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Dealing with FDA Estimation Methods

Tonio Di Battista, Stefano A. Gattone, and Angela De Sanctis

Abstract In many different research fields, such as medicine, physics, economics,
etc., the evaluation of real phenomena observed at each statistical unit is described
by a curve or an assigned function. In this framework, a suitable statistical approach
is Functional Data Analysis based on the use of basis functions. An alternative
method, using Functional Analysis tools, is considered in order to estimate func-
tional statistics. Assuming a parametric family of functional data, the problem of
computing summary statistics of the same parametric form when the set of all func-
tions having that parametric form does not constitute a linear space is investigated.
The central idea is to make statistics on the parameters instead of on the functions
themselves.

1 Introduction

Recently, Functional data analysis (FDA) has become an interesting research topic
for statisticians. See for example Ferraty and Vieu (2006) and Ramsay and Silver-
man (2007) and reference therein. In many different fields, data come to us through
a process or a model defined by a curve or a function. For example, in psychophisi-
ological research, in order to study the electro dermal activity of an individual, the
Galvanic Skin Response (GSR signal) can be recorded and represented by a contin-
uous trajectory which can be studied by means of the tools of FDA (Di Battista et al.
2007). We want to deal with circumstances where functional data are at hand and the
function is known in its closed form. In particular, we consider a parametric family
of functional data focusing on parameters estimation of the function. For example,
Cobb-Douglas production functions are frequently used in economics in order to
study the relationship between input factors and the level of production. This family
of functions takes on the form y = f(K, L) = L*KP#, where L is one factor of pro-
duction (often labour) and K is a second factor of production (often capital) and o
and 8 are positive parameters witha + = 1.In biology, growth functions are used
to describe growth processes (Vieira and Hoffmann 1977). For example, the logistic
growth function Z = a/[l 4 exp{— (b + ct)}] where a, b and ¢ are parameters,
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a > 0 and ¢ > 0, and the Gompertz growth function Z = exp (a —bc! ) where «,
b and ¢ are parameters, b > 0 and 0 < ¢ < 1. The aims of FDA are fundamentally
the same as those of any area of statistics, i.e., to investigate essential aspects such
as the mean and the variability function of the functional data. Moreover, one could
be interested in studying the rate of change or derivatives of the curves. However,
since functional data are often observed as a sequence of point data, then the func-
tion denoted by y = x (¢) reduces to a record of discrete observations that we can
label by the n pairs (¢;, y;) where y; is the value of the function computed at the
point ¢;. A first step in FDA is to convert the values y;1, yi2,. .. yin for each unit
i =1,2,...,m to afunctional form computable at any desired point ¢. To this pur-
pose, the use of basis functions ensures a good fit in a large spectrum of cases. The
statistics are simply those evaluated at the functions pointwise across replications.
m

It is well known that the sample mean x (f) = # > xi (1) is a good estimate of
i=1

the mean if the functional data are assumed to belong to L?. If we do not need of a
scalar product and then of an orthogonality notion, we can consider every L? space,
p > 1, with the usual norm (Rudin 2006). In general the functional data constitute a
space which is not a linear subspace of L?. For example, let y; = A L% and y, =
A, L*2 be Cobb-Douglas functions in which for simplicity the production factors
A1 and A, are assumed constant. The mean function is y = QL’ZLA-’-L'Z which
is not a Cobb-Douglas function and its parameter does not represent the well known
labour elasticity which is crucial to evaluate the effect of labour on the production
factor. In general, the results of this approach may not belong to a function with the
same closed form of the converted data so that erroneous interpretations of the final
functional statistic could be given.

In this communication we want to emphasize a new approach which is focused
on the true functional form generating the data. First of all, we introduce a suit-
able interpolation method (Sung Joon 2005) that allows us to estimate the function
that is suspected to produce the functional datum for each replication unit. Starting
from the functional data we propose an explicit estimation method. The objective is
to obtain functional statistics that belong to the family of functions or curves sus-
pected to generate the phenomenon under study. In the case of a parametric family
of functional data, we use the parameter space in order to transport the mean of
the parameters to the functional space. Assuming a monotonic dependence from
parameters we can obtain suitable properties for the functional mean. At illustrative
purpose, two small simulation studies are presented in order to explore the behaviour
of the approach proposed.

2 Orthogonal Fitting Curve and Function

Generally, functional data are recorded discretely as a vector of points for each
replication unit. Thus, as a first step we need to convert the data points to a curve
or a function. Methods such as OLS and/or GLS do not ensure the interpolation
of a wide class of curves or functions. A more general method is given by the
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Least Squares Orthogonal Distance Fitting of Curves (ODF) (Sung Joon 2005).
The goal of the ODF is the determination of the model parameters which minimize
the square sum of the minimum distances between the given points {Yj};l-zl and
the closed functional form belonging to the family of curves or function { f (0,7)}
n
with 0§ = {9, 02, ..., 0,,}. In ODF the corresponding points {Y’;} _ ona fit-
j=
ted curve are constrained to being membership points of a curve/surface in space.
So, given the explicit form f (6;¢) such that Y* — f (#;¢) = 0, the problem
leads to minimize a given cost function. Two performances indices are introduced
which represent in two different ways the square sum of the weighted distances
between the given points and the functional form f (6;1): the performances index
o = [PY-Y"|* = (Y = Y))TPTP(Y — Y*) in coordinates based view
of af = [Pd||* = d”PTPd in distance based view, where PTP is a weighting
n
matrix or error covariance matrix (positive definite), Y* = {Y;‘} ~is a coordi-

Jj=1
nate column vector of the minimum distance points on the functional form from

each given point {Yj};=l, d = (di.da....,d,)T is the distance column vector

T
with d; = ”Y,-—Yj - \/(Y, ~Y;) (Y, = Y})- Using the Gauss Newton

method, it is possible to estimate the model parameters @ and the minimum distance

n
points {Yj} with a variable separation method in a nested iteration scheme as
j=1
follows
min  min 02 ({Y;‘ (0)}'%_1) (1
@Rl {Y*}” ez J=
ij=1

whith Z = {Y € R" : Y — f(0:1) = 0,0 € R?,t € R*}.

3 Direct FDA Estimation Methods

Let S be a family of functions with p real parameters that is S = { fy} with § =
(61,6>,...6,) € ©.Inan economic setting, S could be the family of Cobb-Douglas
production functions, i.e., fy g (K,L) = KYLP with @ > 0, B > 0and a +
B = 1. Starting from m functional data belonging to S, fg,, fo,...., fs,,, the
objective is to find an element of S said functional statistic denoted with f; =

H(folaf02 ~~~~ fom)'

3.1 The Functional Mean

In the following we assume that functional data constitute a subspace S of some L?
space, p > 0, with the usual norm (Rudin 2006). We consider first the functional

mean of the functions fp,, fa,...., fs,,- When S is a vectorial subspace, then

fgl +f92+...+f(-),n

we can express the functional mean as the sample mean fé = =
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Because S is closed with respect to linear combinations, we have that f; € S. In
this setting a straightforward property is that the integral of the functional mean is
the mean of the integrals of each functional datum. For example, let S be the family
of functions of the following form f, = g (x), then

fo = EEtl) _ Boiuel® - Mot (). @)

This proves that fg (x) is an element of S and its parameter is the mean of the
parameters 1,0z, . .., 0. At the same time it is easy to prove that if S is not a
vectorial space then this functional statistic doesn’t necessarily lead to an element
belonging to S. We go along in two ways. The first one is to verify if there is an
element in S that has got as integral the mean of the integrals of the functional data.
For instance, let S be the family of functions fy (x) = x*, with0 < o < I and

1o 1 ay
domain the closed interval [0, 1]. If m = 2, then [ x®dx = -/"—)‘L;’”x;dx,

1 1
thatis 3 = = = —22%1 which admits a unique solution. For example if we have
got two functions with parameters &, = 3 and @y = 3 then& = 5. Unfortunately,

in general the solution may not exist in the real field and/or it is not unique and
it would be necessary to introduce some constraints on the parameters not easy to
interpret.

A second way to solve the problem without ambiguity is the following. We
assume that every functional datum fj is univocally determined by the parameter 6
or equivalently there is a biunivocal correspondence between S and the parame-
ter space @. Then, a functional statistic for the space of the functional data can
be obtained through a statistic in the parameter space. In the case of a paramet-
ric family of functional data, we use the parameter space in order to transport the
statistics in @ to S. Let the functional data be fy,. fg,. ..., f4,,, then a functional
statistic for the set of the functional data is given by a suitable statistic of the param-
eters 01, 0,, ..., 0, say =K (61, 60,,...,0m). The functional statistic will be the
element of S that has got as parameter the statistic 6, following the scheme:

9[ <—f9,-
! i=12....m 3)
0 =K©6)— f;

A possible way of defining the function K is the analogy criterion. If we want to esti-
mate the functional mean or median then the function K would be the mean or the
median of the parameters. Obviously, other ways of defining the function K are pos-
sible. The advantage in this case is that we can require for the functional mean and
variability the same properties of the mean and variance of the parameters. In par-
ticular, for the functional mean, we can assume that the functions are linked to each
parameter by a monotonic dependence. For example, if we have only a parameter o,
we can suppose &) < a2 = fu, (x) < fa, (¥) OF fo, (x) > fa, (x) Vx.Insucha
case, for the mean parameter &, we obtain fo, (x) < f5 (x) < fa, (x) Yx. More-
over this property ensures also that [ fo, (X)dx < [ fa (¥)dx < [ fa, (X)dx. Tt



Dealing with FDA Estimation Methods 361

is easy to verify that monotonic decreasing dependence is verified by the family
S = fa(x)=x*withO <& < land x € [0, 1].

3.2 Functional Variability

In order to study the functional variability we first introduce the functional quantity
vi(t) = |f9,. () - f3 (t)lr which is the r-th order algebraic deviation between the
functional observed data fp. and the functional statistics f- Then the functional
variability can be measured pointwise by the r-th order functional moment

l m
VI =—3 Vi) )
i=1

The function V" () has the following properties:

o if fo,(t) = f3(¢) fori = 1,2,...,m and V¢, than V" (t) = 0;
e defining the L? norm of a function as || fp(t)||.» = [ | fo(t)|” dt then we have
that

{“fe,-—fg”u, —>O} = {f@i ae. faevi ae. 0Vi=1,2,....maV de. 0}.

We remark that, if the function fp in S is expandable in Taylor’s series, that is

0 k
oty =3 L@y 5)

!
—_ k!

where « is a fixed point of an open domain and fek (a) is the k-th derivative of the
function fp computed at point ¢, an approximation of the functional variability can
be obtained by Taylor’s polynomials sq, of fp, and 56, of f4 respectively:

% 3 ‘sei (1) =34, (0) . (6)

i=1

This fact is useful from a computation point of view. In order to give some insights to
the approach proposed in the next section two small simulation studies are proposed.

4 A Simulation Study

We conduct two small simulation studies in order to evaluate the estimation method
proposed for the functional statistic f; = H (f9| s Joha055 fgm) equal to the func-
tional mean.
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o ~N(0.5,0.1)

o~ U(0,1)

0 0.2 0.4 0.6 0.8 1
X

a ~ Exp(0.05)

0.2 0.4 0.6 0.8 1
X

Fig. 1 Functional populations S = { fy} = x® + € with three different space parameter 6 and
€ ~ N(0,0.01)

4.1 Power Functions

We suppose that the observations are contaminated with some error so that the
resulting family S = { fp} of functions is defined as S = {x*}+€ with® = a € R!
with 0 < @ < 1 and 0 < x < 1. We simulate different populations by assigning
to « different distributions such as the truncated Normal, the Uniform and the trun-
cated Exponential with different parameters and to € a white noise with standard
error equal to 0.01. At illustrative purpose in Fig. 1 there are three populations for
a~Npu=050=0.1),a ~U(0,1) and @ ~ Exp(0.05). Values of « outside
the interval (0, 1) were discarded.

In order to evaluate the estimation method proposed in Sect. 3, we sample from
each population J = 5,000 samples for various sample sizes m. As the functions
are observed with error we first need to apply the ODF method of Sect. 2 to estimate
the function parameter o for each function. Once for each sample the estimates
01,0,,..., 0, are available, the scheme detailed in (3) can be applied in order to
obtain the functional mean statistic of the sample. In Fig.2 we show the results for
a sample size of m = 10. In particular, for each population, the functional mean
statistic together with the estimated standard error are plotted.
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bl Ll o ~U(0.1) o ~ Exp(0.05)

0.5 1
X
Standard error Standard error Standard error
0.03 0.08 0.06
006/
0.02 3 0.04
0.04
0.01 0.02
0.02 \\\
L
0 0 0 -
0 0.5 1 0 0.5 1 0 0.5 1
X X X

Fig. 2 J = 5,000 Functional mean statistics for a sample size m = 10

4.2 Functional Diversity Profiles

At illustrative purpose, we present an ecological application of the estimation
method proposed. Suppose to have a biological population made up of p species
where we are able to observe the relative abundance vector 8§ = (61,6,,...,6,)
in which the generic 6; represents the relative abundance of the j-th species. One
of the most remarkable aspects in environmental studies is the evaluation of eco-
logical diversity. The most frequently used diversity indexes may be expressed as
a function fp of the relative abundance vector. Patil and Taillie (1982) proposed to
measure diversity by means of the S-diversity profiles defined as

-0 6"
p

B-diversity profiles are non-negative and convex curves. In order to apply functional
linear models on diversity profiles, Gattone and Di Battista (2009) applied a trans-
formation which can be constrained to be non-negative and convex. In the FDA
context, it is convenient considering the B-diversity profile as a parametric func-
tion computable for any desired argument value of B € [—1,1] \ {0}. The space
parameter is multivariate and given by 8. In order to evaluate the estimation method
proposed in Sect. 3, we simulate different biological populations by assigning to
each component of @ different distributions such as the Uniform, the Poisson and

A= fo(B) = (N
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Uniform Population Poisson Population Multinomial Population
- 4
< < <
3
g 8 8
5 5 5
a 52 a
c C =
o o I
[ (4] 1 Q
1S £ 1S
0 0
-1 0 1 -1 0 1
Standard error Standard error Standard error
0.03 0.08 0.03
0.06
0.02 0.02
0.04
0.01 ~| 0.01
0.02
0 0 0
-1 0 1 -1 0 1 -1 0 1
B p B
l_z/f_ H,fi+1
Fig. 3 J = 5,000. Functional mean diversity profiles A = f; = —% and standard error

for a sample size m = 5

the multinomial distribution. From each population we sample J = 5,000 sam-
ples with different sample sizes. The function A in (7) is observed without error
so that we do not need to apply the ODF method of Sect. 2. For each sample of
size m we can evaluate the estimates @ from the observed 0 1,02,...,0,, and the
scheme detailed in (3) can be applied in order to obtain the functional mean statistic
A = f;. In Fig.3 we show the results for three populations with p = 5 species
with different level of diversity. From each population we randomly choose samples
of size m = 5. The parameters of the Poisson and the Multinomial distributions are
A = 100 * [0.55,0.19,0.13,0.07,0.06] and [0.55,0.19,0.13,0.07,0.06], respec-
tively. For each population, the functional mean statistic together with the estimated
standard error are plotted. As desired, all the functional statistics result to be non-
negative and convex. Furthermore, even though monotonic dependence from the
parameters is not verified with diversity profiles, the functional mean satisfies the
internality property in all the simulation runs.
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