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In the paper “Information Geometry of a regime-switching model with time-varying parameters”,
[1], we discussed the possibility to use tools derived from Information Geometry in order to analyze
dynamical systems in which the motion randomly switches between two regimes using Markovian
transitions. We proved that, in order to understand when an change can appear, the network
properties of the system are important because they accelerate the diffusion of the information. In
this note we recall the most important results obtained announcing some possible applications to
detect the regime-switching in real phenomena.
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I. INTRODUCTION

Regime changes are very frequent in social and natural
phenomena. As an example, Figure 1 shows on the left
the historical dynamics of electricity prices observed at
the Californian electricity market. Note the fast recovery
of the electricity price normal regime after only a short
time in the turbulent regime with spikes and jumps due
to outages and consequent blackouts. On the right we
have the historical behavior of the total seismic activity,
observed in the Californian area, which shows the re-
stabilization of the normal situation of the earth after a
period of seismic activity, [9, 10].
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FIG. 1: Left side: California electricity prices from October
22, 2002 until January 27, 2007. Right side: historical behav-
ior of the Californian total seismic activity.

To describe all those situations Hamilton [12, 13] pro-
posed the regime-switching models. The assumption
is that some imperfectly predictable forces produce the
switches, therefore the motion is described by a larger
model where a hidden random variable changes accord-
ing to an assumed probability distribution. The simplest
specification is that the switching mechanism between
the regime is governed by an unobservable Markov pro-
cess.
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II. A REGIME-SWITCHING MODEL WITH

TIME-VARYING PARAMETERS

In particular we consider the model of the price be-
havior proposed by Hamilton, Gray, Kim and Nelson and
Ning [6, 12, 18–20]. If yt is the logarithm of price, the
model for yt depends on an explanatory variable xt. For
the regime St = i, with i = 1, 2, the form of the dynamics
is the following:

yt = µit + εit = αi + φiyt−1 + γixt + εit (1)

where αi, φi, and γi are unknown and εit is an unob-
servable residual that is N(0, σ2

i ). Assuming markovian
transitions, the model is mean reversing and the condi-
tional mean of yt

E[yt | xt, yt−1, St = i] = µit (2)

varies in time. The four transition probabilities for the
switching from one regime to another are:

Pr[St = 1 | St−1 = 1] = P1t

Pr[St = 2 | St−1 = 1] = 1 − P1t

Pr[St = 2 | St−1 = 2] = P2t

Pr[St = 1 | St−1 = 2] = 1 − P2t

(3)

With regard to the example of an electricity market, the
two regimes are referred to the low price and high price.
The first is usually the marginal cost, while the second is
fixed by fundamental power markets at a maximum price
which is sometimes reached. The log-price is represented
by the variable yt which is driven by an unknown variable
xt summarizing unpredictable situations like particular
weather conditions or outages in the transmission system.

We denote with Φt = [y1, y2, ..., yt−1, x1, x2, ..., xt] the
information available to make a one-step ahead forecast
of yt, in both regimes, and with ρit = Pr[St = i | Φt]
the conditional probability of yt being in state i. After
specifying a startup value for the probability process, the
whole series of regime probabilities for period t, given
information at period t − 1, can be derived recursively.
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More specifically, the probability of being in regime i
given the information in the previous period, is

ρit|t−1 = Pr(St = i | Φt−1) (4)

for i = 1, 2 (Note: ρ1t|t−1 = 1 − ρ2t|t−1). When new
information from the current period is available, these
probabilities can be updated to:

ρit|t = Pr(St = i | Φt) (5)

for i = 1, 2 (Note: ρ1t = 1 − ρ2t). Hamilton and
Gray have shown [6, 12, 18] that the updated conditional
regime probabilities are weighted averages of the updated
regime probabilities using the transition probabilities for
regime-switching:

ρ1t|t−1 = ρ1t−1P1t + ρ2t−1(1 − P2t)
ρ2t|t−1 = ρ1t−1(1 − P1t) + ρ2t−1P2t

(6)

The likelihood value for an observed value of yt in a
given regime can be written:

fit = f(yt | St = i, yt−1, xt; θi) (7)

where θi = {αi, φi, γi, σi}, for i = 1, 2. Under the as-
sumption of normality, the expression of fit is:

fit = 1√
2πσi

exp[− 1
2

(yt−µit)
2

σ2

i

] (8)

for i = 1, 2, where µit is a function of θi. The condi-
tional likelihood value for an individual observation can
be written as a weighted average of the likelihood for the
two regimes as follows:

g(yt | yt−1, xt, wt;φi) = f1tρ1t|t−1 + f2tρ2t|t−1 (9)

where φi = {θi, ci, di}, for i = 1, 2. In any case, if no
hidden variable is assumed, we deduce that the set of all
conditional probability distributions is not an exponen-
tial family. Otherwise, for a given Φt−1, we can regard
(St | Φt−1) as a hidden discrete random variable, taking
values i = 1, 2 with conditioned probabilities ρit|t−1. In
this hypothesis the joint probability distribution is

p(yt | yt−1, St | Φt−1) =
∑

i δi(St | Φt−1)ρit|t−1fit

(10)
It is a normal mixture with hidden variable.

As it is well known, Information Geometry endows a
family of probability densities (Statistical Manifold) with
a Riemannian metric (the Fisher-Rao metric) and a ge-
ometrical structure, induced by a couple of dual affine
connections having two types of geodesics (e-geodesics
and m-geodesics) and consequently two types of projec-
tions (e-projections and m-projections).

In the paper [1] we proved the following Propositions:

Proposition 1): The set of conditional distributions
(10) is an exponential family St, which depends on a hid-
den variable moving with the information at the previous
time Φt−1.

Proposition 2): When Φt−1 is not fixed, we obtain a
submanifold (curved exponential family) M of dimension
6 in the product space St−1 × St.

Proposition 3): The observed data submanifold is

Dt = {η | η1 = yt, η2 = y2
t , η1i = αi, η2i = αiyt, η3i = αiy

2
t }

(11)
where αi takes any real values satisfying αi > 0 and∑

i αi ≤ 1.

Dt is a linear submanifold, as Figure 2 shows.

FIG. 2: Observed data submanifold D for fixed t

From this we deduce the last:

Proposition 4): The (EM)-algorithm, applied by statis-
ticians to estimate the parameters of a model, is equiva-
lent to the (em)-algorithm defined in Information Geom-
etry by the e-projections and the m-projections.

Possible applications: The theoretical results proved
in the cited work allow us to construct new statistical
tests to detect the regime-switching in real phenomena,
like price behavior, using geometric quantities as the di-
mension or the curvature of the statistical manifold of
the parameters.
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