
Review 
Special Issue: Resolution of Acute Inflammation and the 
Role of Lipid Mediators 
TheScientificWorldJOURNAL (2010) 10, 1048–1064 
ISSN 1537-744X; DOI 10.1100/tsw.2010.113  

 

©2010 with author. 
Published by TheScientificWorld; www.thescientificworld.com   

 

1048 

Lipoxin and Aspirin-Triggered Lipoxins 

Mario Romano 

Department of Biomedical Sciences, Aging Research Center, Ce.S.I., “Gabriele 
D’Annunzio” University Foundation, Chieti, Italy 

E-mail: mromano@unich.it 

Received March 7, 2010; Revised May 7, 2010; Accepted May 13, 2010; Published June 2, 2010 

Lipoxins and their 15 epimers, aspirin triggered lipoxins (ATL), are eicosanoids derived 
from sequential lipoxygenase (LO) metabolism of arachidonic acid. The main routes of 
lipoxin biosynthesis involve cooperation between 15- and 5-LO, and between 12- and 5-
LO. ATL are generated by interactions between 5-LO and aspirin-acetylated 
cyclooxygenase-2. Cellular models recapitulating these interactions involve leukocytes, 
platelets, vascular endothelium, and epithelium. To circumvent rapid lipoxin and ATL 
metabolism and inactivation, stable analogs, bearing potent and long-lasting biological 
activity, have been synthesized. Some of these analogs displayed therapeutic potential 
by showing strong anti-inflammatory activity in a number of animal models of disease, 
including reperfusion injury; arthritis; gastrointestinal, renal, respiratory, and vascular 
inflammatory disorders; eye damage; periodontitis; and selected infectious diseases. 
Counter-regulatory signaling by lipoxin A4 and 15-epi-lipoxin A4 is triggered by the 
activation of a seven-transmembrane domain receptor, termed FPR2/ALX, which is highly 
expressed in myeloid cells and has been recognized as a main anti-inflammatory 
receptor.  
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STRUCTURE 

The presence of polar compounds carrying a conjugated tetraene chromophore was first revealed in 

incubations of human leukocytes with arachidonic acid or 15S-hydroperoxy-5,8,11,13-eicosatetraenoic 

acid (HpETE)[1,2]. Structure elucidation of the compounds formed during these incubations revealed 

5S,6R,15S-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid and 5S,14R,15S-trihydroxy-6,10,12-trans-

8-cis-eicosatetraenoic acid, which were termed, respectively, lipoxin A4 and lipoxin B4 (Fig. 1), where 

lipoxin stands for lipoxygenase interaction products. The UV absorption spectrum of both lipoxin A4 and 

B4 shows pre-eminent absorbance bands at 
MeOH

max 287, 300, and 315 nm, with a weaker band at 270 nm 

and a molar extinction coefficient
 

of 50,000 M
–1

/cm. Monitored using negative ion mode mass 

spectrometry with electrospray ionization, lipoxins yield [M-H]- parent ions of 351 m/z and diagnostic 

MS/MS product ions at m/z 333 [351-H2O], 315 [351-2H2O], 307 [351-CO2], 289 [351-H2O-CO2], 271 

[351-2H2O-CO2], 251 [351-CHO(CH2)4CH3], 235 [351-CHO(CH2)3COO
-
], 233 [351-H2O-

CHO(CH2)4CH3], 219 [351-CHO(CH2)3COO
-
-O], 207 [351-CO2-CHO(CH2)4CH3], 189 [351-H2O-CO2- 
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FIGURE 1. Chemical structures of lipoxin A4 and B4. 

CHO(CH2)4CH3], 135 [351-CHO(CH2)3-COOH-CHO(CH2)4CH3], 115 [CHO(CH2)3COO
-
] for lipoxin A4, 

and m/z 333 [351-H2O], 315 [351-2H2O], 307 [351-CO2], 289 [351-H2O-CO2], 271 [351-2H2O-CO2], 251 

[351-CHO(CH2)4CH3], 233 [351-H2O-CHO(CH2)4CH3], 221 [351-CHOCHOH(CH2)4CH3], 207 [351-

CO2-CHO(CH2)4CH3], 189 [351-H2O-CO2-CHO(CH2)4CH3], 163 [351-CO2-CH2COHCHOH(CH2)4CH3], 

129 [CH3CO(CH2)3COO
-
] and 115 [CHO(CH2)3COO

-
] for lipoxin B4. 

Although a number of lipoxin A4 and B4 isomers have been identified in vitro, their biological 

significance remains incompletely defined[3,4].  

BIOSYNTHESIS 

Lipoxins and ATL are generated by cooperation between lipoxygenase isoforms and aspirin-acetylated 

cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO), respectively. Two main routes of lipoxin 

biosynthesis have been characterized: the 5-/15-LO and the 5-/12-LO. 

The 5-/15-LO Pathway 

This pathway can be alternatively initiated by 5- or 15-LO. In one case, 5-LO converts arachidonic acid to 

leukotriene (LT) A4, which is further metabolized by 15-LO to a 5S,6S,15S-epoxytetraene intermediate, 

enzymatically transformed into lipoxin A4 and B4. In the other event, arachidonic acid is converted by 15-

LO into HpETE, which is reduced to 15S-hydroxy eicosatetreanoic acid (HETE) by a peroxidase. 15S-

HpETE and 15S-HETE are transformed by 5-LO into the 5S,6S,15S-epoxytetraene intermediate, which 

yields both lipoxin A4 and B4[5]. Cellular models for this biosynthetic route are human 

polymorphonuclear neutrophils (PMNs) (Fig. 2A)[6], eosinophils[7], alveolar macrophages[8], or 

interactions between PMNs and eosinophils[7], or PMNs and lung tissue (Fig. 2B)[9]. The 5-/15-LO 

pathway appears to be predominant in the respiratory tract and it may be relevant within the brain, since 

lipoxins are generated during cocultures of HIV-infected monocytes and astroglia[10]. In vivo evidence of 

15-LO–dependent lipoxin biosynthesis was obtained in a rat model by transfection of the human 15-LO 

gene into one of the kidneys. The transfected kidney produced higher amounts of urinary immunoreactive 

lipoxin A4 compared to the untransfected kidney[11]. 
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FIGURE 2A. The 5-/15-LO pathway of lipoxin biosynthesis in PMNs. 

 

FIGURE 2B. The 5-/15-LO pathway of lipoxin biosynthesis during interactions between PMNs and epithelial cells. 
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The 5-/12-LO Pathway 

This pathway was initially characterized in mixed PMN-platelet incubations[12,13,14] and then further 

elucidated with megakaryocytes[15], 12-LO–transfected cells[15], platelets exposed to leukotriene A4 

(LTA4)[16], and human platelet recombinant 12-LO incubated with LTA4 in a cell-free system[17]. In 

this system, 12-LO converted LTA4 into lipoxin A4 and B4 with an apparent Km of 7.9 ± 0.8 μM, whereas 

the calculated Vmax was 24.5 ± 2.5 nmol/min/mg of protein[17]. Notably, recombinant 12-LO showed a 

comparable affinity for arachidonic acid, its main substrate (Km of 6.2 ± 1.8 μM)[17], suggesting that the 

lipoxin synthase activity of this enzyme is of primarily biological meaning. In order to generate lipoxins, 

12-LO converts LTA4 into a delocalized cation by proton transfer, following hydrogen abstraction from 

carbon-13 to insert molecular oxygen at carbon-15. The cation is attacked by water at carbon-6 to give 

lipoxin A4 and at carbon-14 to yield lipoxin B4[15] (Fig. 3). 12-LO–governed biosynthesis of lipoxin B4, 

but not of lipoxin A4, is regulated by mechanism-based inactivation[16,17], suggesting that the 12-LO 

attack at carbon-14 of the delocalized cation makes the lipoxin B4 formation site inaccessible for further 

substrate cycling.  

 

FIGURE 3. The 5-/12-LO pathway of lipoxin biosynthesis during interactions between PMNs and platelets. 

In vivo evidence of the 5-/12-LO route of lipoxin generation has been obtained in patients with 

cardiovascular disease, during coronary angioplasty[18], and in healthy subjects undergoing strenuous 

physical exercise[19]. In both conditions, enhanced transcellular exchanges between PMNs and platelets 

have been documented. This route also occurs in trout macrophages to generate lipoxin A4[20], 

confirming the evolutionary origin of lipoxins.  
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The Origin of the 15-Epi-Lipoxins 

The formation of epi-lipoxins was first detected in mixed incubations of aspirin-treated human umbilical 

endothelial cells with PMNs[21], which were done on the basis of previous observation that aspirin did 

not completely suppress COX-2 catalytic activity, but rather redirected it to the transformation of 

arachidonic acid into 15R-HETE[22]. Among the number of tetraenes formed during these incubations, 

15-epi-lipoxin A4 and 15-epi-lipoxin B4 were identified by UV spectroscopy and mass spectrometry. 

Fifteen-epi-lipoxins were therefore collectively termed aspirin-triggered lipoxins (ATL). Their 

biosynthesis proceeds through the conversion of 15R-HETE by 5-LO to an epoxide intermediate, which, 

similarly to what occurs during lipoxin formation by 5-/15-LO interactions, is enzymatically converted 

into 15-epi-lipoxin A4 (ATLa) and 15-epi-lipoxin B4 (Fig. 4). Consistently, ATL were formed by A23187-

stimulated PMN exposed to 15R-HETE[21]. Additional cellular models of ATL formation have been 

reported, including interactions between PMNs and A459 cells[23], or between hepatocytes and liver 

cells[24]. In accordance, ATL formation was observed in liver tissue from aspirin-treated rats[24]. ATL 

and lipoxins can also be formed upon stimulation of whole blood ex vivo[25,26] and their amount is 

increased in aspirin-tolerant asthmatics compared to aspirin-intolerant asthmatics[26]. Recently, the first 

evidence of ATL formation in healthy volunteers taking aspirin has been obtained[27]. This was 

confirmed in a larger randomized clinical trial[28]. Additional circuits of ATL biosynthesis have been 

unveiled. One is regulated by cytocrome P-450, which can be stimulated by aspirin and forms 15R-

HETE, as intermediate[24]. Another appears to be triggered by pioglitazone and atorvastatin in the 

rat[29], or by lovastatin via 14,15-epoxyeicosatrienoic acid (14,15-EET) generation[30]. 

 

FIGURE 4. ATL biosynthetic pathway during interactions between aspirin-treated endothelial cells and PMNs. 
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BIOACTIONS 

The Stable Analogs  

Since their first identification, lipoxins and ATL have displayed an array of biological actions consistent 

with anti-inflammatory, proresolution profiles. In particular, they block chemotaxis, adherence to 

microvasculature, transendothelial and transepithelial migration of PMNs[31,32,33,34], and chemotaxis of 

eosinophils[35,36], while promoting monocyte chemotaxis and nonphlogistic phagocytosis of apoptotic 

PMNs by macrophages[37,38,39]. In addition, lipoxin A4 and ATLa limit peroxynitrite formation and NF-

κB activation in leukocytes[40], PMN azurophilic degranulation[41], the release of the proinflammatory 

cytokines IL-6 and IL-8[42], TNF-α–induced superoxide anion generation, and IL-1β release by PMNs[43], 

while they stimulate the release of the antiphlogistic cytokine TGF-β in mice[44]. Antiangiogenic and 

antifibrotic activities of lipoxin A4 and ATLa have also been reported[45,46,47,48,49]. 

A main limitation for in vivo studies with native lipoxins is represented by their short half-life, since 

they undergo rapid metabolic inactivation. In the case of lipoxin A4, the main metabolic pathways occur 

in monocyte/macrophages and involve initial dehydrogenation to 15-oxo-lipoxin A4 by 15-

hydroxyprostaglandin dehydrogenase (15-PGDH)[50]. The 15-oxo-lipoxin A4 is converted by the 15-

oxoprostaglandin 13-reductase to 13,14-dihydro-15-oxo-lipoxin A4, which is further metabolized by 15-

PGDH to yield 13-14-dihydro-lipoxin A4[51]. Lipoxin B4 undergoes a similar metabolic sequence[52]. ω-

Hydroxylation and ω-oxidation pathways have been also reported[53,54,55]. Metabolic inactivation of 

ATL has been also observed, although 15-epi-lipoxinA4 appears to be more resistant than lipoxin A4 to 

dehydrogenation[31]. 

Because of lipoxin and ATL metabolic inactivation, a number of stable analogs have been 

synthesized in recent years, mainly focusing on the A series of lipoxins. The first series were designed to 

minimize 15-PGDH and ω-oxidation–dependent inactivation. Among these were 15R/S-methyl-lipoxin 

A4 and 16-phenoxy-lipoxin A4[31]. These analogs retained receptor-binding affinity and full biological 

activity in assays of neutrophil transmigration across intestinal epithelial cells[31]. Further improvement 

in activity and stability was achieved by adding a fluoride to the phenoxy ring of 16-phenoxy- and 15-epi-

16-phenoxy-lipoxin A4 to yield, respectively, 16-(parafluoro)-phenoxy-lipoxin A4 and 15-epi-16-

(parafluoro)-phenoxy-lipoxin A4[56]. Recently, 3-oxa derivatives of 15-epi-16-(parafluoro)-phenoxy-

lipoxin A4 have been synthesized, showing marked resistance to β-oxidation[57]. More recently, 

aromatic, pyridin, and benzo analogs have been obtained with enhanced anti-inflammatory 

properties[58,59,60]. The analogs have been largely used to assess the pathophysiological relevance of 

lipoxins and ATL in vivo. The large majority of these studies were conducted with lipoxin A4 and ATLa 

derivatives and showed consistent anti-inflammatory, proresolution properties in a variety of animal 

models. Although these models have a number of built-in limitations related to species specificity of 

responses, to the administration of lipoxin A4 prior to the exposure to the pathological agent, with the 

exception of a very recent study showing proresolution properties of ATLa administered to mice bearing 

peritonitis[61], and to the modality of disease induction, nevertheless they provide useful indications for 

future use of lipoxin A4 and ATLa in human disease. The best-characterized models of disease that may 

benefit from treatment with lipoxin A4 and ATLa are listed below. 

DISEASE MODELS 

Respiratory Tract  

Asthma and Allergic Diseases 

Initial studies in asthmatics showed that inhaled native lipoxin A4 attenuated LTC4–induced airway 

obstruction[62]. It was later demonstrated that lipoxin A4 and ATLa inhibited allergen-induced 
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eosinophilic pleurisy in sensitized rats, with a mechanism involving IL-5 and eotaxin production[36]. 

More recent studies showed bronchodilatory, anti-inflammatory effects of lipoxin A4 and ATLa analogs. 

For example, ATLa and 3-oxa-15-epi-lipoxin A4 reduced leukocyte recruitment, cysteinyl LTs, IL-4, IL-

10, and IL-13 in the lung of sensitized mice challenged with ovalbumin[63]. In another study, a lipoxin 

A4 analog reduced airway hyper-responsiveness, airway inflammation, and eosinophil infiltration, as well 

as IL-5 and eotaxin levels[64]. Of note, lipoxin A4 may play a key role in the homeostasis of airway 

epithelium since it up-regulates the expression of the tight junction proteins zonula occludens-1, claudin-

1, and occludin, sustaining transepithelial electrical resistance[65]. Thus, lipoxin A4 may also promote 

epithelial repair in the airway. 

Consistent with the protective action of endogenous lipoxins and ATL, patients with asthma or 

allergic rhinitis display reduced levels and biosynthetic potential of these eicosanoids[66]. 

Acute Lung Injury 

Evidence is accumulating of lipoxin A4 and ATLa protection of acid-induced acute lung injury. 

Mechanisms are related to the modulation of the expression of the lipoxin A4 receptor, the inhibition of 

the release of inflammatory cytokines, and neutrophil apoptosis[67,68]. In addition, benzolipoxin analogs 

protected lungs from hindlimb ischemia-reperfusion injury of the lung[60]. In another study, 15-epi-16-

(parafluoro)-phenoxy lipoxin A4 protected the mice lung from LPS-induced acute lung injury, with a 

heme-oxygenase-1–dependent mechanism[69]. Finally, ATLa prevented inflammatory and fibrotic 

reactions in bleomycin-induced pulmonary fibrosis, improving pulmonary mechanics and survival[49].  

Cystic Fibrosis  

Neutrophilic lung disease is a trademark of cystic fibrosis (CF). Reduced levels of lipoxin A4 in 

bronchoalveolar lavage fluid from CF patients was recently detected[70], suggesting that the sustained 

inflammatory response in CF may be related to impairments of resolution pathways. Consistently, 15-epi-

16-(parafluoro)-phenoxy-lipoxin A4 blocked Pseudomonas aeruginosa–induced IL-8 secretion and PMN 

recruitment in mice[70]. This ATLa analog also ameliorated disease progression in mice exposed to P. 

aeruginosa[70]. Notably, antibiotics increased lipoxin A4 and decreased IL-8 levels in CF sputum[71]. 

Joints 

Rheumatoid Arthritis 

The observation that lipoxin A4 inhibits proinflammatory responses of human synovial fibroblasts, i.e., 

matrix metalloproteinase and cytokine release[42], suggests that lipoxins and ATL may be beneficial in 

rheumatoid arthritis (RA). Synovial tissues from RA patients exhibited enhanced expression of the 

lipoxin A4 receptor compared to patients with osteoarthritis[72]. Likewise, synovial fluids from RA 

patients showed higher concentrations of lipoxin A4 and ATL[72]. Thus, up-regulation of the lipoxin 

A4/lipoxin A4 receptor dyad appears to represent a response to injury mechanism in RA. Whether it may 

convey anti-inflammatory signaling remains to be determined. The relevance of the lipoxin A4 receptor 

within the context of RA is underscored by the recent observation that BML-111, a lipoxin A4 receptor 

agonist, reduced disease activity scores and joint destruction in a collagen-induced arthritis mouse 

model[73]. Although further evidence is needed, collectively, these results provide the background for the 

potential use of lipoxin A4 and ATLa derivatives in RA.  
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Gastrointestinal Apparatus 

Stomach 

Gastrolesivity represents a main drawback to chronic administration of aspirin. ATL biosynthesis by the 

rat gastric mucosa following aspirin administration has been reported[74], suggesting that ATL formation 

by aspirin-acetylated COX-2 may represent a mechanism of gastric adaptation to aspirin. Thus, it may be 

reasoned that aspirin-related gastric damage occurs when the buffering capability of ATL becomes 

insufficient. Indeed, lipoxin A4 protected the rat gastric mucosa from aspirin-induced damage[75]. In 

healthy humans, aspirin enhanced ATLa urinary levels, which were suppressed by selective COX-2 

inhibitors (Coxibs)[27], underlying the potential increased risk of gastric damage when aspirin is 

coadministered with Coxibs. However, in a more recent study with a cohort of 24 patients affected by 

ischemic heart disease in association with osteoarthritis, chronically treated with aspirin, the 

administration of selective or nonselective COX inhibitors did not significantly change urinary ATL 

levels[76], indicating that in this specific clinical setting, other factors may influence ATL excretion. On 

the other hand, evaluation of gastric ATLa production may be more informative regarding the protective 

role of this eicosanoid in protection from gastric damage induced by COX inhibitors, since urinary ATLa 

levels do not necessarily reflect ATLa biosynthesis within the gastric mucosa. Lipoxin A4 protection of 

gastric damage induced by ethanol, sodium salicylate, or ischemia reperfusion has been reported in 

rats[77,78], extending the array of etiopathogenetic events that can benefit from lipoxin A4 or ATLa 

administration.  

Bowel 

An early study showed that lipoxin A4 limited neutrophil transmigration across the intestinal 

epithelium[32] and protected, as well as ATLa, colonocytes from TNF-α–induced apoptosis[79], 

suggesting that lipoxins and ATL may be protective during intestinal inflammatory disorders. This 

hypothesis was challenged and proved to be correct in a number of studies. Lipoxin analogs attenuated 

dextran sodium sulfate–induced colitis[80]. β-Oxidation–resistant lipoxin A4 analogs ameliorated hapten-

induced colitis[81]. These effects are likely to be receptor mediated, since the intestinal epithelium 

expresses the lipoxin A4 receptor[82], which is preferentially localized on the basolateral surface of 

polarized cells[83]. Remarkably, ATLa showed significant proresolution activity when administered to 

mice bearing peritonitis[61]. 

Lipoxin A4 inhibition of NF-κB activation in intestinal epithelial cells has been recently reported[84], 

providing further insight into the molecular mechanism of lipoxin A4 protective action in gastrointestinal 

inflammatory disorders. 

Urinary Tract 

The involvement of lipoxins and ATL in renal pathophysiology has been established by a number of 

studies in vitro and in vivo. In mesangial cells, lipoxin A4 antagonized a number of proinflammatory, 

hemodynamic, fibrotic responses, such as LT-dependent decrease in filtration rate[85] and neutrophil 

adhesion[86]; PDGF-induced proliferation[87,88], via inhibition of Akt/PKB signaling[89] and 

profibrotic gene expression[48]; and connective tissue growth factor–stimulated chemokine 

production[90]. In vivo, 15-epi-16-(parafluoro)-phenoxy-lipoxin A4 displayed protective properties in a 

rat model of ischemic acute renal failure[91]. Consistently, transcriptomic analysis during murine 

ischemia-reperfusion injury revealed that this analog regulated the expression of a number of cytokines, 

growth factors, adhesion molecules, and proteases, with a renoprotective profile[92].  
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Further support to the renoprotective activity of lipoxin A4 and ATLa is provided by the observation 

of lipoxin A4 biosynthesis and function maintenance following rat kidney transfection with 15-LO in 

experimental antibody-induced glomerulonephritis[11].  

Eye 

Endogenous generation of lipoxin A4 by mouse corneas has been recently observed[93]. Topical 

treatment with lipoxin A4 promoted corneal re-epithelialization and attenuated thermal injury[94], with a 

mechanism involving heme-oxygenase-1 up-regulation[95]. In a rat model of endotoxin-induced uveitis, 

topical lipoxin A4 reduced the inflammatory infiltrate and the protein leakage into the aqueous humor. It 

also inhibited accumulation of IL-1β and TNF-α, as well as NF-κB and c-Jun activation[96]. 

ATLa attenuated suture- or micropellet-induced corneal neovascularization in mice, reducing 

neutrophil and macrophage and lowering mRNA levels of TNF-α, IL-1α, IL-1β, VEGF-A, VEGF-C, and 

VEGFR2[97]. Consistently, topical lipoxin A4 rescued 15-LO knockout mice from suture-induced 

exacerbated angiogenesis[98]. 

Together, these results provide substantial support to therapeutic use of lipoxin A4 and ATL analogs 

in selected diseases of the eye. 

Vascular Disease 

Lipoxins regulate key pathways of vascular homeostasis. Early studies showed lipoxin stimulation of 

prostacyclin secretion by endothelial cells[99] and vasorelaxant effects[100], indicating that lipoxins may 

regulate the vascular tone. The regulatory effect of ATLa on nitric oxide release was also reported[101], 

although no evidence of direct lipoxin impact on NO biosynthesis has yet been presented. Consistent with a 

vasoprotective profile, ATLa inhibited generation of reactive oxygen species by endothelial cells[102]. Best 

characterized is the impact of lipoxins and ATL on angiogenic pathways. Modulation of endothelial cell 

proliferation, as well as VEGF and VEGF receptor expression by lipoxin A4 and ATLa, have been described 

in a variety of experimental settings as part of an anti-inflammatory response[45,46,97,103,104].  

Recently, the hypothesis that endogenous anti-inflammatory, proresolution circuits, including lipoxin 

and ATL biosynthesis, may be altered in atherosclerosis has been put forward[105]. This model of 

disease, as well as vasculitis and other degenerative vascular disease, may represent interesting fields of 

investigation of lipoxin and ATL functions within the context of vascular pathobiology. 

Infectious Disease 

Parasite 

Lipoxin A4 appears to regulate IL-12 generation by dendritic cells exposed to a Toxoplasma gondii 

extract[106]. Induction of lipoxin A4 biosynthesis by T. gondii in vivo has been reported[107]. This 

appears to represent a host defense mechanism, since the administration of 15-epi-16-(parafluoro)-

phenoxy-lipoxin A4 prevented postinfection mortality of 5-LO knockout mice[106]. Consistently, plant 

15-LO generated endogenous lipoxin A4 and suppressed T. gondii–induced production of IL-12 by 

splenic dendritic cells[108].  

TBC 

Mice infected with Mycobacterium tuberculosis produced high levels of lipoxin A4, which were 

substantially reduced in 5-LO knockout animals[109]. Administration to these mice of 15-epi-16-
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(parafluoro)-phenoxy-lipoxin A4 significantly reduced bacterial growth in the lung as well as IFN- 

production by splenocytes. Macrophages are likely to represent a main source of lipoxin A4 upon M. 

tuberculosis infection[110]. 

Periodontitis 

Lipoxin A4 analogs inhibited leukocyte recruitment elicited by Phorphyromonas gingivalis in a murine air 

pouch model[111]. Remarkably, topical application of 15-epi-16-(parafluoro)-phenoxy-lipoxin A4 

drastically reduced leukocyte infiltration, bone loss, and inflammation in a rabbit model of acute 

periodontitis[112].  

Reperfusion Injury 

Lipoxin and ATL protection from reperfusion injury is not restricted to the renal district. In fact, ATLa 

inhibited PMN infiltrates in the lung following hindlimb ischemia reperfusion[113], suggesting that 

lipoxins and ATL may antagonize stress responses, such as those observed in perioperative medicine. 

Along these lines, lipoxin A4 and ATLa reduced the expression of the ischemia-induced chemokine and 

cytokine-induced neutrophil chemoattractant (CINC)-1 in rat liver[114].  

Furthermore, in a rat model of transient focal cerebral ischemia, induced by middle cerebral artery 

occlusion, intracerebroventricular administration of a lipoxin A4 analog reduced infarction volume and 

improved neurological dysfunctions[115]. Down-regulation of proinflammatory cytokines TNF-α and IL-

1β, as well as of NF-κB, and up-regulation of anti-inflammatory cytokines IL-10 and TGF-β1 in the 

ischemic brain were observed[116]. The lipoxin A4-IL-10 axis seems to play a relevant role in protection 

from reperfusion injury, since lipoxin A4 failed to reduce inflammation and tissue damage in IL-10–

deficient mice[116]. 

A schematic representation of diseases that may benefit from treatment with lipoxin A4 and ATLa is 

reported in Fig. 5.  

FPR2/ALX, THE LIPOXIN A4 RECEPTOR 

Lipoxin A4, ATLa, and analogs anti-inflammatory functions are achieved through the activation of a 

specific receptor, spanning seven-transmembrane domains and belonging to the family of chemotactic 

receptors[117,118]. This receptor, initially termed FPRL1, has been recently renamed FPR2/ALX[119]. A 

comprehensive description of FPR2/ALX characteristics is beyond the scope of this review. Nevertheless, 

it is worth mentioning that this receptor is highly expressed in cells of the immune inflammatory 

response, i.e., PMNs, monocytes, lymphocytes, and endothelial cells, and that in addition to lipoxin A4, 

ATLa, and their stable analogs, it is recognized by a number of peptides, including the anti-inflammatory 

annexin A1 and the proinflammatory serum amyloid A (reviewed in Romano et al.[120]). Notably, the 

potent anti-inflammatory resolvin D1 is a partial agonist for this receptor[121], suggesting complex 

interactions among anti-inflammatory receptors and their agonists. Studies with transgenics 

overexpressing Fpr2, the mouse hortholog of FPR2/ALX in myeloid cells or with Fpr2 knocked 

out[122,123], conclusively proved the predominant anti-inflammatory properties of this receptor, which 

thus may represent a potential pharmacological target for treatment of inflammatory disorders.  
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FIGURE 5. Clinical settings where administration of lipoxin A4 or ATLa could be beneficial. 

CONCLUSIONS 

Evidence that lipoxin and ATL exert potent anti-inflammatory, proresolution bioactions has been 

consolidated over the years. The bioactions and signaling of these eicosanoids have been largely 

elucidated, although the list is continuously growing. The significant impact of lipoxin A4, ATLa, and 

their stable analogs in a large variety of animal studies and in vitro models of disease is suggestive of the 

potential use of these compounds in human therapy. In this respect, in a document dated March 17, 2010, 

Bayer has announced to investors that lipoxin is in phase I development for inflammatory bowel disease. 

Additional human studies are now awaited to complete the transition of these eicosanoids from bench to 

bedside.  
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