Regressions in Spatially Dynamic Factor Models
Regressione e modelli fattoriali spazio-temporali
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Abstract This paper discusses a number of conceptual issues pegé#irthe study
of the relationships existing between two groups of vadgabthich are supposed to
be spatially and temporally correlated. Since it is assutinaithis relationships can
be studied in a reduced latent space, we provide an ovenidlve anotivations for
including spatial effects in a dynamic factor model, botbnira theory-driven as
well as from a data-driven perspective. Considerable @tiets paid to the infer-
ential framework necessary to carry out estimation andedalifierent assumptions,
constraints and implications embedded in the various mgukstifications.

Abstract Il presente articolo riguarda lo studio delle relazioni s&@nti tra due
gruppi di variabili che assumiamo siano spazialmente e twaimente correlate.
Si presume che lo studio di queste relazioni possa essettuetb in uno spazio
ridotto generato attraverso la stima Bayesiana di un magélttoriale gerarchico
per processi spazio-temporali. Commentando alcune pligsibametrizzazioni, si
dimostra che il modell@ sufficientemente flessibile ed adatto a risolvere molti dei
problemi statistici comunemente presenti nelle analislati spazio-temporali.
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1 Introduction

The idea of borrowing information from different but reldtsources can be very
powerful for statistical analysis. It proved to be very uséf the last decades where
complex data structures began to be tackled, as they relggmghisticated model-
ing strategies. In this paper we consider the problem of mragldigh-dimensional
multivariate, spatially and temporally referenced dathisTproblem has enjoyed
widespread popularity in the last years and requires thaitlefi of general and
flexible statistical models where the temporal and crosties®l dependencies
must be accommodated.

Spurred by recent advances in Geo-spatial data acquisgabmologies, it is of-
ten desirable for these data to examine the relationshiissirex between one or
more dependent variables and some other linked covarigttescan be achieved in
a number of ways, though there might be no single approacbhad@n be consid-
ered uniformly as being the most appropriate.

For example, general vector autoregressive (VAR) modelserognized as al-
lowing for simultaneous modeling of variables in a multiaée context. Tradition-
ally, VAR models use a small number of variables to avoid titftathe number of
parameters to be estimated and, in general, they do not &loavdirect modeling
of locational spillovers. A spatial adaptation of VARs, d&ed as SpVAR mod-
els, explicitly considers the potential impacts of sped@fients in neighboring sites
(regions) and has been discussed in Kuethe and Pede (20ELFPVAR is a spe-
cific version of the Spatio-Temporal Auto-Regressive Mgvhverage - STARMA
- model where the linear dependencies are lagged in botte spaat time. Since
STARMAs are an extension of the ARMA class of models they aeiqularly
useful to produce temporal forecasts of the variables efé@st but they are not suit-
able to provide spatial predictions if these are requiresldi&cussed in Valentini et
al. (2013), the STARMA specification also suffers from sortfeeo disadvantages.
Seemingly Unrelated Regression (SUR) and error correptimel data models have
also been largely used with spatial and time effects. Apamftheir rather complex
structure, as STARMAs, these models are not suitable whenumber of regions
is relatively large. In fact, the application of an unregetd SURE-GLS approach
to largeN (cross section dimension) afid(time series dimension) panels involves
nuisance parameters that increase at a quadratic rate a®fisesection dimension
of the panel is allowed to rise (Pesaran, 2006).

Among the different methodologies proposed in the litewgtaynamic factor
models (DFMs) have grown significantly in popularity and édeen shown to
be very useful for exploratory analysis, policy analysisl &recasting in a data-
rich environment. DFMs have been widely developed in botthoaological and
practical issues, and have become a standard tool for siogdg high-dimensional
modeling of time series. They have been extensively usedacroeconomics and
finance with the core idea of explaining the common dynanmiccttire of the mul-
tivariate time series through a set of common (time sergspfs. This is achieved
by the introduction of flexible temporal correlation stuets for the latent factors,
previously assumed to be independent. This renders the Dipdbde of assessing
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the complexity of time series data. For a recent review on BFive reader may
refer to Gamerman and Salazar (2013) and references therein

Special attention will be devoted here to the use of a dyndautor analytic
approach in the framework of spatial statistics. It will l@wn that this is not only
an important area of application but also that this area eaaive several benefits
from this modeling approach.

A key property of much spatio-temporal data is that obs@matat nearby sites
and times will tend to be similar to one another. Then, faatwlysis assumes that
the cross dependence can be characterized by a finite nurbeoloserved com-
mon factors, possibly due to common shocks that affect alkfiatial sites, albeit
with different intensities. Thus, the strong co-movememd ¢he high correlation
among the series, amplified by the presence of spatial etioe] suggest that both
observable and unobservable factors must be at place.

In this paper, we thus approach the analysis of multivariatio-temporal
processes from the perspective of recent developmentsnanaig factor models.
Through a fully Bayesian approach, we contribute to therelterature by melding
together dynamic factor models, spatial regression matedsgeostatistical tech-
niques, in order to explain the multifactorial nature of mapatio-temporal data.
We assume that the relationships existing between the grotidependent and
regressor variables can be studied through a temporallgrdi;mand spatially de-
scriptive model, hereafter referred togsatial dynamic structural equatiomodel
(SD-SEM).

The proposed model has an intuitive appeal and enjoys dadbrantages. First,
our model formulation exploits the spatio-temporal natofr¢he data and explic-
itly defines a non-separable spatio-temporal covariamaetsre of the multivariate
process. Second, since the data have a multivariate andlimahsional structure,
in that several time series can be measured at specific lsgiteig the temporal re-
lationships between dependent and regressor variablesdsled in a latent space.
The observed processes are thus described by a potentiedlyset of common dy-
namic latent factors with the advantage of overcoming tffeedities of interpreting
the relationships under study due to collinearity and Igynal-to-noise ratio issues.
Temporal forecasts of the variables of interest can alsdobereed by only model-
ing the dynamics of a few common factors. Third, by modellmggpatial variation
via spatially structured factor loadings, we entertain plossibility of identifying
clusters of spatial sites that share common time series aoemts. Through the
spatial modeling of the factor loadings, spatial intergioles of the observed vari-
ables are also straightforward. Fourth, several genemadtstres that make use of
different covariate information, can be easily accommedan the different lev-
els of the hierarchy. Fifth, the SD-SEM offers a unified ajgoto suitable to deal
with variables and indicators measured at different scahescoming from differ-
ent spatial sources. Hence, the model provides a simplé@oto the misalignment
problems which, for example, normally occurs in health gasearch. Lastly, the
model specification is not limited to normally distributedriables, but it can be
extended to handle more types of variables from an expadainily.
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The remainder of the paper is organized as follows. In se@iowe describe
the general model and discuss how regression ideas can dpanated into the
factor model setting. In section 3 we discuss the prior $pation with special
attention on structures which define general forms of spedi@elation and cross-
correlation between variables at different locations.dati®n 4 we discuss how to
perform posterior inference. Finally, section 5 conclutthespaper with a discussion
on specific inferential problems, possible uses of the maaedirections for further
work.

2 The spatial dynamic structural equation model

Often observations are multivariate in nature, i.e. we iobtactor of time series at
locations across space. For such data, together with thg sfuthe temporal dy-
namics of the variables, we need to model both associatitwelea measurements
at a location as well as association between measuremeossdaocations. With in-
creased collection of such multivariate spatial data glagises the need for flexible
explanatory stochastic models in order to improve estimngirecision and to pro-
vide simple descriptions of the complex relationshipstéxgsamong the variables.

There are cases of interest in which the association betdegendent variables
and the set of explanatory variables can be better invéstigarough the estima-
tion of some latent factors rather than the variables indiglly. In the following, a
model formulation which describes the structural relatgiamong the variables in a
lower dimensional space is thus presented.

Assume initially thaty and X are two multivariate Gaussian spatio-temporal
processes observed at temporal instartg1,2, ...} and generic locations,e %y
andu € %, respectively. For the two different processes, the sigitéss andu can
denote the same location but, in general, they need not beathe. Furthermore,
both 2y and Zx may represent two different spatial domains of interest.

Let ny be the number of observed variables Yoandny the number of observed
variables forX. The most informative case is represented by the isotopifigura-
tion where, for each multivariate procedspr X, all variables are measured at all
their respective sites. In this case, we can thus Wi®t) = [Yi(s;t),..., Y (S,1))
andX(u,t) = [Xa(u,t),...,Xn, (u,t)]". The opposite case is the completely hetero-
topic case where not all the variables can be observed aathe site.

Without loss of generality, for the sake of simplicity, wesdgbe here the
isotopic case and assume théator X can be observed atl, and Ny spatial
sites, respectively. Let,"= nyN, and riy = nyNy. Then, at a specific timg, the
(fy x 1) and (fiy x 1) dimensional spatial processeg, and X, are denoted as
Y(t) = [Y(sp,t),..., Y (s, )] and X(t) = [X(ug,t),...,X(un,,t)]. Since it is
also assumed that is a predictor ofY, which is thus the process of interest, we
work within the well known framework of transfer responsedals covered in many
standard time series books.
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Our model assumes that each multivariate spatial processpecific time, has
the following linear structure

X(t) = my(t) +Hxf(t) +ux(t) (1)
Y (t) = my(t) +Hyg(t) + uy(t) 2

wheremy(t) andmy(t) are (fiy x 1) and (fix x 1) mean components modeling the
smooth large-scale temporal variability, andHy are measurement (factor load-
ings) matrices of dimensiori§, x m) and(fi, x | ), respectively, and(t) andf(t) are
m- andl-dimensional vectors of temporal common factors. Algt) anduy(t) are
Gaussian error terms for which we assumé) ~ N(0, Z,, ) andux(t) ~ N(0, Zy, ).
For simplicity, throughout the paper it is assumed fgtandZ , are both diagonal
matrices and thah < fiy and| < fi.

In the second level of the hierarchy the temporal dynamitise€ommon factors
are then modeled through the following equations

p q

git) = 3 Cigt—i) + 3 Dyf(t— )+ &(1) 3)
2, 2,7

i) = 3 Rdt—K+n) (4)
k=1

whereC; (mx m), Dj (mx 1), andRy (I x 1) are coefficient matrices modeling
the temporal evolution of the latent vectay@t) = [ga(t),...,gm(t)]" and f(t) =
[f1(t),..., fi(t)]', respectively. Finally& (t) andn(t) are independent Gaussian er-
ror terms for which we assun#g(t) ~ N(0,Z;) andn(t) ~ N(0,Zp).

Equation (3) represents the structural part of the modehditation and appears
as a VAR model in which the variables @it), are controlled for the effects of
other variables irf(t). Equations (1-4) thus provide the basic formulation of the
SD-SEM. One clear advantage of this model is that in the abieincreasingly
high-dimensional time series, the temporal relationsleifvieen dependent and re-
gressor variables can be modeled in a reduced latent splsoe témporal forecasts
of the variables of interesY,, can be obtained by modeling the dynamics of a few
common factors representedgt). Also, the model is spatially descriptive in that it
can be used to identify possible clusters of locations wiersgoral behavior is pri-
marily described by a potentially small set of common dyralatient factors. As it
will be shown in the next section, flexible and spatially stamed prior information
regarding such clusters can be specified through the colofmihe factor loading
matrix. Model completion requires specific forms for patteof time-variation in
the elements oy (t) andmy(t), and for the elements of the factor loadings ma-
tricesHy andHy. We note that the pure factor model is the special case giyen b
equation (2), wittmy(t) = 0, and equation (3) witld; = 0 for all j, when the typ-
ical assumption that the common factg($) are zero-mean and independent over
time yields a linear factor representation of the condalomriance matrix o¥ (t).
Whenmy(t) = Ayz(t), whereAy is a(fiy x r) matrix of regression coefficients and
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z(t) is ar-vector of observed variables, the model is what has becomoerk as a
factor-augmented vector autoregression (FAVAR).

3 Prior specification

Since the model is developed under the Bayesian paradigimpettant part of the
model specification deals with the choice of prior distribns.

FACTOR LOADINGS SPECIFICATION
The loadings are useful quantities as they allow for thetifleation of common fea-
tures and for the interpretation of the relationship or elation structure between

!
the different series. Ldty, = {hyj (s1),hy,(2)',.. -, hy (sNy)’] denote thg-th col-

!/

umn of Hy and lethy, (s) = {hyjyl(s),...,hyj_ny(s)} , denote theny-dimensional
vector of loadings defined for the spatial sie With obvious notation, the same
holds forhy; but, for simplicity, assume henceforth we only focus on thecpss
of interestY. In general, taking care of the identifiability constraifsee Lopes
and West, 2004), for the factor loadings one can take inddg@mormal priors.
However, for spatio-temporal data, one may be more intedeist including con-
ditional dependencies within the elementsydt). In fact, because of their spatial
nature, the factor loadings are characterized by spatiéénpa and consequently,
a number of papers have discussed the possibility of induit@xible correlation
structures into the columns éfy. For example, in the framework of geostatistics,
Wikle and Cressie (1999) assunét) is a univariate spatially continuous process
(i.e.ny =1 and%, C %?) and model the columns ¢fy as orthonormal basis func-
tions. Calder (2007), on the other hand, suggested the usaaithed determinis-
tic kernels to buildHy. Alternatively, Lopes et al. (2008) introduced a spatiaNDF
where the columns of the factor loadings matrix follow cdiogially independent

Gaussian Random fields, thatiigj ~ N (uhyj ,Zhyj ) , whereuhyj is a mean vector

and thj = T)%R(q)yj). For a valid correlation function (e.g. exponential, Efat,

etc),R(¢yj) denotes thgN, x Ny) spatial correlation matrix where its generic en-
try is given byp(|s —s/|; ¢y, ), and@y; is the "effective” range parameter (i.e. the
distance which makes the correlation negligible). To take account the effect
of some explanatory variables, it is possible to paranegdlie mean vectoyr1le ,

through the definition of a suitable design matX, such thaphyj = A*[Bhyj , with
ﬁhy_ a vector of parameters. The presence of two sets of variatitesluces further
]

possibilities beyond standard DFM. In particular, relasibips between the loading
matricesHy andHy may be introduced. For example, Ippoliti et al. (2012) Hse
as a (latent) design matrix for the meartf.

If Y (t) is a multivariate fy > 1) continuous spatial process observedgrc %2,
each column of the measurement mattix can still be assumed to be a Gaussian
spatial process and its correlation structure defined tiirdlue linear model of core-
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gionalization (LMC, Schmidt and Gelfand, 2003). LMC asssrtieat a multivariate
spatial process can be written as a linear combination oplsinunivariate spa-
tial process. Hence, at the spatial sifewe may writehy,(s) = Ajw(s), i=
1,2,...,Ny, j=1,2,...,m whereAj is a(ny x ny) full-rank (lower-triangular) ma-
trix and the components @b(s ), ax(s), k= 1,...,ny, are spatial processes inde-
pendent across with mean 0, unit variances and spatial correlation maiigy ;)
function. It can thus be shown (Schmidt and Gelfand, 200&)dbmplex covariance
structures can be obtained as

Ny
Zhyj - Z R(¢kj) @ ajagj, j=1,2,...,m
K=1

whereay represents thk-th column vector ofA;. Note that a separable covariance
specification represents the simplest form of LMC.

Large amounts of essentially-continuous spatial data asecated with the
nodes or interiors of a regular rectangular lattice, or viitbgularly-spaced sites
or irregularly-shaped regions. For example, pixellatedges are associated with
the interiors of rectangular lattices, and epidemiololgieeological and economic
data are usually associated with irregular sites or regibhe modeling of the spa-
tial correlation for factor loadings corresponding to @miate and multivariate spa-
tial processes observed on a lattice was discussed by Valenal. (2013). In this
casehy, is assumed to be a conditional autoregressive CAR prodesskrown as
Gaussian Markov random field, for which a simple form for that&l dependence
is based on a 0/1 neighbourhood adjacency matrix.

COMMON LATENT FACTORS SPECIFICATION
. . /
By means of an appropriate concatenation of observe{M(a.'s)’ X(t)’} and com-

mon factors[g(t)’ f(t)’]', equations (1-4) can be rewritten in state-space form by
appropriately enlarging the state vector according to tderoof lagged dependence
of the latent factors (see, for example, Ippoliti et al., 20dalentini et al., 2013). It
can be very hard to estimate this model in its full expresBotypical applications.
Hence, natural simplifications are usually obtained byriestg the orderp, g, and

sof the auto- and cross-regressions to small values, say .JByr&suming without
loss of generality thap > max(s,q), Dy =0 fori > qgandRj; =0for j > s, itis
useful to specify the joint generation processd(r andf(t) as a VAR) process

of the type

d(t) = ®yd(t—1)+ ...+ Dpd(t — p) + £(t) )

where

_ |9 _|GiDi _ | &M
d(t) = [f(t)]’ ® [0 RJ )= [n(t)} |
Let a(t) = [d(t) d(t —1)'...d(t — p+1)]". Then, in the second level of the hi-

erarchy the evolution of the joint common factors can beespnted by the fol-
lowing transition equatiom (t) =TI a(t—1)+{, { ~N(O,A), wherel is a
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(k x k) block coefficient matrix, withk = (m+1)p, characterizing the dynamic
evolution of the joint common factors amll is a covariance matrix with ele-
mentsAjj, i,j =1,...,k The prior for the latent process(t) is completed by
a(0) ~ N(ap, Z40), with known hyperparameteeg andZ yo.

AssumingD; = 0, for all j, the state equation represents exactly the dynamic
evolution of a standard DFM. In this case, many specificaticain be envisaged
for the autoregressive parametersdnand Ajj. One possibility for theA matrix
is a diagonal form with elements having independent Gamma distributions as
priors. Otherwisejnverted Wishardistribution can be chosen. Similarly, indepen-
dence assumptions can be made for the autoregressive es@yicOne possibility
is to consideC; = diag(cyj, . ..,Cmj) such thatg ~ N(0, y) independent, for some
large value ofy if one want to represent vague prior information. If one is-co
cerned with the possibility of unit roots and non-statiégtyaa mixture prior may
also be assumed for the autoregressive coefficients as sihokuerta and West
(1999). Considering a full model specification for the laterocesx (t), a general
prior (which does not involve the restrictions inherenthia hatural conjugate prior)
can be specified through the independent Normal-Wishaot.ddsing this prior,
the joint posterior does not have a convenient form that dvallbw easy Bayesian
analysis (e.g. posterior means and variances do not hawtieakforms). How-
ever, the conditional posterior distributions do have emient forms and Gibbs
sampler which sequentially draws from the Normal and thehd@fisdistributions
can be programmed up in a straightforward fashion. Lopek €@08) also discuss
the use of alternative prior specifications and we refer émtfior known results.
Other priors that are enjoying increasing popularity ardedaStochastic Search
Variable Selection (SSVS, George, Sun and Ni, 2008). Thiése tor shrinkage of
the auto- and cross-regression coefficients and lead tactestformulations in an
automatic fashion that require only minimal prior inputrfréhe researcher. Notice
that the SSVS approach can also be thought of as automgseddicting a restricted
model and the relationship between such a strategy and icbowal model selec-
tion techniques using an information criteria (e.g. the ikkar Bayesian informa-
tion criteria) is discussed in Fernandez, Ley and Steel 0By using a vector
error correction model representation of equation (5)elahi et al. (2013) also
used a SSVS prior for testing the cointegration structuitain g(t) andf(t) and
betweerthe two processes.

Large scale dynamic factors, periodic or cyclical compdsaan also be di-
rectly specified in the model either through the mean levéhaugh the common
dynamic factors. In the first case, the same pattern is asbfonall locations, while
in the other case, the common seasonal factors receivedtiffereights for differ-
ent columns of the factor loading matrix, so allowing diéfet seasonal patterns for
the spatial locations. By considering trend models to baeformOiy(t) = w(t),
wherel! is the j-th order difference operator analt) a normally distributed zero-
mean sequence with unknown variange locally linear trend models can also be
easily included in the model formulation.
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4 Posterior inference

Posterior inference for the proposed class of spatial dynéastor models is fa-
cilitated by MCMC algorithms. Standard MCMC for dynamicdar models are
adapted to our model specification such that posterior aedigiive analysis are
readily available. Conditional on and m, the number of common factors, the
MCMC scheme described in Lopes and West (2004) can be edsipted where the
common factors are jointly sampled via the well known fordvéitering backward
sampling (FFBS) scheme (Carter and Kohn, 1994). All othérclenditional dis-
tributions are "standard” multivariate Gaussian or Gamis#itutions. Exceptions
refer to the spatial correlation parameters (range parmiahd conditional autore-
gressive parameters under specific priors) which are samdieg a Metropolis-
Hastings step.

5 Concluding remarks

This paper was concerned with the discussion on the use tof faodels for mul-
tivariate time series observed at multiple sites. Our pred®n has focused exclu-
sively on the discussion about model building and a numbettedr issues were not
addressed. We will briefly comment upon them now.

Two important issues are model identification and modelctiele. Many ways
to handle the problem of identification can be found in therditure. Basically, the
idea is to impose constraints &, andHy as, for example, the lower constraint of
Geweke and Zhou (1996). As discussed by Lopes and West (2804)dvantage
of using this approach is that the order of the sites in thesom@anent matrices has
no effect on the resulting model nor on predictive infereanaader the specified
model. However, the spatial structure imposed into thernokican be exploited in
order to avoid the problem. In some applications, identititgof the factor load-
ings is not required, especially for covariance matrixmeation, variable selection
and prediction - see Bhattacharya and Dunson (2011) for aetegls. Uncertainty
about the number of latent factors has been studied in diffevays. One possi-
bility is fitting the model for different choices ah andr and then using selection
criteria like AIC, BIC or the Predictive Model Choice staitisof Gelfand and Ghosh
(1998) for model selection. Lopes and West (2004) proposkyl Bayesian infer-
ence on the number of factors through a reversible jump MC®itBer important
items not discussed yet regard the possible uses of the nRidek the DS-SEM is
highly structured and flexible, it can be used to solve mo#it@ttatistical problems
commonly encountered in the analysis of spatio-tempora. &y discussing two
examples regarding the analysis of environmental and reaormmic data, Ippoliti
et al. (2012) and Valentini et al. (2013) show how to obtaiththmconditional and
conditional forecasts of, its spatial predictions and how to apply a multiplier anal-
ysis to describe the reaction over time of the dependenabigrlY to exogenous
impulses. A final important consideration is that the SD-SEM also be easily
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extended to allow for non Gaussian observations. In this ttees SD-SEM appears
as a hierarchical model with first level measurement equosgtior the conditionally
independent variableSy(s,t), k=1,...,n, andXj(u,t), j=1,...,ny, in the one-
parameter natural exponential family. The natural paramseatan then be related to
the linear predictors which, in the same spirit of equatifi)sand (2), are defined
by a linear combination of spatial and temporal components.
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