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BY PASQUALE VALENTINI, LUIGI IPPOLITI AND LARA FONTANELLA

University of Chieti-Pescara

This article proposes a spatial dynamic structural equation model for the
analysis of housing prices at the State level in the USA. The study contributes
to the existing literature by extending the use of dynamic factor models to
the econometric analysis of multivariate lattice data. One of the main ad-
vantages of our model formulation is that by modeling the spatial variation
via spatially structured factor loadings, we entertain the possibility of iden-
tifying similarity “regions” that share common time series components. The
factor loadings are modeled as conditionally independent multivariate Gaus-
sian Markov Random Fields, while the common components are modeled by
latent dynamic factors. The general model is proposed in a state-space formu-
lation where both stationary and nonstationary autoregressive distributed-lag
processes for the latent factors are considered. For the latent factors which
exhibit a common trend, and hence are cointegrated, an error correction spec-
ification of the (vector) autoregressive distributed-lag process is proposed.
Full probabilistic inference for the model parameters is facilitated by adapt-
ing standard Markov chain Monte Carlo (MCMC) algorithms for dynamic
linear models to our model formulation. The fit of the model is discussed for
a data set of 48 States for which we model the relationship between housing
prices and the macroeconomy, using State level unemployment and per capita
personal income.

1. Introduction. This paper is concerned with the modeling of housing prices
at the State level in the US. Housing is a massive factor in people’s consumption.
For industrialized nations, for example, it is the biggest component in the basket
of goods used for calculating the consumer price index. Also, the Bureau of Labor
Statistics has estimated in 2010 that about 24 percent of the total consumption of
American home owners goes toward housing. Hence, housing is big enough to
leave a sizable footprint on the economy in general.

In the generic sense, housing is also an important social institution in our soci-
ety. Not only does housing play a major role in any nation’s economy, but it also
provides people with the social values of shelter, security, independence, privacy
and amenity. The state of the current economy and recent events in the housing
sector have thus led to increased attention on the role of the housing sector in the
economy as a whole.
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Economists have studied the relationship between the housing sector and the
macroeconomy since the 1970s. Several socio-economic variables and/or real es-
tate characteristics are traditionally considered to have an impact on housing prices
and several studies have thus been dedicated to the determination of fundamental
factors explaining US housing price variations. Our primary purpose here is not to
comprehensively examine all these variables. In fact, there is no single generally
agreed upon set of variables used in testing models of housing prices in the liter-
ature. For a complete discussion on this point see, for example, Malpezzi (1999),
Capozza et al. (2002) and Gallin (2008). It is thus beyond the scope of this paper
to discuss the possible roles played by all fundamental factors in explaining the
variation of housing prices. Hence, for simplicity, we only examine here the extent
to which these prices are driven by the real per capita disposable income and the
unemployment rate.

1.1. The data: A brief description. The data analyzed in this paper are from the
St. Louis Federal Reserve Bank database1 and the Bureau of Labor Statistics2 and
consist of quarterly time series on 48 States (excluding Alaska and Hawaii) from
1984 (first quarter) to 2011 (fourth quarter). Figure 1 shows the time series of the
real housing price index for the 48 United States grouped in the eight Bureau of
Economic Analysis (BEA) regions. The time series are expressed in a logarithmic
scale—see Section 8 for a complete description of the data set.

Figure 1 shows that there are interesting dynamic structures in the time series
and that periodic patterns and common trend components are consistent features
of the housing market. Specifically, it appears that housing prices have been rising
rapidly. Since 1995 we have estimated that, on average, real housing prices have
increased about 36 percent, roughly double the increase of previous housing price
booms observed in the late 1980s. Moreover, we notice that housing prices contin-
ued to rise strongly during the 2001 recession and that the process of the housing
price boom, which some have interpreted as a bubble, started in 1998, accelerated
during the period 2003–2006 and burst in 2007. The prices have then been falling
sharply over all the country.

The possibility of modeling all these dynamic features, as well as to obtain ac-
curate housing price forecasts, is important for prospective homeowners, investors,
appraisers and other real estate market participants, such as mortgage lenders and
insurers.

The way in which housing prices spread out to surrounding locations over time
are also of interest in the real estate literature. The co-movements shown by the
time series within BEA regions suggest the presence of spatial correlation. As

1http://research.stlouisfed.org/fred2/.
2http://stats.bls.gov/cpi/home.htm#data.

http://research.stlouisfed.org/fred2/
http://stats.bls.gov/cpi/home.htm#data
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FIG. 1. Time series of the log-transformed real housing price index. The 48 United States are grouped in the eight Bureau of Economic Analysis (BEA)
regions.
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TABLE 1
Average of correlation coefficients within and between regions first difference log of real housing

prices. BEA regions: New England (NE), Mideast (ME), Great Lakes (GL), Plains (PL), Southeast
(SE), Southwest (SW), Rocky Mountain (RM), Far West (FW)

NE ME GL PL SE SW RM FW

NE 0.80 – – – – – – –
ME 0.72 0.74 – – – – – –
GL 0.47 0.48 0.63 – – – – –
PL 0.23 0.25 0.35 0.50 – – – –
SE 0.35 0.40 0.48 0.36 0.45 – – –
SW 0.24 0.29 0.35 0.42 0.42 0.47 – –
RM 0.10 0.17 0.30 0.46 0.37 0.48 0.50 –
FW 0.33 0.46 0.42 0.34 0.37 0.40 0.41 0.50

stated in Holly, Pesaran and Yamagata (2010), it is possible that States that are con-
tiguous may influence each other’s housing prices. In fact, high prices in metropoli-
tan areas may persuade people to commute from neighboring States. Labour mo-
bility is quite high in the USA and lower housing prices may provide an incentive
to migrate. Another possible source of cross-sectional dependence would be due
to economy-wide common shocks that affect all cross section units. Changes in
interest rates, oil prices and technology are examples of such common shocks that
may affect housing prices, although with different degrees across States.

To explore the existence of spatial interactions, using data on the growth of
real housing prices, Table 1 shows the simple correlation coefficients between
each State, within and between correlations for the 8 BEA regions. The diago-
nal elements show the within region average correlation coefficients, while the
off-diagonal elements give the between region correlation coefficients. Apart from
the States of the Southeast, which are more correlated on average with the States
of the Great Lakes than among themselves, the within region correlation is larger
than the between region correlation. In general, on average, the correlations decline
with distance, but it is interesting to note the quite high correlations between the
East and West regions, that is, for States belonging to the Mideast and Far West
regions. In general, there is more evidence in the raw data of a possible spatial
pattern in real housing prices than in real incomes and unemployment rate.

1.2. Related literature and the proposed model. Modeling the spatio-temporal
variability of housing prices has enjoyed widespread popularity in the last years.
In order to obtain a high degree of accuracy in the results, the analysis of housing
prices across US States requires the definition of a general and flexible econo-
metric model where the temporal and cross-sectional dependencies must be ac-
commodated. Several efforts have been made to develop spatio-temporal models
but there is no single approach which can be considered uniformly as being the
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most appropriate. For example, time series models have become increasingly so-
phisticated in their treatment of dynamics and trends over time, including the ap-
plication of unit roots and cointegration techniques [Giussani and Hadjimatheou
(1991), Meen (2001), Muellbauer and Murphy (1997)]. However, traditional ap-
proaches, such as those based on standard vector autoregression analysis (VAR),
do not allow for a direct modeling of locational spillovers and are thus not consis-
tent with the “ripple effect” theory [Meen (1999)]. A spatial adaptation of VARs,
denoted as SpVAR models, explicitly considers the potential impacts of economic
events in neighboring States and has been discussed in Kuethe and Pede (2011).
The SpVAR is a specific version of the Spatio-Temporal Auto-Regressive Moving
Average—(STARMA)—model introduced by Pfeifer and Deutsch (1980) where
the linear dependencies are lagged in both space and time. Since STARMAs are
an extension of the ARMA class of models [Box, Jenkins and Reinsel (1994)],
they are particularly useful to produce temporal forecasts of the variable of inter-
est. However, the STARMA specification also suffers from some disadvantages.
First, because of the amount of computational effort required, STARMAs are in
general only suitable for modeling data which are dense in time and sparse in
space. For example, in Kuethe and Pede (2011) the analysis is only limited to 11
States (i.e., West Region). Secondly, the understanding of co-movements among
US State housing prices (and other involved variables) is difficult when the number
of the States is large. Knowledge of this covariation is required both to academics
seeking to explain the economic nature and sources of variation and to practition-
ers involved in the development of trading strategies. Thirdly, as argued by Anselin
[(1988), pages 11–14], the STARMA class does not offer a fully adequate mod-
eling of the spatial dependence and heterogeneity of observations. The lack of an
adequate treatment of a simultaneous (instantaneous) spatial dependence is also
the main point of criticism raised by Cressie [(1993), page 450] to the STARMA
methodology. In fact, in its standard specification, STARMA implicitly assumes
that, conditional on past observations, the process is uncorrelated across space.
This is undoubtedly a major shortcoming, since many observed series, as noted,
for example, by Pfeifer and Deutsch (1981), show considerable contemporaneous
correlation even after conditioning on the past history of the process. When the
contemporaneous correlation is considered by the model, the observations become
a nonlinear transformation of the innovations and, as a result, maximum likeli-
hood estimation becomes much more difficult [Elhorst (2001), Di Giacinto et al.
(2005)].

Seemingly Unrelated Regression (SUR) and error correction panel data models
[see, e.g., Meen (2001), Cameron, Muellbauer and Murphy (2006)] have also been
largely used with spatial and time effects to investigate the evolution of housing
prices. Apart from their rather complex structure, as STARMAs, these models are
not suitable when the number of regions is relatively large. In fact, the applica-
tion of an unrestricted SURE-GLS approach to large N (cross section dimension)
and T (time series dimension) panels involves nuisance parameters that increase
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at a quadratic rate as the cross section dimension of the panel is allowed to rise
[Pesaran (2006)].

Recent research has found that in a data rich environment, dimension reduc-
tion in the form of factors is useful for exploratory analysis, prediction and policy
analysis. Factor analysis assumes that the cross dependence can be characterized
by a finite number of unobserved common factors, possibly due to economy-
wide shocks that affect all States, albeit with different intensities. Thus, strong
co-movement and high correlation among the series suggest that both observable
and unobservable factors must be at place. The effects of common shocks on hous-
ing prices have been taken in consideration in van Dijk et al. (2011) and Holly,
Pesaran and Yamagata (2010) by making use of the common correlated effects
estimator [CCE, Pesaran (2006)] which controls for heterogeneity and spatial de-
pendence. In these studies, the authors develop a panel data model where fixed
mean effects, cointegration, cross-equation correlations and latent factors are con-
sidered. Furthermore, they show that by approximating the linear combinations of
the unobserved factors by cross section averages of the dependent and explanatory
variables, and by running standard panel regressions augmented with these cross
section averages, spatial dependency can be eliminated.

Differently from these authors, we approach the analysis from the perspective of
recent developments of dynamic factor models in the literature of spatio-temporal
processes. We assume that the observed process can be modeled by a tempo-
rally dynamic and spatially descriptive model, hereafter referred to as the spatial
dynamic structural equation model—SD-SEM. There are some important differ-
ences between our approach and the one discussed by Holly, Pesaran and Yama-
gata (2010) and van Dijk et al. (2011). Firstly, differently from these authors, we do
not use cross section averages to eliminate cross-sectional dependencies. Instead,
our model formulation exploits the spatio-temporal nature of the data and explic-
itly defines a nonseparable spatio-temporal covariance structure of the multivariate
process. Secondly, because of the high dimensionality of the data, dimension re-
duction is important and we suggest modeling the temporal relationship between
dependent and regressor variables in a latent space. The observed processes are
thus described by a potentially small set of common dynamic latent factors. For
all possible model candidates which may be specified, we use a multivariate au-
toregressive distributed-lag specification for these latent processes and, to account
for situations in which two or more latent factors appear to exhibit a common
trend, their cointegrating relationship is considered. Thirdly, by modeling the spa-
tial variation via spatially structured factor loadings, we entertain the possibility
of identifying clusters of States that share common time series components. This
is one of the main advantages of our model formulation. Lastly, the model nat-
urally allows for producing temporal and spatial predictions of the variables of
interest. Note that although spatial interpolation is not a main task in lattice data
applications, it may be an important issue in terms of missing data reconstruction
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(i.e., partial or total reconstruction of the housing price time series). This problem
would not be easily addressed by the other model formulations discussed above.

The SD-SEM represents a multivariate extension of the model recently pro-
posed by Ippoliti, Gamerman and Valentini (2012) for modeling environmental
coupled (correlated) spatio-temporal processes. Our spatio-temporal data are thus
multivariate, in that more than one variable is typically measured at specific spatial
sites (States) and different temporal instants. Furthermore, as in Lopes, Salazar and
Gamerman (2008) and Ippoliti, Valentini and Gamerman (2012), we assume that
the spatial dependence can be modeled through the columns of the factor loading
matrices. However, differently from these authors, who refer to applications with
spatially continuous (i.e., geostatistical) processes, we consider here applications
with lattice data such that the factor loadings can be modeled as conditionally in-
dependent multivariate Gaussian Markov Random Fields—GMRFs. While models
for multivariate geostatistical data have been extensively explored, models for lat-
tice data have received less attention in the literature. For recent methodological
developments the reader is referred to Sain and Cressie (2007), Sain, Furrer and
Cressie (2011) and the references therein.

The SD-SEM is developed within a state-space framework and full probabilistic
inference for the parameters is facilitated by Markov chain Monte Carlo (MCMC).

The remainder of the paper is organized as follows. In Section 2 we describe
the general dynamic latent model, while in Section 3 specific attention is given
to models which incorporate general forms of the spatial correlations and cross-
correlations between variables at different locations. In Section 4 we describe the
state-space formulation and in Section 5 discuss the nonstationary cases for the
temporal dynamics of the latent factors. In Section 6 we consider Bayesian infer-
ential issues and in Section 7 we describe forecasting strategies. In Section 8 we
discuss fits of the model to the data set of US real housing prices, while Section 9
concludes the paper.

2. The spatial dynamic structural equation model. Often observations are
multivariate in nature, that is, we obtain vector responses at locations across space.
For such data, we need to model both association between measurements at a lo-
cation as well as association between measurements across locations. With in-
creased collection of such multivariate spatial data, there arises the need for flex-
ible explanatory stochastic models in order to improve estimation precision [see,
e.g., Kim, Sun and Tsutakawa (2001)] and to provide simple descriptions of the
complex relationships existing among the variables. In the following, a model for-
mulation which describes the structural relations among the variables in a lower
dimensional space is presented.

Assume that Y and X are two multivariate (multidimensional) spatio-temporal
processes, that is, assume that several variables are measured at the node or inte-
rior (State), s, of a lattice L and temporal instant t ∈ {1,2, . . . , T }. Hence, for ny

variables, we write Y(s, t) = [Y1(s, t), . . . , Yny (s, t)]′, and the same holds for X,
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for nx variables. It is explicitly assumed that X is a predictor of Y , which is the
process of interest.

Also, assume that N is the number of locations in L and let ñy = nyN and
ñx = nxN . Then, at a specific time t , the (ñy ×1) and (ñx ×1) dimensional spatial
processes, Y and X, are denoted as Y(t) = [Y(s1, t)

′, . . . ,Y(sN, t)′]′ and X(t) =
[X(s1, t)

′, . . . ,X(sN, t)′]′.
Our model assumes that each multivariate spatial process, at a specific time t ,

has the following linear structure:

X(t) = mx(t) + Hxf(t) + ux(t),(1)

Y(t) = my(t) + Hyg(t) + uy(t),(2)

where my(t) and mx(t) are (ñy × 1) and (ñx × 1) mean components modeling
the smooth large-scale temporal variability, Hy and Hx are measurement (factor
loadings) matrices of dimensions (ñy ×m) and (ñx × l), respectively, and g(t) and
f(t) are m- and l-dimensional vectors of temporal common factors. Also, uy(t)

and ux(t) are Gaussian error terms for which we assume uy(t) ∼ N(0,�uy ) and
ux(t) ∼ N(0,�ux ). For simplicity, throughout the paper it is assumed that �uy and
�ux are both diagonal matrices and that m � ñy and l � ñx .

The temporal dynamic of the common factors is then modeled through the fol-
lowing state equations:

g(t) =
p∑

i=1

Cig(t − i) +
q∑

j=1

Dj f(t − j) + ξ(t),(3)

f(t) =
s∑

k=1

Rkf(t − k) + η(t),(4)

where Ci (m × m), Dj (m × l), and Rk (l × l) are coefficient matrices modeling
the temporal evolution of the latent vectors g(t) = [g1(t), . . . , gm(t)]′ and f(t) =
[f1(t), . . . , fl(t)]′, respectively. Finally, ξ(t) and η(t) are independent Gaussian
error terms for which we assume ξ(t) ∼ N(0,�ξ ) and η(t) ∼ N(0,�η).

Equation (3) represents a Vector Autoregressive model with exogenous vari-
ables (VARX) where the variables in g(t), considered as endogenous (i.e., deter-
mined within the system), are controlled for the effects of other variables, f(t),
considered as exogenous (i.e., determined outside the system and treated indepen-
dently of the other variables)3. Equations (1)–(4) thus provide the basic formula-
tion of the SD-SEM. One advantage of this model is that temporal forecasts of
the variable of interest, Y , can be obtained by modeling the dynamics of a few

3The distinction between “exogenous” and “endogenous” variables in a model is subtle and is
a subject of a long debate in the literature. See, for example, Engle, Hendry and Richard (1983),
Osiewalski and Steel (1996). Gourieroux and Monfort [(1997), Chapter 10] also provide a clear
distinction between the different exogeneity concepts.
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common factors. Also, the model is spatially descriptive in that it can be used to
identify possible clusters of locations whose temporal behavior is primarily de-
scribed by a potentially small set of common dynamic latent factors. As it will be
shown in the next section, flexible and spatially structured prior information re-
garding such clusters can be specified through the columns of the factor loading
matrix.

3. Factor loadings and multivariate GMRFs. A key property of much
spatio-temporal data is that observations at nearby sites and times will tend to
be similar to one another. This underlying smoothness characteristic of a space–
time process can be captured by estimating the state process and filtering out the
measurement noise. It is customary for dynamic latent models to refer to the unob-
served (state) processes as the common factors and to refer to the coefficients that
link the factors with the observed series as the factor loadings. It is assumed that
these factor loadings have the nature of spatial processes and, extending results in
Ippoliti, Valentini and Gamerman (2012), here the spatial dependence is modeled
through a multivariate GMRF. Relevant papers useful for our purposes are Mardia
(1988) and Sain and Cressie (2007), and we refer to them for known results on the
model formulation.

Let hxj
= [hxj

(s1)
′,hxj

(s2)
′, . . . ,hxj

(sN)′]′, that is, the j th column of Hx , be
a ñx-dimensional spatial process observed on L—and similarly for Hy . Also, let
[hxj

(si )|R−i] denote the conditional distribution of hxj
(si ) given the rest (i.e., val-

ues at all other sites). Then, the GMRF is defined by the conditional mean

E
(
hxj

(si )|R−i

) = μ
(hxj

)

i + ∑
u∈Si

F
(hxj

)

iu

(
hxj

(su) − μ
(hxj

)

u

)
(5)

and the conditional covariance matrix

Var
(
hxj

(si )|R−i

) = T
(hxj

)

i ,(6)

where Si is a finite subset of L containing neighbors of site si , μ
(hxj

)

i is a nx -

dimensional mean vector, and F
(hxj

)

iu is a (nx × nx) matrix of spatial regression
parameters.

To take into account the effect of some explanatory variables, it is possible
to parameterize the mean vector through the definition of a (N × q) design ma-
trix, D∗, such that μ

(hxj
) = D∗β(hxj

), with β
(hxj

) a (q × 1) vector of parame-
ters. Assuming ci is a vector of covariates for the ith location, we have μ

(hxj
) =

[μ(hxj
)′

1 , . . . ,μ
(hxj

)′
N ]′, with μ

(hxj
)

i = D∗
i β

(hxj
)

i , β
(hxj

) = [β(hxj
)′

1 , . . . ,β
(hxj

)′
nx ]′,

D∗
i = (Inx ⊗ c′

i ), i = 1, . . . , n, and ⊗ denoting the Kronecker product. For a dis-
cussion of different specifications of the matrix D∗, see, for example, Ippoliti,



772 P. VALENTINI, L. IPPOLITI AND L. FONTANELLA

Valentini and Gamerman (2012) and Lopes, Salazar and Gamerman (2008). How-
ever, due to the static behavior of hxj

, only spatially-varying covariates will be
considered in explaining the mean level of the GMRF.

With the definition of the conditional distributions, it follows [see Mardia
(1988)] that the joint distribution of hxj

is MVN(μ
(hxj

)
,�

(hxj
)
) with the covari-

ance matrix specified as �
(hxj

) = {block[−T
(hxj

)−1

i F
(hxj

)

iu ]}−1, where Fii = −I and
for a generic matrix G, block[Giu] denotes a block matrix with the (i, u)th block
given by Giu [see Sain and Cressie (2007)]. To guarantee that a proper probability
density function is defined, the parametrization must ensure that �

(hxj
) is positive-

definite and symmetric; hence, we require both F
(hxj

)

iu T
(hxj

)

u = T
(hxj

)

i F
(hxj

)′
ui and

block[−T
(hxj

)−1

i F
(hxj

)

iu ] positive definite.

4. The state space formulation. As shown in Section 2, the temporal dy-
namic is modeled through the state equations (3) and (4). The specification of
equation (4) is necessary to predict in time the latent process f(t) and thus to ob-
tain k-step ahead forecasts of g(t) through equation (3). It is thus useful to specify
the joint generation process for g(t) and f(t) as[

g(t)

f(t)

]
=

[
C1 D1

0 R1

][
g(t − 1)

f(t − 1)

]
+ · · ·

(7)

+
[

Cp Dp

0 Rp

][
g(t − p)

f(t − p)

]
+

[
ξ(t)

η(t)

]
,

where it is assumed without loss of generality that p ≥ max(s, q), Di = 0 for i > q

and Rj = 0 for j > s. It follows that the joint generation process of g(t) and f(t)
is a VAR(p) process of the type

d(t) = �1d(t − 1) + · · · + �pd(t − p) + ε(t),(8)

where

d(t) =
[

g(t)

f(t)

]
, �i =

[
Ci Di

0 Ri

]
, ε(t) =

[
ξ(t)

η(t)

]
.

The presence of the measurement and the state variables naturally leads to the
state-space representation [Lutkepohl (2005)] of the SD-SEM model; given the
data, this representation allows for a recursive estimate of the latent variables
through the Kalman filter algorithm. The linear Gaussian state-space model is thus
described by the following state and measurement equations:

α(t) = �α(t − 1) + 	ζ (t),(9)

z(t) = Hα(t) + u(t),(10)

where α(t) is the state vector, � is the nonsingular transition matrix, 	 is a con-
stant input matrix, z(t) is the measurement vector and H is the measurement
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matrix. The sequences ζ (t) and u(t) are assumed to be mutually independent
zero mean Gaussian random variables with covariances E{ζ (ti)ζ (tj )

′} = �δij and
E{u(ti)u(tj )

′} = �uδij , where E{·} denotes the expectation and δij the Kronecker
delta function. In (9) and (10) we have the following specification:

α(t) =

⎡
⎢⎢⎢⎢⎣

d(t)

d(t − 1)
...

d(t − p + 1)

⎤
⎥⎥⎥⎥⎦ , � =

⎡
⎢⎢⎢⎣

�1 �2 · · · �p

I 0 · · · 0
...

...
...

...

0 · · · I 0

⎤
⎥⎥⎥⎦ ,

ζ (t) =

⎡
⎢⎢⎢⎣

ε(t)

0
...

0

⎤
⎥⎥⎥⎦ , z(t) =

[
y(t)

x(t)

]
, H =

[
Hy 0 · · · 0
0 Hx · · · 0

]
,

	 =

⎡
⎢⎢⎢⎣

I
0
...

0

⎤
⎥⎥⎥⎦ , u(t) =

[
uy(t)

ux(t)

]
.

5. Nonstationary latent factors. The dynamic specification for the state vec-
tor α(t) is quite general. In fact, the family of time series processes that can be
formulated as in equations (9) and (10) is wide and includes a broad range of
nonstationary time series processes. Sometimes it may be advantageous to have a
specification that decomposes the latent factors into stationary and nonstationary
components, such as trend, periodic or cyclical components.The large scale dy-
namic components can in fact be directly specified through the common dynamic
factors. In this case, for example, common seasonal factors can receive different
weights for different columns of the factor loading matrix, so allowing different
seasonal patterns for the spatial locations. For some specific examples, and for
a wider discussion on this point, see Lopes, Salazar and Gamerman (2008) and
Ippoliti, Valentini and Gamerman (2012).

5.1. Cointegrated latent factors. Nonstationarity can also occur when two or
more latent factors appear to exhibit a common trend, and hence are cointegrated
[Johansen (1988)]. In this case we have that one or more linear combinations of
these factors are stationary even though individually they are not. If the factors
are cointegrated, they cannot move too far away from each other and we should
observe a stable long-run relationship among their levels. In contrast, a lack of
cointegration suggests that such factors have no long-run link and, in principle,
they can wander arbitrarily far away from each other.

In our model formulation we consider the case in which the exogeneous factors
are cointegrated among themselves as well as with the endogenous latent variables.
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In this case the vector autoregressive process of equation (8) can be written in the
error correction model (ECM) form as

�d(t) = Ãd(t − 1) +
p−1∑
i=1

�̃i�d(t − i) + ε(t),(11)

where Ã = −I + ∑p
i=1 �i , �̃i = −∑p

j=i+1 �j and � is the difference operator,
that is, �d(t) = d(t) − d(t − 1). Full details of the vector error correction specifi-
cation of equation (11) are provided in Appendix A where we also show that the
matrix of long-run multipliers, Ã, is an upper block triangular matrix. These single
blocks, expressed as a product of parameter matrices, provide information about:
(i) the cointegration structure within the exogenous and endogenous processes f(t)
and g(t), and (ii) the cointegration between the two processes.

6. Inference and computations.

6.1. Prior information. Full probabilistic inference for the model parameters
is carried out based on the following independent prior distributions. Throughout
we shall use vec(·) to denote the vec operator and G(a,b) to denote the Gamma
distribution with mean a/b and variance a/b2. Unless explicitly needed, full spec-
ifications of the priors are only given for X so that definitions for Y follow accord-
ingly.

MEASUREMENT EQUATION. The precision matrix �−1
ux

is assumed to be diag-
onal where each element has a Gamma prior distribution, G(0.01,0.01).

The prior distribution for β(hxi
) (i = 1, . . . , l) is N(0, σ 2

β I). Then, assuming a
constant conditional covariance matrix, the prior on the inverse covariance matrix

T(hxi
)−1

is given by the Wishart distribution [Mardia, Kent and Bibby (1979)], that

is, T(hxi
)−1 ∼ W(�x, (�xSx)

−1), where �x > l and Sx is a pre-specified symmetric
positive definite matrix. To provide the prior specification for the joint distribution

of the spatial regression parameters, we set F
(hxi

)

iu = F(hxi
) and, following Sain

and Cressie (2007), we use the reparametrization F̃(hxi
) = T(hxi

)−1/2
F(hxi

)T(hxi
)1/2

and specify its prior to be proportional to exp{−υ ′υ/ς2}, where υ = vec(F̃(hxi
)′).

The prior parameter ς is specified by choosing small values, since the prior for
F̃(hxi

) is concentrated around zero. Then, in both mean and variance of the GMRF
processes we adopt priors centered around prefixed values, as defined in Section 3.

STATE EQUATION. When stationarity conditions are met for the latent processes
the prior distributions for the state equation coefficients can be specified as pro-
posed in Lopes, Salazar and Gamerman (2008). For the cointegration case, since
the formulation given in equation (11) is quite general, and many plausible re-
stricted models can be envisaged, Stochastic Search Variable Selection (SSVS)
priors [see Jochmann et al. (2013)] are used for the parameters of the state equa-
tions. Note that these plausible models may differ in the choice of the restrictions
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on the cointegration space, the number of exogenous and endogenous latent vari-
ables, and the lag length allowed for the autoregression.

The error covariance matrices are assumed to be decomposed as �−1
ξ = Vξ V′

ξ

and �−1
η = VηV′

η, where Vξ and Vη are upper-triangular matrices. Then, the SSVS
priors involve using a standard Gamma prior for the square of each of the diagonal
elements of V(·) and the SSVS mixture of normals prior for each element above
the diagonal [George, Sun and Ni (2008)]. Note that if the error covariance ma-
trices are chosen to be diagonal, then the computation of the posterior simplifies
considerably.

Since Ã is potentially of reduced rank and crucial issues of identification may
arise in the ECM form, linear identifying restrictions are usually imposed. How-
ever, because of local identifiability problems and the restriction on the estimable
region of the cointegrating space [Koop et al. (2006)], the so-called linear normal-
ization approach also suffers from several drawbacks. To overcome these prob-
lems, we thus adopt the SSVS approach proposed by Jochmann et al. (2013) which,
defining priors on the cointegration space, is facilitated by the computation of
Gaussian posterior conditional distributions [Koop, Leon-Gonzalez and Strachan
(2010)]. A brief summary of the SSVS priors used in this paper is provided in
Appendix B. For a more complete description, the reader is referred to Jochmann
et al. (2013) and Koop, León-González and Strachan (2010).

Finally, the prior for the latent process α(t) is provided by the transition equa-
tion and is completed by α(0) ∼ N(a0,�α0), for known hyperparameters a0 and
�α0 [Durbin and Koopman (2001), Rosenberg (1973)].

6.2. The likelihood function. To specify the likelihood function, without loss
of generality, it will be assumed that my(t) = 0 and mx(t) = 0. Conditional on
α(t), for t = 1, . . . , T , the SD-SEM model can be rewritten as Z = αH′ + U,
where Z = [z(1), . . . , z(T )]′ and α = [α(1), . . . ,α(T )]′. The error matrix, U, is
of dimension (T × n), where n = ñx + ñy , and follows a matrix-variate normal
distribution, that is, U ∼ N(0, IT ,�u)—see Dawid (1981) and Brown, Vannucci
and Fearn (1998). Then the deviance, minus twice the log-likelihood is

D(z|,�u,H,α,m, l)

= T n log(2π) + T log |�u| + trace
{
�−1

u

(
Z − αH′)′(Z − αH′)},

where  is the full set of model parameters.

6.3. Posterior inference. Posterior inference for the proposed class of spatial
dynamic factor models is facilitated by MCMC algorithms. Standard MCMC for
dynamic linear models are adapted to our model specification such that, condi-
tional on l and m, posterior and predictive analysis are readily available. In the
following, we provide some information on the relevant conditional distributions.



776 P. VALENTINI, L. IPPOLITI AND L. FONTANELLA

By denoting with “u” the suffix for the unobserved data, posterior inference is
based on summarizing the joint posterior distribution p(Zu,,α(0),α|Z).

The common factors are jointly sampled by means of the well-known for-
ward filtering backward sampling (FFBS) algorithm [Carter and Kohn (1994),
Frühwirth-Schnatter (1994)]. All other full conditional distributions are “stan-
dard” multivariate Gaussian or Gamma distributions. An exception is for the spa-

tial parameter matrices, F̃(hyi
) and F̃(hxi

), and the covariance matrices, T(hyi
)−1

and T(hxi
)−1

, which are sampled using a Metropolis–Hastings step. Specific de-
tails for the implementation of the full conditional distributions can be found in
Lopes, Salazar and Gamerman (2008), Sain and Cressie (2007) and Jochmann
et al. (2013).

6.4. Model identification. Some restrictions on Hy and Hx are needed to de-
fine a unique model free from identification problems. Several possibilities can be
considered and the solution adopted here is to constrain the measurement matrices
so that they are lower triangular, assumed to be of full rank. We note here that we
have proper but quantitatively vague priors which can lead to posteriors that are
computationally indistinguishable from improper ones with the consequence of an
MCMC convergence failure. Hence, to avoid relying so strongly on the prior spec-
ification, we prefer to focus on models which are identified in a frequentist sense.
The approach is fully discussed in Ippoliti, Valentini and Gamerman (2012) and
Strickland et al. (2011).

A critical comment to be borne in mind is that the chosen order of the univariate
time series in the measurement vector influences interpretation of the factors and
may impact on model fitting and assessment, the interpretation of factors if such
is desired, and the choice of the number of factors. In such cases, the ordering
becomes a modeling decision to be made on substantive grounds, rather than an
empirical matter to be addressed on the basis of model fit. However, from the
viewpoint of forecasting the ordering is irrelevant. For a detailed discussion on
these points see, for example, Lopes and West (2004).

6.5. Model selection. With this class of model, an important issue is the se-
lection of m and l. Several Bayesian selection methods have been developed and
for a discussion, see, for example, Section 4.1 in Lopes, Salazar and Gamerman
(2008). Here, we consider a simple approach which only considers the variable of
interest, Y , and that consists in the minimization of the following predictive model
choice statistic [PMCC, Gelfand and Ghosh (1998)]:

PMCC = ζ

ζ + 1
G + P,

where, for our proposed model, G = ∑
i,t (Y(si , t) − E[Y(si , t)rep])2 and P =∑

i,t Var[Y(si , t)rep].
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This statistic is based on replicates, Y(s, t)rep, of the observed data and the
summation is taken over i = 1, . . . ,N , and t = 1, . . . , T . Essentially, the PMCC
quantifies the fit of the model by comparing features of the posterior predictive
distribution, p(Y(s, t)rep|Y(s, t)), to equivalent features of the observed data. The
quantity G is a measure of goodness of fit while P is a penalty term. As the mod-
els become increasingly complex the goodness-of-fit term will decrease but the
penalty term will begin to increase. Overfitting of model results in large predic-
tive variances and large values of the penalty function. The choice of ζ determines
how much weight is placed on the goodness-of-fit term relative to the penalty term.
As ζ goes to infinity, equal weight is placed on these two terms. Banerjee, Carlin
and Gelfand (2004) mention that ordering of models is typically insensitive to the
choice of ζ , therefore, we fix ζ = ∞. Notice that at each iteration of the MCMC
we can obtain replicates of the observations given the sampled values of the pa-
rameters.

7. Uses of the model. In this section we provide specific details on how to
obtain temporal forecasts of the variable of interest Y .

7.1. Unconditional forecasting. Temporal forecasts of the variable Y are di-
rectly obtained through the state space formulation of the model. In fact, it is easy
to show that since α(t)|α(t − 1) ∼ N(�α(t − 1),�α), the k-step ahead forecast
for the dynamic factors is given by p(α(t + k)|) ∼ N(�(k)α(t),�(k)), where
�(k) = ∑k

j=1 �(k−j)�α�(k−j)′ . Therefore, the k-step ahead predictive density,
p(z(t + k)|Z), of the joint process Z = [YX] is given by

p
(
z(t + k)|Z) =

∫
p

(
z(t + k)|α(t + k),H,

)
p

(
α(t + k)|α(t),H,

)
× p

(
α(t),H,|Z)

dα(t + k) dα(T ) dHd.

Draws from p(z(t + k)|Z) can be obtained in three steps. Firstly,  is sampled
from its joint posterior distribution via MCMC. Secondly, conditionally on , the
common factors α(t + k) are independent of Z and can be sampled from p(α(t +
k)|). Thirdly, z(t + k) is sampled from p(z(t + k)|α(t + k),H,).

7.2. Conditional forecasting. The forecasting procedure described above is
obtained under the hypothesis that the predictor X is unknown for the period of
interest. However, quite flexible forecasts can also be obtained conditional on the
potential future paths of specified variables in the model. In fact, it may happen
that some of the future values of certain variables are known, because data on these
variables are released earlier than data on the other variables. By incorporating the
knowledge of the future path of the X variable, in principle, it should be possible
to obtain more reliable forecasts of Y .
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Another use of conditional forecasting is the generation of forecasts condi-
tional on different “policy/exploratory” scenarios. These scenario-based condi-
tional forecasts allow one to answer the question: if something happens to X in
the future, how will it affect forecasts of Y in the future? Hence, a plurality of
plausible alternative futures for X can be considered and temporal forecasts of
g(t) can be produced conditional on a specific path of f(t). Under these assump-
tions, in the following, we propose a simple procedure to obtain g(T + k) given
f(T + 1), . . . , f(T + k), and all present and past information, thus avoiding the use
of equation (4) to obtain k-step ahead forecasts of f(t).

Suppose that for the period T + 1, T + 2, . . . , T + k, X is known (or fixed a
priori) and that Xk = [x(T + 1),x(T + 2),x(T + k)]. Then, k-step ahead forecasts
of g(t) may be obtained conditional on fk = [f(T + 1), f(T + 2), . . . , f(T + k)],
where fk = H†

xXk and H†
x is the Moore–Penrose pseudo-inverse of Hx .

Finally, note that although spatial interpolation is not a main task in lattice data
applications, the reconstruction of missing data (i.e., partial or total reconstruction
of the multivariate time series of one—or more—State) is an important issue in
general. This can be simply done by exploiting the conditional expectation of the
GMRF and following Section 6.2 in Ippoliti, Valentini and Gamerman (2012).

8. Spatio-temporal analysis of US housing prices. Public policy interven-
tions in housing markets are widespread and a key question is the extent to which
these policies achieve their desired objectives and whether there are any unin-
tended consequences. Especially for its relationship with mortgage behavior, in
recent years, real housing prices have been of great concern for many financial
institutions. Understanding the impact of specific factors on real housing prices is
thus of great interest for governments, real estate developers and investors. In this
paper, we examine if the total personal income (TPI) and the unemployment rate
(UR) have some impact on the housing price index (HPI). The data, introduced in
Section 1.1, consist of quarterly time series on 48 States (excluding Alaska and
Hawaii) from 1984 (first quarter) to 2011 (fourth quarter). However, in this study,
the last 10 quarters have been excluded from the estimation procedure and used
only for forecast purposes.

In order to consider per capita personal income (PCI), the annual population
series (U.S. Census Bureau) is converted into a quarterly series through geometric
interpolation. Moreover, we consider real per capita personal income (RPCI) and
housing price index (RHPI) dividing PCI and HPI by a State level general price in-
dex. However, since there is no US State level consumer price index (CPI), follow-
ing Holly, Pesaran and Yamagata (2010), we have constructed a State level general
price index based on the CPIs of the cities or areas. All the variables are analyzed
on a logarithmic scale. Henceforth, the variables are denoted as Y = log(RHPI),
X1 = log(RPCI) and X2 = log(UR).

MODEL SPECIFICATION: Measurement equations. To provide a full specifica-
tion of the inverse covariance matrix of each factor loading, we make use of a
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contiguity or adjacency matrix W. We assume here that W has zero diagonal el-
ements and nonnegative off-diagonal elements which reflect the dependency be-
tween States si and sj —that is, the neighborhood set Si . Hence, to postulate plau-
sible relationships between two States, as in Holly, Pesaran and Yamagata (2010),
we assume that W is a binary proximity matrix which assigns uniform weights to
all neighbors of State si , that is,

{W}i,j =
{

1, if States si and sj share a common border,
0, otherwise.

Then, since the general model described in Section 3 is overparameterized, it
is necessary to impose some parameter restrictions. For example, because Y is
univariate (i.e., ny = 1), each column of Hy (i.e., hyj

) is treated as a univariate
GMRF with conditional mean

E
[
hyj

(si )|R−i

] = μ
(hyj

)

i + θhyj

∑
u∈Si

(
hyj

(su) − μ
(hyj

)

u

)

and conditional variance

VAR
[
hyj

(si )|R−i

] = ψ
(hyj

)2
.

On the other hand, since X is a bivariate process—that is, nx = 2 and X(s, t) =
[X1(s, t),X2(s, t)]′—we assume that for i, u = 1, . . . , n, T

(hxj
)

i = T(hxj
) is a (2 ×

2) conditional covariance matrix and

F(hxj
) = F

(hxj
)

iu = −
[

θ
(j)
x1 θ

(j)
x1,x2

θ
(j)
x2,x1 θ

(j)
x2

]
.

Hence, the covariance matrix can be written as

�
(hxj

) = (
IN ⊗ T(hxj

)1/2)[
Iñx

+ WU ⊗ F̃(hxj
) + WL ⊗ F̃(hxj

)′]−1(
IN ⊗ T(hxj

)1/2)
,

where WU and WL denote the upper- and lower-triangular parts of W, respec-
tively. Conditions for which �

(hxj
) is positive definite depend on the parameter

space of the spatial interaction parameters in F(hxj
). However, restricting �

(hxj
)−1

to be strictly diagonally dominant or adding a penalty if some of the eigenvalues
are negative will ensure positive definitiveness [for a discussion on this point see
Sain and Cressie (2007)].

Since interpreting the spatial parameters in F(hxj
) requires some care, more in-

formation on the impact of the choice of F(hxj
) can be obtained by examining the

conditional covariance of two neighboring locations (given the rest)

�
hxj

iu|−iu =
⎡
⎣ T

(hxj
)−1

i T(hxj
)−1

F(hxj
)

(
T(hxj

)−1
F(hxj

))′ T(hxj
)−1

⎤
⎦

−1
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or, analogously, the conditional correlation matrix

�ij |−ij = �−1/2�
hxj

iu|−iu�
−1/2,(12)

where � = diag(�
hxj

iu|−iu).

The parameters for the priors on β(hxi
), T

(hxi
)−1

i and F̃
(hxi

)

iu are set as follows:
σ 2

β = 100, �x = 20, Sx = I and ς = 0.05. The design matrix D∗ is specified
to represent a constant mean in space and we also consider my(t) = my and
mx(t) = mx .

MODEL SPECIFICATION: State equation. Motivated by the debate on the pos-
sible existence of cointegration between RHPI, RPCI and UR, we consider the
cointegrated model specification as shown in Section 5.1. The temporal lag of
the state equations has been fixed to 2 (i.e., p∗ = 2), and an increasing number
of common factors, that is, 2 ≤ m, l ≤ 12, have been considered for the model
specification. Then the maximum possible number of cointegrating relationships
is defined as r∗

d = m − 1 and r∗
f = l − 1. Other modeling details, including prior

hyperparameter values, are defined in Section 6 and Appendix B.
Together with the model specification described above, hereafter denoted as

M0, other simpler models representing a simplification of M0 were also consid-
ered for comparison purposes. Specifically, to have an idea of the relative impor-
tance of the different specifications used in M0 (e.g., correlated factor loadings and
cointegrated factors), three models with the following assumptions were consid-
ered: (i) uncorrelated factor loadings and a simple VAR specification (i.e., without
cointegration) for the state equation (M1), (ii) uncorrelated factor loadings and
cointegrated factors (M2), (iii) correlated factor loadings and a simple VAR spec-
ification (i.e., without cointegration) for the factors (M3). Finally, a fourth model
(M4) which is relatively simple to estimate [see, e.g., Lutkepohl (2005)] but with
a completely different structure is also considered:

Y(si , t) = c(si , t)
′β(si ) + uy(si , t),

where c(si , t) is the vector containing the covariates X1 and X2 (including the in-
tercept), β(si) is the corresponding vector of (site-specific) regression coefficients
and uy(si , t) is a VAR(2) process where the noise part of the model is assumed to
be distributed as a univariate GMRF (i.e., the noise is uncorrelated in time but it is
allowed to be spatially correlated). The introduction of a spatial (GMRF) prior on
the regression coefficients is also considered in the parametrization.

MODEL ESTIMATION. The identifiability constraints associated with the model
to be estimated concern the ordering of the States and the connection between the
chosen ordering and the specific form of the factor loading matrices Hy and Hx .
Unfortunately, no fixed rules exist to select the States which must be constrained.
In the following, we thus discuss a possible strategy which exploits results from
a cluster analysis performed (before estimating the model) on the data matrices Y
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and X, respectively, of dimensions (ñy × T ) and (ñx × T ). In this case, consid-
ering RHPI, the K-Means classification algorithm is repetitively run for a number
of clusters equal to m, with 2 ≤ m ≤ 12. The States (one for each cluster) to be
constrained are thus chosen as the ones that: (possibly) belong to different BEA
regions, show the highest mean values of RHPI and/or are far apart from each other
(especially when m is larger than the number of BEA regions). For a given l, such
that 2 ≤ l ≤ 12, the same procedure is also applied to X and, whenever possible,
the same States selected for the housing prices are chosen. Note that especially in
cases in which l > m, the choice of the States within the clusters obtained for X
can be made independently of RHPI and based on several criteria such as the mem-
bership to different BEA regions and/or highest (smallest) mean values of RPCI
(UR). When m > l, the same criteria can be adopted to choose the States among
the ones already constrained in Hy .

For each fitted model, the MCMC algorithm was run for 250,000 iterations.
Posterior inference was based on the last 150,000 draws using every 10th member
of the chain to avoid autocorrelation within the sampled values. Several MCMC
diagnostics could be used to test the convergence of the chains [see, e.g., Geweke
(1992), Gilks, Richardson and Spiegelhalter (1996), Spiegelhalter et al. (2002)
and Jones et al. (2006)]. In our case, convergence of the chains of the model was
monitored visually through trace plots as well as using the R-statistic of Gelman
(1996) on four chains starting from very different values.

Competing models were compared using the predictive model choice statistic,
PMCC, described in Section 6.5. The PMCC criterion suggests that, for M0, the
optimal choice is found with m = 7 and l = 8. The same number of components is
also confirmed for models M1–M3. However, compared with M3, the best of the
three alternative models, the PMCC increases 17%, which denotes much worse
model fitting properties.

Notice that for M0, the following States have been constrained in the factor
loading matrix Hy : North Carolina, Montana, California, Massachusetts, Texas,
Illinois and Arizona. Instead, considering Hx , we have constrained 5 States for
UR: North Carolina, California, Massachusetts, Texas and Illinois, and 3 States
for RPCI: Arizona, Montana and Massachusetts.

FACTOR LOADINGS AND COMMON LATENT FACTORS. The MCMC estimates
of the endogenous components, gi(t), i = 1, . . . ,7, appear as nonstationary pro-
cesses, each representing specific features of the large-scale temporal variability
of the RHPI series. The first two latent components represent common trends and
are characterized by narrow 95% credibility intervals. Specifically, the pattern of
the first component, shown in Figure 2(a), highlights a growth of RHPI since the
early nineties up to 2006 followed by a sustained decrease. At the national level,
prices increased substantially from 2000 to the peak in 2006 and then have been
falling very sharply across the country. An exploratory analysis shows that this
component tracks the pattern of the national RHPI, although the latter seems to
be a bit more volatile, especially in the period 1984–1994. We also notice that
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FIG. 2. Subplots (a) and (b): marginal posterior medians for the estimated latent factors g1(t) and
g2(t) (continuous line) and their 95% credible intervals (dashed line). Subplots (c) and (d): maps of
the posterior medians for the factor loadings hy1 and hy2 related to the real housing price index.

this component is highly correlated (i.e., the correlation is in general greater than
0.80) with all the State time series with the exception of Connecticut, Texas and
Oklahoma, for which the correlation is around 0.50.

The series of the second component, g2(t), shown in Figure 2(b), is character-
ized by a price trough in the mid-1980s and mid-1990s followed by a mild price
peak. Then, the late 1990s begin with a dramatic and sustained increase. Examina-
tion of the data plotted in Figure 1 shows that this is a typical pattern of the 50%
of the States of Plains, Southeast and Rocky Mountain.

The remaining latent variables (not shown here) present some peculiarities for
the periods 1984–1990 and 2004–2007 and, compared with the first two factors,
are characterized by slightly wider credibility intervals.

Figure 2(c)–(d) show the maps of the estimated first two factor loadings—that
is, the first two columns of the measurement matrix Hy . The maps clearly show
the presence of clusters of US States. Table 2 also shows the posterior summaries
of the between-location conditional correlations estimated [using equation (12)]
for each column of Hy . Since the 95% credibility intervals do not overlap zero and
all the conditional correlations seem to be statistically significant, the clusters are
easily identified by looking at the spatial patterns of the factor loadings.
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TABLE 2
Posterior summary of the between-location conditional correlations for the columns of the

measurement matrix Hy . In brackets we show the 2.5 and 97.5 percentiles used for defining the
95% credible interval limits

Factor loadings (Hy)

1 2 3 4 5 6 7

Median 0.09 0.08 0.08 0.07 0.06 0.08 0.08
95% CI [0.05, 0.12] [0.04, 0.12] [0.02, 0.12] [0.03, 0.10] [0.03, 0.12] [0.02, 0.12] [0.02, 0.12]

Figure 2(c) shows [using the natural break method of ArcMap, ESRI (2009)]
the weights of the first factor loading, hy1 . Except for Texas, Oklahoma and North
Dakota, these weights are all positive, with the highest loadings observed in the
Pacific and Northeast regions, which strongly influence the contiguous regions.

Figure 2(d) also shows an interesting pattern in the loadings. Southwest,
Rocky Mountain States, some Plains States and Louisiana have positive loadings,
while the other States have negative loadings. The States with highest loadings
(Louisiana, New Mexico, Texas, Oklahoma, North Dakota and Wyoming) show
a temporal pattern very similar to the second latent variables. On the other hand,
the States with lowest values (California, Connecticut, Michigan, New Jersey and
Rhode Island) show temporal dynamics which, at least until the end of the nineties,
result in the opposite of g2(t). Many of these States in the last 25 years have been
particular beneficiaries of new technologies. These innovations interacting with re-
strictions on new residential buildings have resulted in real housing prices in these
regions deviating from the average across US States over a relatively prolonged
period [Holly, Pesaran and Yamagata (2010)]. Also, considering the period 1984–
1990, the spatial contrast highlighted in the map of Figure 2(d) clearly confirms
that while West–South–Central regions (especially “oil-patch” states such as Texas
and Oklahoma) experienced sharp declines, the Northeast and California housing
market were booming. Note that this map provides clear evidence of the results de-
scribed in Table 1 where we have found significant correlations between the States
belonging to the East and West regions.

The MCMC estimates of the exogenous components, fi(t), i = 1, . . . ,8, sum-
marize the dynamics of RPCI and UR variables. The first three of these latent
factors, together with their 95% credibility intervals, are shown in Figure 3. These
components seem to have a substantial impact on RPCI and UR, although the latter
shows more complex dynamics which can be fully understood by examining the
behavior of all the estimated factors.

The first factor, f1(t), shows a cyclical behaviour with a slightly positive trend
in the period 1986–2000. The series exhibits a trough in the period 2000–2006
followed by a sustained decrease. The 2000–2006 pattern has roots in the prior
turmoil in the financial markets. In fact, the period 2000–2001 is characterized
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FIG. 3. Subplots (a), (d) and (g): marginal posterior medians for the estimated latent factors f1(t),
f2(t) and f3(t) (continuous line) and their 95% credible intervals (dashed line). Subplots (b), (e)
and (h): maps of the posterior medians for the factor loadings hx1 , hx2 and hx3 related to the real
per capita personal income variable. Subplots (c), (f) and (i): maps of the posterior medians for the
factor loadings hx1 , hx2 and hx3 related to the unemployment rate variable.

by a rapid decline of high tech industries, a collapse of the stock market and a
slow level of technology investment. The relaxed monetary policy adopted by the
Federal Reserve had thus lead to an increase of RPCI and a decrease of UR up
to 2007.

The factor loadings related to f1(t), shown in Figure 3(b) and Figure 3(c), are all
positive for RPCI and negative for UR. Figure 3(b) clearly shows groups of States
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with common spatial patterns. Specifically, we notice the presence of two clusters:
the first involves several States from the Great Lakes, Southeast and New Eng-
land, while the second is mainly characterized by Oregon and some States of the
Mountain region (Arizona, Utah, Nevada and Wyoming). Also, the highest values
are related to those States (Colorado, Connecticut, Georgia, Massachusetts, New
Jersey, North Carolina and Texas) whose RPCI shows the same cyclical pattern of
f1(t) in the period 1995–2009.

Figure 3(c), related to UR, shows quite a big cluster of States forming a ridge
from Montana to Mississippi. For these States the variations of UR are less pro-
nounced with respect to those showing the smallest loadings (e.g., Alabama, Col-
orado, Indiana and Virginia).

The dynamics of RPCI and UR in the first period of the series is captured by
the third latent factor f3(t) shown in Figure 3(g). The figure shows that the early
nineties are characterized by a trough of UR and a hill for the RPCI.

Figure 3(h) shows a huge cluster with values of the loadings in the range
1.10–1.64; the highest values are observed in the Southeast region for which the
oscillations of RPCI are a bit more pronounced than other States.

Figure 3(i) shows that the States for which the trough of UR is more pronounced
are characterized by lowest values of the loadings. Notice that this figure also
shows a reasonable correspondence with Figure 2(d).

The second factor, f2(t), shows a decreasing trend associated with negative
values of hx2 —RPCI—and (mainly) positive values of hx2 —UR. The maps of the
factor loading clearly provide information on those States which have experienced
a positive trend for RPCI (e.g., Alabama, Arkansas, Mississippi, Nebraska, South
Dakota, Tennessee and Wyoming) as well as a downward trend for UR (see, e.g.,
Alabama, Iowa, Louisiana, Pennsylvania and West Virginia).

The spatial structure of the factor loadings is also confirmed by the the poste-
rior summaries of their within- and between-location conditional correlations and
cross-correlations (see Table 3). The 95% credibility intervals suggest that most
parts of these correlations can be considered as nonzero. Also, the conditional spa-
tial dependence of each factor loading is positive, while both the between- and the
within-location conditional cross-correlations are negative.

MODEL ESTIMATION: COINTEGRATION. As noted in the introduction, there
has been quite a long debate in the literature about whether there is cointegration
between real housing prices and fundamentals. The idea is that in the absence of
cointegration there are no fundamentals driving real housing prices and the ab-
sence of an equilibrium relationship would essentially increase the presence of
bubbles [Case and Shiller (2003), Holly, Pesaran and Yamagata (2010)]. Here,
we test the existence of this cointegrating relationship in a latent space, avoiding
to take account of the effect of the cross-sectional dependence [see Holly, Pe-
saran and Yamagata (2010) for a discussion on this point]. In terms of cointegrated
ranks, following Jochmann et al. (2013), our posteriors for rf , rd , rc, rc1 and rc2

are obtained by considering the draws of their respective matrices (i.e., �f , �gd ,
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TABLE 3
Posterior summary of the within- and between-location conditional correlations and

cross-correlations for the first three factor loadings columns related to the unemployment rate and
real per capita personal income variables. In brackets we show the 2.5 and 97.5 percentiles used

for defining the 95% credible interval limits

Conditional correlation

Within-location Between-location Between-location Between-location Between-location
RPCI vs UR RPCI RPCI vs UR UR vs RPCI UR

hx1 −0.22 0.06 −0.04 −0.03 0.05
[−0.44, −0.09] [0.01, 0.09] [−0.07, −0.02] [−0.07, −0.01] [0.03, 0.08]

hx2 0.02 0.05 −0.00 −0.01 0.07
[−0.29, 0.12] [0.01, 0.10] [−0.06, 0.05] [−0.06, 0.06] [0.02, 0.09]

hx3 −0.27 0.08 −0.02 −0.04 0.07
[−0.38, −0.02] [0.02, 0.12] [−0.07, 0.03] [−0.07, −0.01] [0.03, 0.10]

AB′
2 +A2B′

f , AB′
2 and A2B′

f ; see Appendix A) and taking the number of singular
values greater than 0.05.

These are shown in Table 4 where we note that there is a strong support for an
exogenous cointegrated rank of either 4 or 5; for rd there is a hint of a rank equal
to 5, but small probabilities are also observed for 4 and 6. Finally, since there
is evidence that rc < rc1 + rc2 , we may conclude that a cointegration structure is
confirmed between the endogenous and exogenous processes. Such a result thus
supports the idea about the existence of a convergence to a stable equilibrium rela-
tionship and, hence, about the absence of a US housing price bubble for the period
considered in the study.

To provide further evidence that our approach is yielding sensible results, the
use of Bayes factors using a non-SSVS prior [Sugita (2009), Kass and Raftery
(1995)] confirms that, conditionally on m = 7 and l = 8, results for rf and rd are
similar to those presented here.

TABLE 4
Posterior of cointegration ranks rf , rd , rc , rc1 and rc2

Estimated probabilities for effective ranks

1 2 3 4 5 6

rf 0.00 0.00 0.01 0.34 0.61 0.04
rd 0.00 0.00 0.00 0.18 0.70 0.12
rc 0.00 0.00 0.00 0.02 0.48 0.50
rc1 0.00 0.00 0.10 0.63 0.27 0.00
rc2 0.00 0.00 0.03 0.45 0.50 0.02
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UNCONDITIONAL AND CONDITIONAL FORECASTS. To test the predictive per-
formance of the SD-SEM model, the last 10 quarters have been excluded from
the estimation procedure and used only for forecast purposes. Hence, we con-
sider the forecast for a horizon of k = 10 periods corresponding to the quarters
Q3-2009–Q4-2011. Also, predictions of RHPI are obtained by following two set-
tings:

(i) unconditional predictions: we only use past information; hence, X is not
available for the forecast period;

(ii) conditional predictions: the exogenous variables X1 and X2 are assumed
known in the period in which temporal forecasts of RHPI are required.

For each State, both unconditional and conditional forecasts (together with 95%
credible intervals) of the housing price index are shown in Figure 4. In general,
compared with true values, good prediction results can be achieved and, as ex-
pected, the conditional (on the known values of X) approach exhibits more en-
couraging out-of-sample properties of the model, with data points being more ac-
curately predicted.

To provide some measures of goodness of prediction for the estimated mod-
els, Table 5 gives details on the root mean squared prediction error, RMSE =√

mean{(Ỹ (s, t) − E[Ỹ (s, t)rep])2}, the mean absolute error deviation, MAE =
mean{|Ỹ (s, t) − E[Ỹ (s, t)rep]|} [where Ỹ is the variable at the original scale and
the mean is taken over the (N × k) observations], the coverage probabilities (CP)
and the average width (AIW) of the prediction intervals. We note that in the con-
ditional case model M0 shows much smaller values for RMSE, MAE and AIW;
on the other hand, the coverage probabilities of the 95% intervals are larger than
the nominal rate. Models M1, M2 and M3 provide very similar results and provide
some hints on the role played by the spatially autocorrelated factor loadings and
cointegrated factors. In general, model M0 works better than M1, M2 and M3 for
which the average width of the prediction intervals are wider. We note that in in-
troducing the spatial correlation the AIW reduces substantially. The same effect,
albeit with different intensity, can be observed assuming cointegrated factors and
this can be detected by contrasting models M0–M3 and M1–M2.

By making the series stationary through a first difference transformation, the
best result of model M4 is characterized by an RMSE of 13.575 and a MAE of
11.372. This result is obtained by using a GMRF prior on the regression coeffi-
cients. We also note that for this model the regressors, X1 and X2, are assumed as
known for the forecast period. Producing unconditional predictions under model
M4, in fact, is not straightforward since it requires further adjustments for predict-
ing the process X.

MULTIPLIER ANALYSIS. We conclude the analysis by providing some results
from multiplier analysis [Lutkepohl (2005)] which is helpful to describe how the
housing price index reacts over time to exogenous impulses. In this case, we can
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FIG. 4. Unconditional forecasts (dashed line), conditional forecasts (continuous line) and true
data (•) at the 48 United States; the 95% credible interval limits for the unconditional forecasts
are represented by dotted lines. The 95% credible interval limits for the conditional forecasts are
represented by the shaded area. Each subplot also shows the initials of the State.

check if past values on either RPCI or UR, observed on a specific State, contain
useful information to predict the variation of RHPI, in addition to the information
on its past values. It can be shown (see Appendix C) that the dynamic multipliers,
�k , which reflect the marginal impacts of changes in the predictors X1 and X2, are
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TABLE 5
Root mean squared prediction errors (RMSE), mean absolute deviations (MAE), coverage

probabilities (CP) and average width (AIW) of the prediction intervals, for unconditional and
conditional forecasts of RHPI. The statistics are computed for the estimated models M0, M1, M2,

M3 and M4

Model Type of prediction RMSE MAE CP 95% interval AIW 95% interval

M0 Unconditional 16.081 11.704 0.958 59.762
Conditional 7.223 5.558 0.989 54.723

M1 Unconditional 17.294 12.950 1.000 140.052
Conditional 9.497 6.614 1.000 138.140

M2 Unconditional 17.496 12.942 0.989 112.814
Conditional 9.904 7.414 0.998 112.086

M3 Unconditional 17.150 12.759 0.969 77.042
Conditional 9.331 6.695 0.985 76.445

M4 Unconditional – – – –
Conditional 13.575 11.372 0.920 53.180

defined as

�k = HyJQkBH†
x, k = 0,1, . . . ,

where, at the kth period (quarter), the γij,k element of the (N × ñx) matrix �k

represents the response of the housing price in the ith State to a given shock in the
predictor Xl, l = 1,2, in State j , provided the effect is not contaminated by other
shocks to the system. The matrices J, Q and B, which contribute to determine the
multipliers, are defined in Appendix C.

The impulse responses of RHPI to a 1% shock in the exogenous variables, RPCI
and UR, in each State, show some interesting features. However, since many pos-
sible interactions among States and variables can be envisaged, in the following
we provide a summary of the results as well as a visual impression of some of the
dynamic interrelationships existing in the system. Note that following Sims and
Zha (1999) and Primiceri (2005), the credibility intervals of the impulse response
coefficients are discussed at the 16th and 84th percentiles which, under normality,
correspond to the bounds of a one-standard-deviation.

One interesting feature is that a shock in RPCI in the States belonging to New
England (with the exception of Connecticut and New Jersey) does not seem to
produce evident effects on RHPI. The same holds for a RPCI shock in Mideast
States whose effects seem to disappear after one quarter. It thus seems that past
values of RPCI, in these regions, do not help in forecasting RHPI throughout the
US. At the same time, apart from New Hampshire and Maryland, the prices in New
England and the Mideast do not seem to react to a RPCI shock in any other region.
The housing prices in Michigan, Ohio and Illinois, belonging to the Great Lakes,
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also seem to behave similarly. Note that this similarity in behavior was also found
by Apergis and Payne (2012) in a study on housing price convergence.

On the other hand, there is stronger evidence of the relationships between UR
shock effects in the States of New England and the Mideast and RHPI responses in
several States, mainly belonging to the Southeast, Plains and Southwest regions.
Also, RHPI forecasts in New England and Mideast regions can be improved by ex-
ploiting UR information on other States. In any case, considering the infra-regional
responses (i.e., RHPI responses of New England and Mideast States to a UR shock
produced in any State belonging to the same region), we note that UR effects on
the variation of RHPI disappear after one period.

Regarding the remaining BEA regions, a 1% shock to either RPCI or UR seems
to highlight effects on the housing prices involving quite a large network of States,
particularly in the second quarter. Analyzing the impulse responses for longer peri-
ods, we note that the network of relevant relationships between the States becomes
sparser. However, the most persistent effects on RHPI, which also involve a large
numbers of States belonging to the Southeast, Plains, Rocky Mountain, Southwest
and Far West regions, are associated to RPCI shocks in Nevada, Arizona, Georgia,
Alabama and Mississippi, and to UR shocks in Illinois, South Carolina, Florida,
Alabama, Iowa, South Dakota and Nebraska.

Moreover, the States whose RHPI responses are more persistent to RPCI shocks
in any other State of the aforementioned regions are Florida and Nevada, while
the States whose responses are more persistent to UR shocks are New Mexico,
Arizona, Arkansas and Mississippi.

If we consider the sign of the impulse response coefficients, we note that, in
general, a positive shock to RPCI is associated to a positive effect on RHPI. Some
exceptions are observed in the first period where we can find negative coefficients.
On the other hand, the scenario appears to be different for the UR case, in which we
note both positive and negative effects on RHPI even for longer periods. Although
we may expect that unemployment has an adverse effect on real estate prices,
previous studies have nevertheless found unemployment to be positively related
to housing prices. For a discussion on this point we refer the reader, for example,
to Vermeulen and Van Ommeren (2009), Clayton, Miller and Peng (2010) and
Moench and Ng (2011).

Finally, to provide a flavor of the type of relationship, Figure 5 shows poste-
rior mean housing price responses (solid line) in Nevada, Oregon, Arizona, New
Mexico, Utah, Idaho and California to a 1% shock to RPCI in Nevada. Figure 6, in-
stead, shows the responses in Florida, Tennessee, Alabama, Mississippi, Arkansas,
West Virginia, North Carolina and Georgia to a 1% shock to UR in Florida. The
shaded regions indicate the credibility intervals corresponding to 68 and 90 per-
cent. Overall, the plots suggest that State-level responses follow a similar pattern
(consistently with the ripple effect) and, in most cases, the effects tend to decay
over two years, especially for UR shocks.
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FIG. 5. Posterior mean impulse responses (solid line) of RHPI to a RPCI shock in Nevada. The
credibility intervals at 68% and 90% are represented by shaded areas. The responses are observed in
Nevada (NV), Oregon (OR), Arizona (AZ), New Mexico (NM), Utah (UT), Idaho (ID) and California
(CA).

9. Discussion. In this paper we have discussed the modeling of spatio-
temporal multivariate processes observed on a lattice by means of a Bayesian spa-
tial dynamic structural equation model. We have used ideas from factor analysis
to frame and exploit both the spatial and the temporal structure of the observed
processes.

FIG. 6. Posterior mean impulse responses (solid line) of RHPI to a UR shock in Florida. The
credibility intervals at 68% and 90% are represented by shaded areas. The responses are observed
in Florida (FL), Tennessee (TN), Alabama (AL), Mississippi (MS), Arkansas (AR), West Virginia
(WV), North Carolina (NC) and Georgia (GA).
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It can be shown that the SD-SEM encompasses a large class of spatial-temporal
models that are commonly used and, more importantly, differs from them in two
major aspects: (i) it avoids the curse of dimensionality commonly present in large
spatio-temporal data and (ii) it facilitates the formation of spatial clusters which
further avoids dimensionality issues.

The model has been implemented in a Bayesian setup using MCMC sampling.
The MCMC chains of the parameters were monitored to detect possible problems
in convergence although no such problems were found in the implementation.

The model was applied to study the impact that the real per capita personal in-
come and the unemployment rate may have on the real housing prices in the USA
using State level data. Forecasting the future economic conditions and understand-
ing the relations between the observed variables have been two important aspects
covered by our model. The spatial variation is brought into the model through the
columns of the factor loading matrix and the estimated conditional correlations
and cross-correlations gave significant evidence of spatial dependence associated
with contiguity. The spatial patterns of the factor loadings revealed several clusters
of interest showing common dynamics.

The time series dynamics have been captured by common dynamic factors. An
error correction model specification, with a cointegrating relationship between the
common latent factors, was found useful once we took proper account of both het-
erogeneity and cross-sectional dependence. Overall, results support the hypothesis
that real housing prices have been rising in line with fundamentals (real incomes
and unemployment rates), and there seems no evidence of housing price bubbles
at the national level.

Results from multiplier analysis were also helpful to describe how the housing
price index reacts over time to exogenous impulses. We have found that, consis-
tently with the ripple effect, the RHPI responses show a similar pattern for neigh-
boring States. The responses seem to be more persistent to UR shocks, while the
effects of a RPCI shock decay more rapidly such that the system appears to ap-
proach faster to the initial equilibrium conditions.

A further important advantage of the model formulation is that it enables con-
sideration of cases in which the temporal series of X are longer than those of Y . As
noticed in Section 7, this was particularly useful to improve the temporal predic-
tions by conditioning on known values of the predictor providing a set of plausible
scenarios for RHPI.

Of course, we acknowledge that other possibilities could be considered for mod-
eling the spatial structure and an example is provided by Wang and Wall (2003).
An alternative scheme could also lead to the specification of common factors with
a spatio-temporal structure. In this case, one may follow the methodology pro-
posed in Debarsy, Ertur and LeSage (2012) to quantify dynamic responses over
time and space as well as space–time diffusion impacts.

Finally, in this paper we have focused exclusively on normally distributed data.
However, nonlinear and non-Gaussian spatio-temporal models have been exten-
sively used in various areas of science, from epidemiology to meteorology and
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environmental sciences, among others. In this case, assuming the measurements
belong to the exponential family of distributions, a generalized spatial dynamic
structural equation model represents a natural extension of the SD-SEM discussed
here. This extension will be a topic for future work.

APPENDIX A: COINTEGRATED LATENT FACTORS AND THEIR
VECTOR ERROR CORRECTION REPRESENTATION

Let �̃(z) denote the characteristic polynomial associated with the vector ECM
shown in (11) and let c be the number of unit roots of Det[�(z)]. Let also that
rank(Ã) = r , with r = m + l − c. Then, we assume that the latent exogenous vari-
ables, f(t), are cointegrated with cointegrating rank rf so that r > rf and rf < l.

Let Q(
∑p

i=1 �i )P = J be the Jordan canonical form of
∑p

i=1 �i , where Q =
P−1 an ((m + l) × (m + l)) matrix, J = diag(Im−rd ,�rd , Il−rf ,�rf ) and rd ≡
r − rf [Ahn and Reinsel (1990) and Cho (2010)]. Because of the exogeneity of
f(t), the matrices Ã and �̃i are upper block triangular matrices, that is,

Ã =
[

Ã1 Ã12

0 Ã2

]
and �̃i =

[
�̃1i �̃12i

0 �̃2i

]
.

Then, consider the following matrix partition:

P =
[

P1 P12

0 P2

]
, Q = P−1 =

[ P−1
1 −P−1

1 P12P−1
2

0 P−1
2

]
=

[
Q1 Q12

0 Q2

]
,

with Q′
1 = [Q(1)

1 Q(2)
1 ], P1 = [P(1)

1 P(2)
1 ], Q′

12 = [Q(1)
12 Q(2)

12 ], P12 = [P(1)
12 P(2)

12 ],
Q′

2 = [Q(1)
2 Q(2)

2 ] and P2 = [P(1)
2 P(2)

2 ].
Note that Q(1)

1 , P(1)
1 are (m × (m − rd)), Q(2)

1 , P(2)
1 are (m × rd), Q(1)

2 , P(1)
2 are

(l × (l − rf )), Q(2)
2 , P(2)

2 are (l × rf ), Q(1)
12 is (l × (m− rd)), P(1)

12 is (m× (l − rf )),

Q(2)
12 is (l × rd) and P(2)

12 is (m × rf ). Then, we may write

Ã = −P(I − J)Q = −
[

P(2)
1 P(2)

12

0 P(2)
2

][
I − �rd 0

0 I − �rf

][
Q(2)′

1 Q(2)′
12

0 Q(2)′
2

]

= −
[

P(2)
1 (I − �rd )Q

(2)′
1 P(2)

1 (I − �rd )Q
(2)′
1 P12Q2 + P(2)

12 (I − �rf )Q(2)′
2

0 P(2)
2 (I − �rf )Q(2)′

2

]
,

and equation (11) can thus be rewritten as

�g(t) = AB′d(t − 1) + A2B′
f f(t − 1) +

p−1∑
i=1

Ki�d(t − i) + ξ(t),(13)

�f(t) = Af B′
f f(t − 1) +

p−1∑
i=1

�̃2i�f(t − j) + η(t),(14)
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where A = −P(2)
1 (I − �rd ), B = [I − P12Q2]′Q(2)

1 , Af = −P(2)
2 (I − �rf ), A2 =

−P(2)
12 (I − �rf ), Bf = Q(2)

2 and Ki = [�̃1i �̃12i]. Note that if P12 and P(2)
12 are 0,

then a separated cointegrated structure exists for g(t) and f(t).
Let B = [B′

1 B′
2]′ where B1 = Q(2)

1 and B2 = −Q′
2P′

12Q(2)
1 , then Ã can be

rewritten as

Ã = −
[ AB′

1 AB′
2 + A2B′

f

0 Af B′
f

]
.

Also, let rf = rank(Af B′
f ), rd = rank(AB′), rc = rank(AB′

2 + A2B′
f ), rc1 =

rank(AB′
2) and rc2 = rank(A2B′

f ). Then, it follows that if rank(AB′
2 +A2B′

f ) = 0,
no cointegration structure exists between the endogenous and exogenous processes
g(t) and f(t).

APPENDIX B: THE SSVS PRIOR FOR THE VECTOR ECM

Since �gd = AB′, �gf = A2B′
f and �f = Af B′

f are not unique, in this paper
we follow the approach proposed by Jochmann et al. (2013) and Koop, León-
González and Strachan (2010) to elicit the SSVS priors on the cointegration space.
A summary of this approach is provided below.

Specifically, a nonidentified r∗
d × r∗

d symmetric positive definite matrix E is
introduced with the property, �gd = AEE−1B′ ≡ ĀB̄′, where Ā = AE and B̄ =
BE−1. The introduction of the nonidentified matrix E facilitates posterior compu-
tation because the posterior conditional distributions of Ā and B̄ in the MCMC
algorithm are Gaussian [Koop, León-González and Strachan (2010)]. The same
holds analogously for �gf and �f .

Let ā = vec(Ā′) and ρ = (ρ1, . . . , ρm̃) a parameter vector, where m̃ = mr∗
d .

Then, we assume that ā|ρ ∼ N(0,V0), where V0 = diag(v2
1, . . . , v2

m̃
), v2

i = (1 −
ρi)v

2
0i + ρiv

2
1i and ρi , the ith element of ρ, has a Bernoulli distribution with pa-

rameter pa , that is, ρi ∼ Be(pa). In this paper, we set pa = 0.5, v2
0i = 0.1σ̂ 2(āi),

v2
1i = 10σ̂ 2(āi), where σ̂ 2(āi) is an estimate of the variance of the ith element of

ā obtained from a preliminary MCMC run with a noninformative prior.
With appropriate notation, the same assumptions hold for āf = vec(Āf ), with

Āf = Af Ef , and ā2 = vec(Ā2), with Ā2 = A2Ef .
The prior for the cointegrated space is defined through b̄ ∼ N(0, I) and

b̄f ∼ N(0, I), where b̄ = vec(B̄), b̄f = vec(B̄f ) and B̄f = BE−1
f . The SSVS

prior for k = vec([K1, . . . ,Kp∗−1]′) is given by k|δ ∼ N(0,D), where D =
diag(τ 2

1 , . . . , τ 2
(m+l)(p∗−1)), τ 2

i = (1 − δi)τ
2
0i + δiτ

2
1i and δ is an unknown vec-

tor with typical element δi ∼ Be(pτ ). Here, we set pτ = 0.5, τ 2
0i = 0.1σ̂ 2(ki),

τ 2
1i = 10σ̂ 2(ki), and σ̂ 2(ki) is an estimate of the variance of the ith element of

k obtained from a preliminary MCMC run using a noninformative prior. Analo-
gously, we define φ = vec([�̃21, . . . , �̃2p∗−1]′) and assume that φ|δφ ∼ N(0,Dφ),
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where Dφ = diag(κ2
φ1, . . . , κ

2
φm2(p∗−1)

), κ2
φi = (1 − δφi)κ

2
φ0i + δφiκ

2
φ1i and δφ is

an unknown vector with element δφi ∼ Be(pφ). Here we set pφ = 0.5, κ2
φ0i =

0.1σ̂ 2(φ̄i), κ2
φ1i = 10σ̂ 2(φ̄i), and σ̂ 2(φ̄i) is an estimate of the variance of the ith

element of φ̄ obtained from a preliminary MCMC run using a noninformative
prior.

APPENDIX C: MULTIPLIER ANALYSIS

If the model contains integrated variables and the generation mechanism is
started at time t = 0, it readily follows that [Lütkepohl (2005), page 402–407]

g(t) = JQtg(0) +
t−1∑
i=0

JQiBf(t − i) +
t−1∑
i=0

JQiJ′ξ(t − i),(15)

where J, B and Q are (m×(mp+ ls)), ((mp+ ls)× l) and ((mp+ ls)×(mp+ ls))

matrices such that

J = [ I 0 · · · 0 ] ,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

0
Il

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 C2 · · · Cp D1 · · · D2 Ds

Im 0 · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

...

0 · · · Im 0 0 · · · 0 0
0 · · · 0 0 0 0 · · · 0
0 · · · 0 0 Il 0 · · · 0
...

...
...

...
...

. . .
...

...

0 · · · 0 0 0 · · · Il 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, assuming without loss of generality mx(t) = 0 and my(t) = 0, it follows
from the measurement equation (1) that by denoting with H†

x the pseudo-inverse of
Hx , that is, H†

x = (H′
xHx)

−1H′
x , for m < ñx and H′

xHx invertible, the least-square
estimator of f(t) is f̂(t) = H†

xX(t).

Hence, from equations (2) and (15), it follows that the marginal impact of
changes of the predictor X(t) on the dependent variable Y(t) can be investigated
through the coefficient matrices

�k = HyJQkBH†
x, k = 0,1, . . .
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