concentration 
of skeletal-type RyRs and of InsPs receptors in Purkinje 
cells is not known. 

Activity of RyRs is controlled by a variety of interac- 
tions with soluble and structural proteins. The interac- 
tion between two Ca2’ channels, DHPRs of the exterior 
membranes and RyRs of the SR, dominates e-c coupling. 
Variations in the properties and relative positions of the 
two channels explain differences in e-c coupling mecha- 
nisms in skeletal and cardiac muscle. Explorations of 
the molecular, functional, and structural basis for these 
difference have greatly strengthened the mechanical hy- 
pothesis for e-c coupling in skeletal muscle. This requires 
a direct functional interaction between DHPRs and RyRs, 
probably mediated by a physical contact between one or 
more cytoplasmic loops of DHPRs and the large cyto- 
plasmic domain of RyRs. Other proteins of the SR, an 
accessory component of the RyR, and various solutes 
modulate, control, and stabilize the level of activity of the 
channel and its responsiveness to DHPRs. The molecular 
basis for these interactions and their functional role are 
quite complex, and their unraveling has just begun. A 
promising venue of research in the near future is the 
study of small spontaneous and activated release events 
by optical techniques (52). 
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