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Abstract This paper discusses a number of conceptual issues pertaining to the study
of the relationships existing between two groups of variables which are supposed to
be spatially and temporally correlated. Since it is assumedthat this relationships can
be studied in a reduced latent space, we provide an overview of the motivations for
including spatial effects in a dynamic factor model, both from a theory-driven as
well as from a data-driven perspective. Considerable attention is paid to the infer-
ential framework necessary to carry out estimation and to the different assumptions,
constraints and implications embedded in the various modelspecifications.
Abstract Il presente articolo riguarda lo studio delle relazioni esistenti tra due
gruppi di variabili che assumiamo siano spazialmente e temporalmente correlate.
Si presume che lo studio di queste relazioni possa essere effettuato in uno spazio
ridotto generato attraverso la stima Bayesiana di un modello fattoriale gerarchico
per processi spazio-temporali. Commentando alcune possibili parametrizzazioni, si
dimostra che il modellóe sufficientemente flessibile ed adatto a risolvere molti dei
problemi statistici comunemente presenti nelle analisi didati spazio-temporali.
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1 Introduction

The idea of borrowing information from different but related sources can be very
powerful for statistical analysis. It proved to be very useful in the last decades where
complex data structures began to be tackled, as they required sophisticated model-
ing strategies. In this paper we consider the problem of modeling high-dimensional
multivariate, spatially and temporally referenced data. This problem has enjoyed
widespread popularity in the last years and requires the definition of general and
flexible statistical models where the temporal and cross-sectional dependencies
must be accommodated.

Spurred by recent advances in Geo-spatial data acquisitiontechnologies, it is of-
ten desirable for these data to examine the relationships existing between one or
more dependent variables and some other linked covariates.This can be achieved in
a number of ways, though there might be no single approach which can be consid-
ered uniformly as being the most appropriate.

For example, general vector autoregressive (VAR) models are recognized as al-
lowing for simultaneous modeling of variables in a multivariate context. Tradition-
ally, VAR models use a small number of variables to avoid inflating the number of
parameters to be estimated and, in general, they do not allowfor a direct modeling
of locational spillovers. A spatial adaptation of VARs, denoted as SpVAR mod-
els, explicitly considers the potential impacts of specificevents in neighboring sites
(regions) and has been discussed in Kuethe and Pede (2011). The SpVAR is a spe-
cific version of the Spatio-Temporal Auto-Regressive Moving Average - STARMA
- model where the linear dependencies are lagged in both space and time. Since
STARMAs are an extension of the ARMA class of models they are particularly
useful to produce temporal forecasts of the variables of interest but they are not suit-
able to provide spatial predictions if these are required. As discussed in Valentini et
al. (2013), the STARMA specification also suffers from some other disadvantages.
Seemingly Unrelated Regression (SUR) and error correctionpanel data models have
also been largely used with spatial and time effects. Apart from their rather complex
structure, as STARMAs, these models are not suitable when the number of regions
is relatively large. In fact, the application of an unrestricted SURE-GLS approach
to largeN (cross section dimension) andT (time series dimension) panels involves
nuisance parameters that increase at a quadratic rate as thecross section dimension
of the panel is allowed to rise (Pesaran, 2006).

Among the different methodologies proposed in the literature, dynamic factor
models (DFMs) have grown significantly in popularity and have been shown to
be very useful for exploratory analysis, policy analysis and forecasting in a data-
rich environment. DFMs have been widely developed in both methodological and
practical issues, and have become a standard tool for increasingly high-dimensional
modeling of time series. They have been extensively used in macroeconomics and
finance with the core idea of explaining the common dynamic structure of the mul-
tivariate time series through a set of common (time series) factors. This is achieved
by the introduction of flexible temporal correlation structures for the latent factors,
previously assumed to be independent. This renders the DFM capable of assessing
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the complexity of time series data. For a recent review on DFMs the reader may
refer to Gamerman and Salazar (2013) and references therein.

Special attention will be devoted here to the use of a dynamicfactor analytic
approach in the framework of spatial statistics. It will be shown that this is not only
an important area of application but also that this area can receive several benefits
from this modeling approach.

A key property of much spatio-temporal data is that observations at nearby sites
and times will tend to be similar to one another. Then, factoranalysis assumes that
the cross dependence can be characterized by a finite number of unobserved com-
mon factors, possibly due to common shocks that affect all the spatial sites, albeit
with different intensities. Thus, the strong co-movement and the high correlation
among the series, amplified by the presence of spatial correlation, suggest that both
observable and unobservable factors must be at place.

In this paper, we thus approach the analysis of multivariatespatio-temporal
processes from the perspective of recent developments of dynamic factor models.
Through a fully Bayesian approach, we contribute to the recent literature by melding
together dynamic factor models, spatial regression modelsand geostatistical tech-
niques, in order to explain the multifactorial nature of many spatio-temporal data.
We assume that the relationships existing between the groups of dependent and
regressor variables can be studied through a temporally dynamic and spatially de-
scriptive model, hereafter referred to asspatial dynamic structural equationmodel
(SD-SEM).

The proposed model has an intuitive appeal and enjoys several advantages. First,
our model formulation exploits the spatio-temporal natureof the data and explic-
itly defines a non-separable spatio-temporal covariance structure of the multivariate
process. Second, since the data have a multivariate and multidimensional structure,
in that several time series can be measured at specific spatial sites, the temporal re-
lationships between dependent and regressor variables is modeled in a latent space.
The observed processes are thus described by a potentially small set of common dy-
namic latent factors with the advantage of overcoming the difficulties of interpreting
the relationships under study due to collinearity and low signal-to-noise ratio issues.
Temporal forecasts of the variables of interest can also be obtained by only model-
ing the dynamics of a few common factors. Third, by modeling the spatial variation
via spatially structured factor loadings, we entertain thepossibility of identifying
clusters of spatial sites that share common time series components. Through the
spatial modeling of the factor loadings, spatial interpolations of the observed vari-
ables are also straightforward. Fourth, several general structures that make use of
different covariate information, can be easily accommodated in the different lev-
els of the hierarchy. Fifth, the SD-SEM offers a unified approach suitable to deal
with variables and indicators measured at different scalesand coming from differ-
ent spatial sources. Hence, the model provides a simple solution to the misalignment
problems which, for example, normally occurs in health careresearch. Lastly, the
model specification is not limited to normally distributed variables, but it can be
extended to handle more types of variables from an exponential family.
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The remainder of the paper is organized as follows. In section 2, we describe
the general model and discuss how regression ideas can be incorporated into the
factor model setting. In section 3 we discuss the prior specification with special
attention on structures which define general forms of spatial correlation and cross-
correlation between variables at different locations. In section 4 we discuss how to
perform posterior inference. Finally, section 5 concludesthe paper with a discussion
on specific inferential problems, possible uses of the modeland directions for further
work.

2 The spatial dynamic structural equation model

Often observations are multivariate in nature, i.e. we obtain vector of time series at
locations across space. For such data, together with the study of the temporal dy-
namics of the variables, we need to model both association between measurements
at a location as well as association between measurements across locations. With in-
creased collection of such multivariate spatial data, there arises the need for flexible
explanatory stochastic models in order to improve estimation precision and to pro-
vide simple descriptions of the complex relationships existing among the variables.

There are cases of interest in which the association betweendependent variables
and the set of explanatory variables can be better investigated through the estima-
tion of some latent factors rather than the variables individually. In the following, a
model formulation which describes the structural relations among the variables in a
lower dimensional space is thus presented.

Assume initially thatY and X are two multivariate Gaussian spatio-temporal
processes observed at temporal instantst ∈ {1,2, . . .} and generic locations,s∈ Dy

andu∈Dx, respectively. For the two different processes, the spatial sitessandu can
denote the same location but, in general, they need not be thesame. Furthermore,
bothDy andDx may represent two different spatial domains of interest.

Let ny be the number of observed variables forY andnx the number of observed
variables forX. The most informative case is represented by the isotopic configura-
tion where, for each multivariate process,Y or X, all variables are measured at all
their respective sites. In this case, we can thus writeY(s, t) = [Y1(s, t), . . . ,Yny(s, t)]

′

andX(u, t) = [X1(u, t), . . . ,Xnx(u, t)]
′. The opposite case is the completely hetero-

topic case where not all the variables can be observed at the same site.
Without loss of generality, for the sake of simplicity, we describe here the

isotopic case and assume thatY or X can be observed atNy and Nx spatial
sites, respectively. Let ˜ny = nyNy and ñx = nxNx. Then, at a specific timet, the
(ñy × 1) and (ñx × 1) dimensional spatial processes,Y and X, are denoted as
Y(t) = [Y(s1, t)′, . . . ,Y(sNy, t)

′]′ and X(t) = [X(u1, t)′, . . . ,X(uNx, t)
′]′. Since it is

also assumed thatX is a predictor ofY, which is thus the process of interest, we
work within the well known framework of transfer response models covered in many
standard time series books.
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Our model assumes that each multivariate spatial process, at a specific timet, has
the following linear structure

X(t) = mx(t)+Hxf(t)+ux(t) (1)

Y(t) = my(t)+Hyg(t)+uy(t) (2)

wheremy(t) andmx(t) are(ñy× 1) and(ñx × 1) mean components modeling the
smooth large-scale temporal variability,Hy andHx are measurement (factor load-
ings) matrices of dimensions(ñy×m) and(ñx× l), respectively, andg(t) andf(t) are
m- andl -dimensional vectors of temporal common factors. Also,uy(t) andux(t) are
Gaussian error terms for which we assumeuy(t)∼N(0,ΣΣΣuy) andux(t)∼N(0,ΣΣΣux).
For simplicity, throughout the paper it is assumed thatΣΣΣuy andΣΣΣux are both diagonal
matrices and thatm≪ ñy andl ≪ ñx.

In the second level of the hierarchy the temporal dynamics ofthe common factors
are then modeled through the following equations

g(t) =
p

∑
i=1

Cig(t − i)+
q

∑
j=0

D j f(t − j)+ξξξ (t) (3)

f(t) =
s

∑
k=1

Rkf(t −k)+ηηη(t) (4)

whereCi (m×m), D j (m× l), andRk (l × l) are coefficient matrices modeling
the temporal evolution of the latent vectorsg(t) = [g1(t), . . . ,gm(t)]

′ and f(t) =
[ f1(t), . . . , fl (t)]

′, respectively. Finally,ξξξ (t) andηηη(t) are independent Gaussian er-
ror terms for which we assumeξξξ (t)∼ N(0,ΣΣΣ ξ ) andηηη(t)∼ N(0,ΣΣΣ η).

Equation (3) represents the structural part of the model formulation and appears
as a VAR model in which the variables ing(t), are controlled for the effects of
other variables inf(t). Equations (1-4) thus provide the basic formulation of the
SD-SEM. One clear advantage of this model is that in the context of increasingly
high-dimensional time series, the temporal relationship between dependent and re-
gressor variables can be modeled in a reduced latent space. Also, temporal forecasts
of the variables of interest,Y, can be obtained by modeling the dynamics of a few
common factors represented ing(t). Also, the model is spatially descriptive in that it
can be used to identify possible clusters of locations whosetemporal behavior is pri-
marily described by a potentially small set of common dynamic latent factors. As it
will be shown in the next section, flexible and spatially structured prior information
regarding such clusters can be specified through the columnsof the factor loading
matrix. Model completion requires specific forms for patterns of time-variation in
the elements ofmy(t) andmx(t), and for the elements of the factor loadings ma-
tricesHy andHx. We note that the pure factor model is the special case given by
equation (2), withmy(t) = 0, and equation (3) withD j = 0 for all j, when the typ-
ical assumption that the common factorsg(t) are zero-mean and independent over
time yields a linear factor representation of the conditional variance matrix ofY(t).
Whenmy(t) = Ayz(t), whereAy is a(ñy× r) matrix of regression coefficients and
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z(t) is a r-vector of observed variables, the model is what has become known as a
factor-augmented vector autoregression (FAVAR).

3 Prior specification

Since the model is developed under the Bayesian paradigm, animportant part of the
model specification deals with the choice of prior distributions.

FACTOR LOADINGS SPECIFICATION

The loadings are useful quantities as they allow for the identification of common fea-
tures and for the interpretation of the relationship or correlation structure between

the different series. Lethy j =
[

hy j (s1)
′,hy j (s2)

′, . . . ,hy j (sNy)
′
]′

denote thej-th col-

umn of Hy and lethy j (si) =
[

hy j ,1(si), . . . ,hy j ,ny(si)
]′

, denote theny-dimensional

vector of loadings defined for the spatial sitesi . With obvious notation, the same
holds forhx j but, for simplicity, assume henceforth we only focus on the process
of interestY. In general, taking care of the identifiability constraints(see Lopes
and West, 2004), for the factor loadings one can take independent normal priors.
However, for spatio-temporal data, one may be more interested in including con-
ditional dependencies within the elements ofY(t). In fact, because of their spatial
nature, the factor loadings are characterized by spatial patterns and consequently,
a number of papers have discussed the possibility of inducing flexible correlation
structures into the columns ofHy. For example, in the framework of geostatistics,
Wikle and Cressie (1999) assumeY(t) is a univariate spatially continuous process
(i.e.ny = 1 andDy ⊆ R2) and model the columns ofHy as orthonormal basis func-
tions. Calder (2007), on the other hand, suggested the use ofsmoothed determinis-
tic kernels to buildHy. Alternatively, Lopes et al. (2008) introduced a spatial DFM
where the columns of the factor loadings matrix follow conditionally independent

Gaussian Random fields, that ishy j ∼ N
(

µµµhyj
,ΣΣΣhyj

)

, whereµµµhyj
is a mean vector

and ΣΣΣhyj
= τ2

y j
R(ϕy j ). For a valid correlation function (e.g. exponential, Matérn,

etc),R(ϕy j) denotes the(Ny×Ny) spatial correlation matrix where its generic en-
try is given byρ(|si − si′ |;ϕy j ), andϕy j is the ”effective” range parameter (i.e. the
distance which makes the correlation negligible). To take into account the effect
of some explanatory variables, it is possible to parameterize the mean vector,µµµhyj

,

through the definition of a suitable design matrix,∆∆∆ ∗, such thatµµµhyj
= ∆∆∆ ∗βββ hyj

, with

βββ hyj
a vector of parameters. The presence of two sets of variablesintroduces further

possibilities beyond standard DFM. In particular, relationships between the loading
matricesHy andHx may be introduced. For example, Ippoliti et al. (2012) useHx

as a (latent) design matrix for the mean ofHx.
If Y(t) is a multivariate (ny > 1) continuous spatial process observed onDy ⊆R2,

each column of the measurement matrixHy can still be assumed to be a Gaussian
spatial process and its correlation structure defined through the linear model of core-
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gionalization (LMC, Schmidt and Gelfand, 2003). LMC assumes that a multivariate
spatial process can be written as a linear combination of simpler univariate spa-
tial process. Hence, at the spatial sitesi , we may writehy j (si) = A jωωω(si), i =
1,2, . . . ,Ny, j = 1,2, . . . ,m, whereA j is a(ny×ny) full-rank (lower-triangular) ma-
trix and the components ofωωω(si), ωk(si), k = 1, . . . ,ny, are spatial processes inde-
pendent acrossk, with mean 0, unit variances and spatial correlation matrixR(ϕk j)
function. It can thus be shown (Schmidt and Gelfand, 2003) that complex covariance
structures can be obtained as

ΣΣΣhyj
=

ny

∑
k=1

R(ϕk j)⊗ak ja
′
k j, j = 1,2, . . . ,m

whereak j represents thek-th column vector ofA j . Note that a separable covariance
specification represents the simplest form of LMC.

Large amounts of essentially-continuous spatial data are associated with the
nodes or interiors of a regular rectangular lattice, or withirregularly-spaced sites
or irregularly-shaped regions. For example, pixellated images are associated with
the interiors of rectangular lattices, and epidemiological, ecological and economic
data are usually associated with irregular sites or regions. The modeling of the spa-
tial correlation for factor loadings corresponding to univariate and multivariate spa-
tial processes observed on a lattice was discussed by Valentini et al. (2013). In this
casehy j is assumed to be a conditional autoregressive CAR process, also known as
Gaussian Markov random field, for which a simple form for the spatial dependence
is based on a 0/1 neighbourhood adjacency matrix.

COMMON LATENT FACTORS SPECIFICATION

By means of an appropriate concatenation of observables
[

Y(t)′ X(t)′
]′

and com-

mon factors
[

g(t)′ f(t)′
]′

, equations (1-4) can be rewritten in state-space form by
appropriately enlarging the state vector according to the order of lagged dependence
of the latent factors (see, for example, Ippoliti et al., 2012; Valentini et al., 2013). It
can be very hard to estimate this model in its full expressionfor typical applications.
Hence, natural simplifications are usually obtained by restricting the orderp, q, and
sof the auto- and cross-regressions to small values, say 1 or 2. By assuming without
loss of generality thatp ≥ max(s,q), Di = 0 for i > q andR j = 0 for j > s, it is
useful to specify the joint generation process forg(t) andf(t) as a VAR(p) process
of the type

d(t) = ΦΦΦ1d(t −1)+ . . .+ΦΦΦ pd(t − p)+ εεε(t) (5)

where

d(t) =
[

g(t)
f(t)

]

, ΦΦΦ i =

[

Ci Di

0 Ri

]

, εεε(t) =
[

ξξξ (t)
ηηη(t)

]

.

Let ααα(t) =
[

d(t)′ d(t − 1)′ . . .d(t − p+ 1)′
]′

. Then, in the second level of the hi-
erarchy the evolution of the joint common factors can be represented by the fol-
lowing transition equationααα(t) = ΓΓΓ ααα(t − 1) + ζζζ , ζζζ ∼ N(0,ΛΛΛ), whereΓΓΓ is a
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(k× k) block coefficient matrix, withk = (m+ l)p, characterizing the dynamic
evolution of the joint common factors andΛΛΛ is a covariance matrix with ele-
mentsλi j , i, j = 1, . . . ,k. The prior for the latent processααα(t) is completed by
ααα(0)∼ N(a0,ΣΣΣd0), with known hyperparametersa0 andΣΣΣd0.

AssumingD j = 0, for all j, the state equation represents exactly the dynamic
evolution of a standard DFM. In this case, many specifications can be envisaged
for the autoregressive parameters inCi andλi j . One possibility for theΛΛΛ matrix
is a diagonal form with elementsλi having independent Gamma distributions as
priors. Otherwise,inverted Wishartdistribution can be chosen. Similarly, indepen-
dence assumptions can be made for the autoregressive matricesCi . One possibility
is to considerCi = diag(c1 j , . . . ,cm j) such that,ci ∼ N(0,γ) independent, for some
large value ofγ if one want to represent vague prior information. If one is con-
cerned with the possibility of unit roots and non-stationarity, a mixture prior may
also be assumed for the autoregressive coefficients as shownin Huerta and West
(1999). Considering a full model specification for the latent processααα(t), a general
prior (which does not involve the restrictions inherent in the natural conjugate prior)
can be specified through the independent Normal-Wishart prior. Using this prior,
the joint posterior does not have a convenient form that would allow easy Bayesian
analysis (e.g. posterior means and variances do not have analytical forms). How-
ever, the conditional posterior distributions do have convenient forms and Gibbs
sampler which sequentially draws from the Normal and the Wishart distributions
can be programmed up in a straightforward fashion. Lopes et al. (2008) also discuss
the use of alternative prior specifications and we refer to them for known results.
Other priors that are enjoying increasing popularity are called Stochastic Search
Variable Selection (SSVS, George, Sun and Ni, 2008). These allow for shrinkage of
the auto- and cross-regression coefficients and lead to restricted formulations in an
automatic fashion that require only minimal prior input from the researcher. Notice
that the SSVS approach can also be thought of as automatically selecting a restricted
model and the relationship between such a strategy and conventional model selec-
tion techniques using an information criteria (e.g. the Akaike or Bayesian informa-
tion criteria) is discussed in Fernandez, Ley and Steel (2001). By using a vector
error correction model representation of equation (5), Valentini et al. (2013) also
used a SSVS prior for testing the cointegration structurewithin g(t) and f(t) and
betweenthe two processes.

Large scale dynamic factors, periodic or cyclical components can also be di-
rectly specified in the model either through the mean level orthrough the common
dynamic factors. In the first case, the same pattern is assumed for all locations, while
in the other case, the common seasonal factors receive different weights for differ-
ent columns of the factor loading matrix, so allowing different seasonal patterns for
the spatial locations. By considering trend models to be of the form∇ jγ(t) = ω(t),
where∇ j is the j-th order difference operator andω(t) a normally distributed zero-
mean sequence with unknown varianceφ2, locally linear trend models can also be
easily included in the model formulation.
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4 Posterior inference

Posterior inference for the proposed class of spatial dynamic factor models is fa-
cilitated by MCMC algorithms. Standard MCMC for dynamic linear models are
adapted to our model specification such that posterior and predictive analysis are
readily available. Conditional onr and m, the number of common factors, the
MCMC scheme described in Lopes and West (2004) can be easily adapted where the
common factors are jointly sampled via the well known forward filtering backward
sampling (FFBS) scheme (Carter and Kohn, 1994). All other full conditional dis-
tributions are ”standard” multivariate Gaussian or Gamma distributions. Exceptions
refer to the spatial correlation parameters (range parameters and conditional autore-
gressive parameters under specific priors) which are sampled using a Metropolis-
Hastings step.

5 Concluding remarks

This paper was concerned with the discussion on the use of factor models for mul-
tivariate time series observed at multiple sites. Our presentation has focused exclu-
sively on the discussion about model building and a number ofother issues were not
addressed. We will briefly comment upon them now.

Two important issues are model identification and model selection. Many ways
to handle the problem of identification can be found in the literature. Basically, the
idea is to impose constraints onHy andHx as, for example, the lower constraint of
Geweke and Zhou (1996). As discussed by Lopes and West (2004), an advantage
of using this approach is that the order of the sites in the measurement matrices has
no effect on the resulting model nor on predictive inferences under the specified
model. However, the spatial structure imposed into the columns can be exploited in
order to avoid the problem. In some applications, identifiability of the factor load-
ings is not required, especially for covariance matrix estimation, variable selection
and prediction - see Bhattacharya and Dunson (2011) for moredetails. Uncertainty
about the number of latent factors has been studied in different ways. One possi-
bility is fitting the model for different choices ofm andr and then using selection
criteria like AIC, BIC or the Predictive Model Choice statistic of Gelfand and Ghosh
(1998) for model selection. Lopes and West (2004) proposed fully Bayesian infer-
ence on the number of factors through a reversible jump MCMC.Other important
items not discussed yet regard the possible uses of the model. Since the DS-SEM is
highly structured and flexible, it can be used to solve most ofthe statistical problems
commonly encountered in the analysis of spatio-temporal data. By discussing two
examples regarding the analysis of environmental and macroeconomic data, Ippoliti
et al. (2012) and Valentini et al. (2013) show how to obtain both unconditional and
conditional forecasts ofY, its spatial predictions and how to apply a multiplier anal-
ysis to describe the reaction over time of the dependent variableY to exogenous
impulses. A final important consideration is that the SD-SEMcan also be easily
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extended to allow for non Gaussian observations. In this case the SD-SEM appears
as a hierarchical model with first level measurement equations for the conditionally
independent variables,Yk(s, t), k = 1, . . . ,ny andXj(u, t), j = 1, . . . ,nx, in the one-
parameter natural exponential family. The natural parameters can then be related to
the linear predictors which, in the same spirit of equations(1) and (2), are defined
by a linear combination of spatial and temporal components.

References

1. Bhattacharya, A., Dunson, D. B.: Sparse Bayesian infinite factor models. Biometrika,98,
291–306 (2011)

2. Calder, C.: Dynamic factor process convolution models for multivariate space-time data with
application to air quality assessment. Environmental and Ecological Statistics,14, 229–247
(2007)

3. Carter, C.K., Kohn, R.: On Gibbs sampling for state space models.Biometrika,81, 541–553
(1994)

4. Fernandez, C., Ley, E., Steel, M.: Benchmark priors for Bayesian model averaging. Journal
of Econometrics,100, 381–427 (2001)

5. Gamerman, D., Salazar E.: Hierarchical modeling in time series:the factor analytic approach.
In bookBayesian Theory and Applications (eds. P. Damien, P. Dellaportas, N. G. Polson, and
D. A. Stephens), pp. 167-182, Oxford University Press (2013)

6. Gelfand, A.E., Ghosh, S.K.: Model choice: a minimum posteriorpredictive loss approach.
Biometrika,85, 1–11 (1998)

7. George, E., Sun, D., Ni, S.: Bayesian stochastic search for VARmodel restrictions. Journal
of Econometrics,142, 553–580 (2008)

8. Geweke, J. F., Zhou, G.: Measuring the pricing error of the arbitrage pricing theory. The
Review of Financial Studies,9, 557–587 (1996)

9. Huerta, G., West, M.: Priors and component structures in autoregressive time series models.
Journal of the Royal Statistical Society, Series B,61, 881–899 (1999)

10. Kuethe, T., Pede, V.: Regional Housing Price Cycles: A Spatio-temporal Analysis Using US
State-level Data. Regional Studies,45, 563–574 (2011)

11. Ippoliti, L., Valentini, P., Gamerman, D.: Space-Time Modelling of Coupled Spatio-Temporal
Environmental Variables. Journal of the Royal Statistical Society, Series C (Applied Statis-
tics),61, 175-200 (2012)

12. Lopes, H. F., West, M.: Bayesian model assessment in factor analysis.Statistica Sinica,14,
41–67 (2004)

13. Lopes, H. F., Salazar, E., Gamerman, D.: Spatial dynamic factor analysis. Bayesian Analysis,
3, 759–792 (2008)

14. Pesaran, M.H.: Estimation and inference in large heterogeneous panels with a multifactor
error structure. Econometrica,74, 967–1012 (2006)

15. Schmidt, A., Gelfand, A. E.: A Bayesian coregionalizationmodel for multivariate pollutant
data. Journal of Geophysics Research,108, 8783 (2003)

16. Valentini, P., Ippoliti, L., Fontanella, L.: Modeling US housing prices by spatial dynamic
structural equation models. The Annals of Applied Statistics,7, 763-798 (2013)

17. Wikle, C. K., Cressie, N.: A dimension-reduced approach to space-time Kalman filtering.
Biometrika,86, 815–829 (1999)


