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Abstract We address here the involvement of the homeodo-
main-interacting protein kinase 2 (HIPK2)/p53 complex on
MDM2 regulation following apoptotic DNA damage. Our re-
sults provide a plausible transcriptional (p53-dependent) and
posttranscriptional (p53-independent) double mechanism by
which HIPK2 accomplishes MDM2 downmodulation. First, in
wtp53-carrying cells HIPK2-dependent p53Ser46 phosphoryla-
tion selectively inhibits MDM2 at transcriptional level. Sec-
ondly, HIPK2 interacts with MDM2 in vitro and in vivo and
promotes MDM2 nuclear export and proteasomal degradation,
in p53-null cellular context. This p53-independent effect is likely
mediated by HIPK2 catalytic activity and we found that HIPK2
phosphorylates MDM2 in vitro. In response to DNA damage,
depletion of HIPK2 by RNA-interference abolishes MDM2 pro-
tein degradation. We propose that HIPK2 contributes to drug-
induced modulation of MDM2 activity at transcriptional
(through p53Ser46 phosphorylation) and posttranscriptional
(through p53-independent subcellular re-localization and prote-
asomal degradation) levels.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

P53 occupies a central position in an intricate stress� signal-
ling network [1,2]. P53 is normally silent and kept at low con-

centration. DNA damage provokes p53 stabilization and

activation as transcription factor for specific target genes [3].

P53 accumulation and activation are regulated through specific

posttranslational modifications including phosphorylation,

acetylation, ubiquitination, sumoylation, and protein/protein

interaction [4]. Homeodomain-interacting protein kinase 2

(HIPK2) is a serine/threonine kinase [5] whose functional

importance was estimated by means of its interacting proteins

and downstream phosphorylation targets, including p53.

HIPK2 binds and phosphorylates p53 at Ser46 selectively

inducing apoptosis in tumour cells [6,7]. Moreover, HIPK2

prevents the MDM2-mediated p53 cytoplasmic shuttling and
*Correspondending author. Fax: +0039 06 52662505.
E-mail address: dorazi@ifo.it (G. D�Orazi).

0014-5793/$30.00 � 2005 Federation of European Biochemical Societies. Pu

doi:10.1016/j.febslet.2005.09.008
ubiquitination, in vitro and in vivo, neutralizing p53 degrada-

tion and recovering its apoptotic function [8].

MDM2 is an oncoprotein whose transforming potential is

activated by overexpression [9,10]. It is a negative regulator

of p53, induces p53 nuclear export and proteasomal degrada-

tion, thus restraining its oncosuppressor functions [11–16].

The MDM2-negative regulation of p53 can be neutralized by

partner proteins and by specific protein modifications. Several

mechanisms to block MDM2 activity have been described,

including the interaction with proteins such as ARF [17] or

posttranslational modifications of either p53 or MDM2

[18,19]. DNA-damage activated kinases have been shown to

contribute to destabilization of MDM2 and subsequent activa-

tion of p53 [20] and DNA-damage induced phosphorylation of

N-terminus-p53 contributes to p53 stability by preventing

MDM2 from degrading it [19,21,22].

Here, we show that HIPK2 regulates MDM2 at transcrip-

tional and posttranscriptional levels, in p53-dependent

and -independent ways, respectively. We found that (i)

HIPK2-dependent p53Ser46 phosphorylation favours p53

detachment from MDM2 and inhibits p53-mediated MDM2

gene transcription; (ii) HIPK2 and MDM2 form a complex

in vitro and in vivo that remains stable in response to DNA

damage; (iii) the capacity of HIPK2 to phosphorylate

MDM2 may underlie the observed translocation of MDM2

into the cytoplasm and its proteasomal degradation, in p53-

null cellular context. These findings suggest that HIPK2 can

act through different but overlapping routes with the same

principal outcome, i.e., the interruption of the p53/MDM2

loop leading to induction of p53 oncosuppressor function.
2. Materials and methods

2.1. Cell culture, reagents, and transfection
Human embryonal kidney (Hek)293 (wtp53) cells were grown in

Dulbecco�s modified Eagle�s medium (Gibco-BRL, Life Technology,
Grand Island, NY), RKO human colon cancer (wtp53), modified
RKO-pSuper, and RKO-HIPK2-interfered (HIPK2i) [23], H1299 lung
adenocarcinoma (p53 null) and H1299–HIPK2-IND (HIPK2-induc-
ible) [24] cells were cultured in RPMI-1640 (Gibco-BRL), supple-
mented with 10% heat-inactivated fetal bovine serum (Gibco-BRL).
For DNA damage, subconfluent cells were irradiated with UV light

at 50 J/m2 and total cell extracts prepared at the indicated time after
irradiation. Cisplatin was purchased from TEVA Pharma-Italia and
used at 1.7 and 5 lg/ml for 12 h. Doxurubicin (adriamycin: ADR)
was diluted into the medium to a final concentration of 2 lg/ml. To in-
duce HIPK2 expression in H1299–HIPK2-IND cell line, Ponasterone
A (PonA), a synthetic analog of ecdysone (Alexis Biochemicals, San
blished by Elsevier B.V. All rights reserved.

mailto:dorazi@ifo.it 


5474 V. Di Stefano et al. / FEBS Letters 579 (2005) 5473–5480
Diego, CA) was added to the medium to a final concentration of
2.5 lm. Leptomycin B (LMB) was used to a final concentration of
10 nM, for 18 h.
Proteasome inhibitors MG132 (Biomol, Research Laboratories,

Plymouth Meeting, PA, USA) and Epoxomicin (Biomol) [25] were pre-
pared as, respectively, 50 mM and 1 mM stocks in DMSO, stored at
�20 �C and diluted into the medium at the indicated concentrations.
Transient transfection assays were performed using the BES method

as described earlier [7]. The amount of plasmid DNA was equalized in
each sample by supplementing with empty plasmids.

2.2. Antibodies and plasmids
The antibodies used were: anti-p53 mouse monoclonal (Ab1801,

DO1) (Santa Cruz Biotechnology), anti-phospho-p53Ser46 rabbit
polyclonal (Cell Signaling Technology), anti-p53 sheep polyclonal
(Ab7) (Oncogene Science), anti-PARP mouse monoclonal (BD
PharMingen), anti-Flag mouse monoclonal (M5) (SIGMA, BIO-
Sciences), anti-tubulin mouse monoclonal (SIGMA, BIO-Sciences),
anti-HIPK2 rabbit antiserum (kindly provided by M.L. Schmitz, Uni-
versity of Bern, Switzerland), anti-MDM2 mouse monoclonal (Ab2,
Santa Cruz), anti-GFP rabbit polyclonal antiserum (Amersham Corp.,
Arlington Heights, IL), anti-HA rat monoclonal (Roche Diagnostics,
Monza, Italy), and anti-NFYB rabbit polyclonal (kindly provided by
R. Mantovani, University of Milan, Italy). Immunoreactivity was de-
tected by ECL chemiluminescence reaction kit (Amersham).
The expression vectors used in this study were: pCAG3.1-wtp53,

p53S46A, and p53S15A (kindly provided by E. Appella, NIH,
Bethesda, MD, USA); Flag2B, Flag–HIPK2, Flag–K221R,
pGEX4T1, GST–HIPK2, pEGFP-C2, GFP-HIPK2, and GFP–
K221R-kinase dead (KD) [7]; Flag–HIPK2DC, Flag–HIPK2DN [6]
(kindly provided by T.G. Hofmann, Heinrich-Pette Institute for
Experimental Virology and Immunology, University of Hamburg,
Germany); human GST–Flag–MDM2 (kindly provided by A.L.
Haas, Health Science Center, New Orleans, LA, USA); human
HA-MDM2 (kindly provided by M. Oren, Weizmann Institute of
Science, Rehovot, Israel). GFP–MDM2 fusion protein was obtained
by subcloning human MDM2 into EcoRI and BamHI sites of the
pEGFP-C2 vector (Clontech).

2.3. GST pull downs
GST–HIPK2, GST–MDM2 and GST were expressed in Escherichia

coli BL21 cells and purified on glutathione–sepharose beads (Amer-
sham Biosciences) following standard procedures. For the GST pull-
down assay, 293 cells transfected with HA-MDM2, Flag–HIPK2,
Flag–HIPK2DC and Flag–HIPK2DN expression vectors were lysed
in RIPA buffer (50 mM Tris–HCl, pH 7.5, 5 mM EDTA, 400 mM
NaCl, 1% NP40, 1% sodium deoxycholate, 0.025% SDS) plus protease
inhibitors (Complete, Roche), and centrifugated to precipitate cellular
debris. Equal amounts of GST fusion proteins were incubated with
1.5 mg of total cell extracts for 2 h at 4 �C. Unbound proteins were re-
moved by washing five times with HNET buffer (20 mM HEPES,
150 mM Na Cl, 0.1% Triton X-100, 10% glycerol) and the precipitates
were resolved by SDS–PAGE. The immunoblots were probed with the
indicated antibodies.

2.4. Immunoprecipitation, Western blot analysis and kinase assay
For co-immunoprecipitation (co-IP) of overexpressed proteins, 293

cells were transiently transfected with Flag–HIPK2, Flag–HIPK2DC,
Flag–HIPK2DN (8 lg) and HA-MDM2 (6 lg) and harvested 36 h
after transfection. Cells were then lysed as described above. Following
preclearing for 1 h at 4 �C, immunoprecipitation was performed by
incubating 1.5 mg of total cell extracts with anti-Flag antibody, rock-
ing for 2 h at 4 �C. Immunocomplexes were collected by incubating
with protein G–agarose (Pierce). The beads were then resuspended in
5· Laemmli buffer and subjected to Western blot with the indicated
primary antibodies.
For subcellular fractionation, cells were trypsinized, rinsed with PBS

and collected by centrifugation. Cells were then suspended in hypo-
tonic buffer (10 mM HEPES, pH 7.9, 10 mM KCl, 0.1 mM EDTA,
0.1 mM EGTA) and placed on ice for 15 min. NP40 was added to
a final concentration of 0.5%. Cells were spun top speed for 30 s before
the supernatant (cytoplasmic fraction) was collected. The remaining
pellet was washed with hypotonic buffer, resuspended in RIPA buffer,
sonicated and spun at 15000 · g for 15 min to remove debris and
collect the supernatant (nuclear fraction). We confirmed the separa-
tion of the cytoplasmic and nuclear fractions by Western immunoblot-
ting of tubulin (cytoplasmic marker) and NFYB (nuclear marker),
respectively.
Kinase assay was performed essentially as described [7]. Immuno-

complexes were incubated in kinase buffer in the presence of 5 lCi
[c-32P] ATP and 2 lg MBP as substrate, for 30 min at 30 �C. Reaction
products were resolved by SDS–PAGE and [c-32P]-labeled proteins
were detected by autoradiography. Gels were then hydrated and
stained with Comassie for proteins detection.

2.5. RNA extraction and RT-PCR analysis
RT-PCR analysis was performed as described [23]. 293 and H1299

cells were transfected with the indicated plasmids and total mRNA ex-
tracted using the RNeasy mini kit (Qiagen S.P.A., Milan, Italy). Re-
verse-transcription reactions and PCR assays were performed using
the MuLV reverse transcriptase and the AmpliTaq DNA Polymerase
(Gene Amp RNA PCR kit, Perkin–Elmer, Roche Molecular System,
Brachburg, NJ, USA). cDNA was amplified using primers for Mdm2
and GAPDH.
2.6. Chromatin immunoprecipitation analysis
RKO cells were treated with cisplatin (1.7 and 5 lg/ml) for 12 h.

DNA and protein complexes were cross-linked in living cells for chro-
matin immunoprecipitation (ChIP) analysis as described previously
[24]. Cell lysates were incubated with anti-p53 antibody (Ab7) and
DNA bound to immunoprecipitates amplified with promoter-specific
primers for Mdm2, p21 and AIP1.
3. Results

3.1. HIPK2-mediated p53Ser46 phosphorylation downmodulates

MDM2 gene expression

Others and we have recently found that, in the presence of

p53, HIPK2 overexpression downmodulates MDM2 levels

[8,26]. It is known that MDM2 levels are reduced after apop-

totic DNA damage by different transcriptional and posttran-

scriptional mechanisms [18,20]. Here, we propose to study

the molecular mechanisms mediating this regulation knowing

that, following DNA damage, HIPK2-dependent p53-post-

translational modifications select gene targeting [24]. We first

performed Western blot of RKO cells treated with apoptotic

dose of ADR. As shown in Fig. 1A, MDM2 levels strongly de-

clined 24 h after treatment in control pSuper cells concomi-

tantly to induction of p53Ser46 phosphorylation and PARP

cleavage. On the contrary, MDM2 was not downmodulated

in HIPK2i cells (Fig. 1A), confirming that HIPK2 plays a role

in MDM2 regulation. To test whether MDM2 downmodula-

tion was at the transcriptional level, depending on p53Ser46

phosphorylation, we transfected HIPK2 and the K221R

(KD) expression vectors in 293 cells bearing endogenous

wtp53. By RT-PCR analysis we observed a reduction of

MDM2 mRNA only following HIPK2 expression (Fig. 1B),

suggesting that the kinase activity of HIPK2 might play a role

in MDM2 downmodulation. To evaluate whether HIPK2-

mediated p53Ser46 phosphorylation was involved in this regu-

lation, we transfected p53-null H1299 cells with HIPK2 in

combination with wtp53, S46A, and S15A expression vectors.

MDM2 mRNA levels were increased only by wtp53 itself and

S46A transfected with HIPK2 (Fig. 1C) whereas they were not

induced by wtp53 and S15A mutant in combination with

HIPK2; in addition co-expression of HIPK2 and p53 did not

reduce MDM2 mRNA expression as clearly as in 293 cells

whereas the endogenous p53 can be more efficiently activated



Fig. 1. MDM2 levels are transcriptionally regulated by HIPK2-dependent p53Ser46 phosphorylation. (A) Time-course Western blot analysis of
RKO-pSuper and HIPK2i cells following ADR treatment (2 lg/ml). Total cell extracts were immunoblotted with the indicated antibodies. Tubulin
expression is verified as protein loading control. (B) 293 cells were transfected with Flag–HIPK2 and Flag–K221R (8 lg) expression vectors. Total
mRNA was isolated at the indicated time and analysed for MDM2 gene expression by RT-PCR. GAPDH expression was used as loading control.
Densitometric analysis was performed and MDM2/GAPDH ratio is shown below. (C) H1299 cells were transfected with the indicated combinations
of Flag–HIPK2 (8 lg), wtp53, p53S46A and p53S15A (2 lg) expression vectors. Total mRNA was isolated 36 h after transfection and analysed for
MDM2 gene expression by RT-PCR. GAPDH expression was used as loading control (D) RKO cells were treated with cisplatin (1.7 and 5 lg/ml) for
12 h. Total cell extracts were subjected to ChIP analysis by using specific anti-p53 antibody (Ab7) and no specific IgG as control. Immunoprecipitates
from each sample were analysed by PCR using specific primers for Mdm2, p21, and AIP1 promoters. A sample representing linear amplification of
the total input chromatin was included. (E) RKO-HIPK2i cells were treated as in (D) and subjected to ChIP analysis for p53 binding to Mdm2
promoter.
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by HIPK2 transfection. We have recently shown that HIPK2-

mediated modifications (i.e., p53Ser46 phosphorylation or

Lys320 acetylation) in different DNA damage conditions

(i.e., cytostatic and cytotoxic doses of cisplatin), contribute

to the selective activation of p53 target promoters (i.e.,

p21Waf1 and AIP1 genes) for, respectively, growth arrest and

apoptosis [24]. Here, we further explored the functional signif-

icance of p53 promoter selection by ChIP analyses in RKO

cells treated with cytostatic and cytotoxic doses of cisplatin.

We show that p53 is bound to Mdm2 promoter preferentially

in cytostatic conditions, when the p21Waf1 promoter is bound

(Fig. 1D). On the contrary, p53 levels are strongly reduced

on Mdm2 promoter in cytotoxic conditions, when the AIP1

promoter is bound. Furthermore, the relevance of HIPK2

for the differential levels of p53 binding to the Mdm2 promoter

was explored in HIPK2i cells. As shown in Fig. 1E, compara-

ble levels of p53 binding to the Mdm2 promoter were found

following both conditions of DNA damage.

These results show that MDM2 downmodulation following

apoptotic DNA damage is mediated, at least in part, at the

transcriptional level and that HIPK2-mediated p53 phosphor-

ylation is involved in this regulation.
3.2. HIPK2 and MDM2 interact in vitro and in vivo

In order to verify whether HIPK2 associates with MDM2,

we performed GST pull-down assay followed by in vitro co-

IPs. 293 cells were transfected with a vector encoding HA-

tagged-MDM2. Cell lysates were mixed with either GST or

HIPK2 fused to GST proteins. MDM2 was retained by

GST–HIPK2 whereas no significant binding to GST alone

was detected (Fig. 2A). The reciprocal experiment, transfecting

293 cells with Flag-full-length, C-terminal (DC), and N-termi-

nal (DN) truncated HIPK2 expression vectors, showed that

HIPK2 was efficiently retained by GST–MDM2 and that

MDM2 binds to the C-terminal domain of HIPK2, but not

to its N-terminal domain (Fig. 2B). This interaction was also

confirmed by co-IP of overexpressed MDM2 and HIPK2 pro-

teins whereas the HIPK2DN form bound MDM2 while the

HIPK2DC form did not (Fig. 2C).

To gain insight into the mechanistic basis for the functional

link between MDM2 and HIPK2, co-IP experiments were per-

formed in vivo in control and HIPK2i cells. 293 cells were trea-

ted with UV at a dose (50 J/m2) that allows HIPK2 binding to

p53 and phosphorylation at Ser46 for apoptotic commitment

[6,7] and harvested 16 h thereafter. As shown in Fig. 3A,



Fig. 2. Physical interaction between HIPK2 and MDM2. Bacterially
expressed GST–HIPK2 (A), GST–MDM2 (B) and GST were incu-
bated with 293 total cell extracts transfected with HA-MDM2 (A),
Flag–HIPK2, Flag–HIPK2DC and Flag–HIPK2DN (B) expression
vectors for in vitro pull-down assay. Protein/protein interaction was
analysed by Western blot detection of HA-MDM2 and Flag–HIPK2
proteins. Input lanes: total cell extracts. (C) Co-IP of overexpressed
proteins. 293 cells were transiently transfected with Flag–HIPK2,
Flag–HIPK2DC, Flag–HIPK2DN (8 lg) and HA-MDM2 (6 lg) and
harvested 24 h after transfection. Immunoprecipitation was performed
by incubating 1.5 mg of total cell extracts with anti-Flag antibody,
rocking for 2 h at 4 �C. The immunocomplexes were subjected to
Western blot analysis with HA antibody for MDM2 detection.
Comparable amounts of immunopecipitated HIPK2 proteins were
ensured by anti-Flag immunoblotting. Anti-b-gal antibody was used
on total cell extracts as control of transfection.

Fig. 3. Functional interaction between HIPK2 and MDM2. (A) Co-IP
of endogenous proteins. 293 cells were irradiated with UV light at 50 J/
m2. Sixteen hours after irradiation, 500 lg of total cell extracts were
immunoprecipitated with anti-MDM2 (Ab2) and anti-p53 (DO-1)
antibodies. Immunocomplexes were separated by SDS–PAGE, blotted
onto nitrocellulose membranes and probed with the indicated anti-
bodies. (B) Same 293 cells as in (A) were lysed at the indicated time
points after irradiation. 500 lg of total cell extracts were immunopre-
cipitated with anti-MDM2 (Ab2) and the immunocomplexes were
subjected to Western blot with the indicated antibodies. Input lanes
represent Western immunoblotting of total cell extracts. Anti- tubulin
was used as protein loading control. (C) 293 cells, transiently
transfected with HIPK2-interfering vector were irradiated with UV
light at 50 J/m2 and total cell extracts immunoprecipitated with anti-
MDM2 (Ab2) 8 and 16 h thereafter. Immunocomplexes were sepa-
rated by SDS–PAGE, blotted onto nitrocellulose membranes and
probed with anti-p53 (Ab7) antibody.
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IP-Western blot assay readily detected HIPK2 in both anti-

MDM2 and anti-p53 immunocomplexes. Interestingly, MD

M2 was no longer bound to p53. In order to verify whether

p53, HIPK2, and MDM2 can exist as components of a multi-

protein complex in vivo, we treated 293 cells with UV (50 J/m2)

and immunoprecipitated endogenous MDM2 at different time

points after treatment. As shown in Fig. 3B, MDM2 was

bound to both HIPK2 and p53 in basal condition; interest-

ingly, MDM2 remained bound to HIPK2 during the entire

treatment but it was no longer bound to p53 when the protein

was phosphorylated at Ser46. Furthermore, in the absence of

HIPK2 the amount of MDM2/p53 complexes remained un-

changed upon UV irradiation (Fig. 3C).

These data indicate that HIPK2 and MDM2 can form a sta-

ble complex in vitro and in vivo and that, following apoptotic

DNA damage, p53Ser46-phosphorylation coincides with the

abolishment of p53/MDM2 physical interaction.

3.3. HIPK2 regulates MDM2 nuclear export

MDM2 consistently shuttles between the nucleus and the

cytoplasm [14–16]. In order to verify whether HIPK2 was
involved in that nuclear/cytoplasmic shuttling, we monitored

exogenously expressed GFP–MDM2 fusion protein in p53-

null H1299–HIPK2-IND cell line. GFP–MDM2 was found

primarily within nuclei (Fig. 4A, left panel) while PonA treat-

ment (Fig. 4B) caused efficient delocalization and degradation

of MDM2 into the cytoplasm (Fig. 4A, right panel). The pro-

portion of cells with MDM2-GFP nuclear and cytoplasmic

staining was scored in the absence and in the presence of PonA

treatment and plotted in Fig. 4C. Biochemical analysis of sub-

cellular fractionation confirmed that HA-MDM2 protein was

primarily detected in the nuclear compartment and that

HIPK2 induction accumulated MDM2 into the cytoplasm

(Fig. 4D). To find out whether HIPK2 kinase activity was in-

volved in MDM2 cytoplasmic delocalization 293 cells were

transfected with GFP–MDM2 expression vector along with

Flag–HIPK2 or K221R mutant. We found that MDM2 was



Fig. 4. HIPK2 regulates MDM2 nuclear export through its kinase domain. (A) P53-null H1299–HIPK2-IND cells (105) were plated in 35 mm Petri
dishes and 24 h later transfected with GFP–MDM2 (4 lg) expression vector. Soon after transfection cells were trypsinized and replated in duplicate.
Twenty-four hours after transfection, HIPK2 was induced by PonA (2.5 lM for 8 h) treatment. Cells were then fixed in 2% formaldehyde and stained
with Hoechst. Subcellular localizzation of GFP–MDM2 fusion protein was analysed with a fluorescent microscopy. (B) H1299–HIPK2-IND cells
were transfected with MDM2-GFP expression vector and 24 h later treated with PonA as in (A). Total cell extracts were subjected to Western blot
analysis using anti-HIPK2 and anti-GFP antibodies. (C) Summary of MDM2-GFP staining and nuclear and cytoplasmic localization from three
independent experiments. (D) H1299–HIPK2-IND cells plated in 60 mm Petri dishes were transfected with HA-MDM2 (6 lg) expression vectors.
Twenty-four hours after transfection, HIPK2 was induced by PonA (2.5 lM for 8 h) treatment. The cells were collected, subjected to nuclear (N) and
cytoplasmic (C) fractionation and analysed by Western blot with anti-HA antibody. Anti-tubulin and anti-NFYB antibodies were used to,
respectively, control the cytoplasmic and nuclear fractions. (E) 293 cells were transfected with GFP–MDM2 (6 lg) in combination with Flag–HIPK2
and Flag–K221R (8 lg) expression vectors. Cells were harvested 24 hours after transfecion and nuclear (N) and cytoplasmatic (C) cell extracts
analysed by Western blot of exogenous MDM2 protein using anti-GFP antibody. (F) 293 cells were transfected with HA-MDM2 (6 lg), in
combination with Flag–HIPK2 and Flag–K221R (8 lg). The day after transfection LMB was added for 18 h at final concentration of 10 nM. Cells
were then lysed for nuclear (N) and cytoplasmic (C) fractionation and analysed by Western blot using anti-HA antibody. (G) Kinase assay of
endogenous HIPK2 catalytic activity in HIPK2-IND cells in the presence or absence of PonA. Equal amount of total cell extracts were subjected to
immunoprecipitation using with anti-HIPK2 antibody and assayed for kinase activity using MBP protein as substrate. (H) 293 cells were transfected
with 8 lg of plasmids encoding Flag–HIPK2 or Flag–K221R. Equal amount of total cell extracts were subjected to immunoprecipitation using
anti-Flag monoclonal antibody. The immunocomplexes were incubated with bacterially expressed GST or GST–MDM2 fusion proteins and assayed
for kinase activity in the presence of [c-32P] ATP (right panel). MBP was used as control substrate. Equal expression of each protein was confirmed on
comassie-staining of kinase assay gel (left panels).

V. Di Stefano et al. / FEBS Letters 579 (2005) 5473–5480 5477
localized within both nuclear and cytoplasmic compartments

following co-transfection with HIPK2, while co-transfection

with K221R retained MDM2 into the nucleus (Fig. 4E). The

role of HIPK2 catalytic activity in MDM2 subcellular distribu-

tion was confirmed by using the drug LMB that blocks the ex-

port of NES-containing proteins from the nucleus [27–29].

Consistent with the above results, Flag–HIPK2 over-expres-

sion moved exogenously expressed HA-MDM2 protein within

the cytoplasm and LMB addition blocked this nuclear export;

on the contrary K221R did not change MDM2 nuclear local-
ization neither in the presence or absence of LMB (Fig. 4F).

Moreover, HIPK2 was immunoprecipitated from H1299–

HIPK2-IND cells in the presence or absence of PonA treat-

ment and tested for in vitro kinase assay. As shown in

Fig. 4G, HIPK2 phosphorylates its substrate MBP. We then

tested the ability of HIPK2 to phosphorylate MDM2. 293 cells

were transfected with Flag–HIPK2 and K221R expression vec-

tors and anti-Flag immunoprecipitates incubated with GST

and GST–MDM2 protein for in vitro kinase assay. Fig. 4H

shows that HIPK2 phosphorylates GST–MDM2 in vitro.
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These results suggest that the capacity of HIPK2 to regulate

MDM2 expression, including subcellular distribution and deg-

radation, might depend on its kinase activity.

3.4. HIPK2 downmodulates MDM2 via proteasomal

degradation in p53-independent manner

It has been shown that HIPK2 overexpression, in the pres-

ence of p53, reduces MDM2 levels [8,26]. We here wanted to

investigate whether HIPK2 promotes MDM2 proteasomal

degradation. The effect of HIPK2 on endogenous MDM2

protein was first analysed in p53-null H1299–HIPK2-IND

cells. Following PonA treatment, time-dependent MDM2 drop

off was assessed concomitantly to HIPK2 upregulation

(Fig. 5A). The MDM2 mRNA was not affected, as assessed
Fig. 5. HIPK2 downmodulates MDM2 protein levels via proteasomal
degradation. (A) H1299–HIPK2-IND cells were treated with PonA
and collected at the indicate time points. Equal amount of total cell
extracts was separated on SDS–PAGE and immunoblotted with the
indicated antibodies. Anti-tubulin was used as protein loading control.
(B) Total mRNA from cells treated as in (A) was isolated and screened
for expression of MDM2 and HIPK2 mRNAs by RT-PCR. GAPDH
expression was used as control. (C) H1299–HIPK2-IND cells were
transfected with p53 (2 lg) and 24 h later treated with PonA for 4
hours before adding proteasome inhibitors MG132 (25 lM) and
Epoxomicin (10 nM) for 4 h. Equal amount of total cell extracts was
subjected to Western immunoblotting with anti-MDM2 antibody.
Anti-tubulin was used as protein loading control. MDM2/tubulin
ratio, after densitometric analysis, is shown below. (D) 293 cells were
transfected with HA-MDM2 (6 lg) in combination with GFP, GFP–
HIPK2 and GFP–K221R (8 lg) expression vectors. Twenty-four
hours after transfection MG132 (25 lM) was added for 4 h. Equal
amount of total cell extracts was analysed by Western immunoblotting
using anti-HA antibody. Anti-tubulin was used as protein loading
control. (E) 293-pSuper and HIPK2i cells were treated with ADR
(2 lg/ml) for 16 h before adding MG132 for 4 h. Equal amount of total
cell extracts were analysed by Western blot with anti-MDM2 antibody.
Anti-tubulin was used as protein loading control.
by RT-PCR (Fig. 5B), indicating that, in this experimental

condition (i.e., in the absence of p53), MDM2 downmodula-

tion occurred at posttranslational level. To test whether the

reduced MDM2 levels depended on proteasomal machinery,

we used different specific proteasome inhibitors, including

MG132 and Epoxomicin, in the presence or absence of PonA

treatment. Both proteasome inhibitors increased MDM2 levels

in greater extent after HIPK2 induction, as shown by densito-

metric analysis (Fig. 5C). In agreement with the above results,

HIPK2 co-transfection induced HA-MDM2 degradation,

compared to K221R mutant co-transfection, depending on

proteasomal machinery as shown by MG132 treatment

(Fig. 5D). This finding suggests that HIPK2 catalytic activity

is involved in MDM2 proteasome degradation. To establish

HIPK2 contribution to MDM2 proteasomal degradation fol-

lowing apoptotic DNA damage, we treated 293 cells, tran-

siently transfected with HIPK2-interfering vector, with ADR.

This treatment induced MDM2 downmodulation that was res-

cued at the protein level by MG132 proteasome inhibitor only

in pSuper control cells (Fig. 5E).

Altogether, these results suggest that HIPK2 plays a role in

MDM2 protein regulation also independently from p53 and

that HIPK2 is essential for the drug-induced MDM2 down-

modulation.
4. Discussion

The MDM2 protein is overexpressed in a significant number

of human tumours underscoring its involvement in the devel-

opment of this human disease [30,31]. The principal function

of MDM2 is that of mediating p53 proteasomal degradation

[12,13]. For this reason, the destabilization of MDM2 is re-

quired for p53 activation therefore inhibiting p53/MDM2

interaction provides a potentially significant approach for ther-

apy in oncology [32]. Recent studies point out an important

role for HIPK2 in apoptosis exerting its action on p53 onco-

suppressor [6,7], p73 [33], and possibly other molecules in-

volved in apoptosis in p53-independent manner [34,35]. We

have previously shown that HIPK2 is able to rescue p53-tran-

scriptional activity and apoptotic outcome overcoming

MDM2-mediated proteasomal degradation [8]. Here, we im-

prove this connection between p53 and HIPK2 by demonstrat-

ing that HIPK2 physically and functionally associates with

MDM2 in vitro and in vivo. Although HIPK2 has been pro-

posed to have many potential targets, an association with

MDM2 has not previously been identified. We found that

HIPK2 and MDM2 form a stable complex that, in response

to apoptotic DNA damage, allows MDM2 detachment from

phosphorylated p53Ser46. The end result of this action is

HIPK2-dependent MDM2 destabilization obtained in two dif-

ferent but overlapping ways, i.e., MDM2 downmodulation by

means of transcriptional and posttranscriptional control

(Fig. 6). Previous studies have observed that diverse stresses

can reduce MDM2 levels through both transcriptional and

posttranscriptional mechanisms [36–39]. We found here that

MDM2 gene is downmodulated at the transcriptional level

only following HIPK2/p53Ser46 activation. These data further

strengthen the significance of Ser46 site in p53 in promotion of

promoters� specificity [40–43]. Indeed, p53Ser46phosphoryla-

tion by HIPK2 activates genes of the apoptotic program



Fig. 6. Transcriptional (p53Ser46-dependent) and posttranscriptional
(p53-independent) double mechanism by which HIPK2 accomplishes
MDM2 downmodulation. HIPK2 (i) phosphorylates p53 at Ser46 and
induces downmodulation of MDM2 trancription and (ii) binds and
targets MDM2 for nuclear export and proteasomal degradation.
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(i.e., AIP1), downmodulating its regulatory gene MDM2, as

we show here.

Additionally, we found that HIPK2 promotes MDM2 nu-

clear export and proteasomal degradation. Because MDM2

shuttling to the cytoplasm regulates p53 protein levels in the

cells [14–16], these data provide another mechanistic explana-

tion of how HIPK2 regulates p53 oncosuppressor functions,

maintaining it active in the nucleus as transcription factor [8].

Involvement of HIPK2 in MDM2 proteasomal degradation

was supported by experiments using specific proteasome inhib-

itors and HIPK2-interfered cells. We found that MDM2 clear-

ance was blocked both after HIPK2 induction and apoptotic

DNA damage. MDM2 destabilization is likely to be controlled

by phosphorylation at multiple sites and by multiple DNA-

damage activated kinases [18,20]. Here, we show that HIPK2

phosphorylates MDM2 in vitro and that HIPK2 catalytic

activity is important for MDM2 cytoplasmic translocation

and proteasomal degradation. Thus, MG132 rescued MDM2

levels in greater extent after HIPK2 co-transfection. MDM2

is degraded by ubiquitin/proteasome pathway and it is also

auto-ubiquitinated [18,44,45], whether HIPK2 accelerates

MDM2 auto-ubiquitination needs to be elucidated. In similar

manner, HIPK2 has been shown to promote apoptosis

through phosphorylation and proteasomal degradation of

CtBP corepressor [46]. Furthermore, HIPK2 binding to c-

Myb, together with NLK, also results in c-Myb phosphoryla-

tion followed by its ubiquitination and proteasome-dependent

degradation playing an important role in a variety of develop-

mental steps [47]. The role of phosphorylation in ubiquitin-

mediated protein degradation has been well established, thus

ubiquitin E3 ligases specifically recognize phosphorylated tar-

get proteins [48,49]. In this regard, whether HIPK2 directly or

indirectly phosphorylates MDM2 in vivo to target it for prote-

asomal degradation remains to be elucidated.

These findings indicate that the stabilization of p53 in re-

sponse to apoptotic DNA damage is not likely to occur

through a single pathway, but instead may involve multiple

mechanisms. In this regard HIPK2 appears to be a promising

target molecule for cancer therapy since it favours the inter-

ruption of the p53/MDM2 loop in both transcriptional

(through p53Ser46) and posttranscriptional ways (through

p53-independent subcellular re-localization and proteasomal

degradation), leading to induction of apoptosis.
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