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Abstract In this study, mesenchymal stem cells deriving from dental pulp (DPSCs) of normal human impacted third molars,
previously characterized for their ability to differentiate into osteoblasts, were used. We observed that: i) DPSCs,
undifferentiated or submitted to osteogenic differentiation, express all four subtypes of adenosine receptors (AR) and CD73,
corresponding to 5′-ecto-nucleotidase; and ii) AR stimulation with selective agonists elicited a greater osteogenic cell
differentiation consequent to A1 receptor (A1R) activation. Therefore, we focused on the activity of this AR. The addition of
Abbreviations: ADA, adenosine deaminase; A1R, adenosine A1 receptors; A2AR, adenosine A2A receptors; A2BR, adenosine A2B receptors; A3R,
adenosine A3 receptors; ALP, alkaline phosphatase; ARS, Alizarin Red S staining; CCPA, 2-chloro-N6-cyclopentyladenosine; CGS21680,
2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine; Cl-IBMECA, 1-[2-chloro-6-[[(3-iodophenyl) methyl]amino]-9H-purin-9-yl]-
1-deoxy-N-methyl-β-D-ribofuranuronamide; DPCPX, 8-cyclo pentyl-1,3-dipropylxanthine; DKK-1, Dickkopf-1; DPSCs, dental pulp stem cells; Dvl,
dishevelled; GSK-3β, glycogen synthase kinase-3β; LY294002, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one; MEM, α-Minimal Essential
Medium; MAPK, mitogen-activated protein kinase; MRS1220, N-[9-chloro-2-(2-furanyl)[1,2,4]-triazolo[1,5-c]quinazolin-5-yl]benzene acetamide;
MSC, mesenchymal stem cells; MSCGM, Mesenchymal Stem Cell Growth Medium; NECA, 5′-N-ethylcarboxamidoadenosine; PI3K, phosphatidylinositol
3-kinase; PSB603, 8-[4-[4-(4-chloro phenzyl)piperazide-1-sulfonyl)phenyl]]-1-propylxanthine; RUNX-2, Runt-related transcription factor-2; Wnt,
wingless; ZM241385, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol
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15–60 nM 2-chloro-N6-cyclopentyl-adenosine (CCPA), A1R agonist, to DPSCs at each change of the culture medium significantly
increased the proliferation of cells grown in osteogenic medium after 8 days in vitro (DIV) without modifying that of
undifferentiated DPSCs. Better characterizing the effect of A1R stimulation on the osteogenic differentiation capability of
these cells, we found that CCPA increased the: i) expression of two well known and early osteogenic markers, RUNX-2 and
alkaline phosphatase (ALP), after 3 and 7 DIV; ii) ALP enzyme activity at 7 DIV and iii) mineralization of extracellular matrix
after 21 DIV. These effects, abolished by cell pre-treatment with the A1R antagonist 8-cyclopentyl-1,3-dipropyl-xanthine
(DPCPX), involved the activation of the canonical Wnt signaling as, in differentiating DPSCs, CCPA significantly increased
dishevelled protein and inhibited glycogen synthase kinase-3β, both molecules being downstream of Wnt receptor signal
pathway. Either siRNA of dishevelled or cell pre-treatment with Dickkopf-1, known inhibitor of Wnt signaling substantially
reduced either DPSC osteogenic differentiation or its enhancement promoted by CCPA. Summarizing, our findings indicate that
the stimulation of A1R may stimulate DPSC duplication enhancing their osteogenic differentiation efficiency. These effects may
have clinical implications possibly facilitating bone tissue repair and remodeling.

© 2013 Elsevier B.V. All rights reserved.
Introduction

Bone tissue engineering/regeneration is one of the most
investigated areas of research aimed at providing potential
new clinical applications to cure bone defects and to
accelerate repairing of damaged skeletal tissues. Mesenchy-
mal stem cells (MSCs) deriving from different sources
(embryonic tissues, bone marrow, umbilical cord blood,
adipose and muscle tissues) are currently studied, due to
their biological capability to differentiate into osteogenic
lineage (Seong et al., 2010). Also dental pulp stem cells
(DPSCs), obtainable from teeth usually discarded during
orthodontic treatments, are receiving extensive attention,
since they are able to differentiate, either in vitro or in vivo
(in animal models), into bone forming cells, osteoblasts
(Bakopoulou et al., 2011; Nampo et al., 2010; Huang et al.,
2009).

In order to increase the available cell source for an
efficient application to bone tissue engineering therapies
reducing, at the same time, the likelihood of spontaneous
differentiation into divergent lineages, it is important to
develop well-defined and proficient protocols, identifying
agents able to improve this aspect. Several growth factors
and signaling molecules may influence the growth and
differentiation of DPSCs, including adenine-based purines.
They are ubiquitous substances produced and released from
most cells and tissues. At the extracellular level, nucleotides
and nucleosides such as ATP or adenosine, respectively,
interacting with specific receptors, regulate a wide variety
of physiological/pathological processes (Burnstock, 2011;
Burnstock and Ulrich, 2001). The receptors for adenine-
based purines are classified into two groups; P1 receptors,
which are primarily activated by adenosine, and P2 receptors,
which respond to nucleotides. The P1 receptors are further
subdivided into 4 receptor subtypes (A1, A2A, A2B, and A3).
Also, the P2 receptors are subdivided into seven P2X ligand-
gated ion channels (P2X1–7) and eight P2Y G-protein-coupled
receptors (P2Y1,2,4,6,11–14) (Burnstock, 2007). Each of these
receptors has been cloned, characterized and displays distinct
tissue expression and pharmacology. As for bone, extracellular
ATP has been indicated as able to modulate differentiation
and function of osteoblasts from this source via different P2Y
and P2X receptor subtypes (for a review, see Orriss et al.,
2010). Like in other cells, ATP is released from the osteoblasts
in physiological condition and even more after cell damages
(Orriss et al., 2009) and is rapidly metabolized into adenosine
(Evans et al., 2006). More recently, it has been reported that
A2B receptors and also A1R, even though to a lesser extent,
may play a role in favoring proliferation and osteogenic
differentiation of human primary bone marrow stromal cells
(Costa et al., 2011), a role that has been confirmed by in vivo
studies carried out using A2B receptor (A2BR) knockout mice
(Carroll et al., 2012). Nothing is known about the possible
influence of adenine-based purines on DPSC growth and osteo/
odontogenic differentiation. Thus, we started our research
focusing on A1R activity, evaluating whether the selective
stimulation of these receptors may affect the proliferation
and/or the mineralization potential of DPSCs in vitro, in order
to better understand the mechanisms involved in and to
contribute to a proper use of these cells for regenerative
dentistry.

Materials and methods

Materials

2-Chloro-N6-cyclopentyladenosine (CCPA), 2-p-(2-carbo-
xyethyl)phenethylamino-5′-N-ethyl carboxamidoadenosine
(CGS21680), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX),
Dickkopf-1 (DKK-1), apyrase from potato, adenosine deam-
inase (ADA) bovine recombinant as well as the other
chemicals, unless differently indicated, were purchased
from Sigma-Aldrich (Milan, Italy).

1-[2-Chloro-6-[[(3-iodophenyl) methyl]amino]-9H-purin-9-
yl]-1-deoxy-N-methyl-β-D-ribo furanuronamide (Cl-IBMECA),
N-[9-chloro-2-(2-furanyl)[1,2,4]-triazolo[1,5-c] quinazolin-
5-yl]benzene acetamide (MRS1220), 5′-N-ethylcarboxamido-
adenosine (NECA) and 8-[4-[4-(4-chlorophenzyl)piperazide-
1-sulfonyl)phenyl]]-1-propylxanthine (PSB603) and, 4-(2-
[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-
ylamino]ethyl)phenol (ZM241385) were obtained from
Tocris Bioscience (Space Import–Export, Milan, Italy).
Disposable materials for tissue cultures were from Falcon
(Steroglass, Perugia, Italy). α-Minimal Essential Medium
(MEM) was from Sigma-Aldrich (Milan, Italy) whereas
Mesenchymal Stem Cell Growth Medium (MSCGM™) and
Mesenchymal Stem Cell Osteogenic Differentiation Medi-
um were purchased from Lonza (Basel, Switzerland).
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Cell culture

Surgical pulp samples (n = 10) were obtained from 8 patients
(3 females and 5 males), with a mean age of 17 years, at the
Oral Science Nano and Biotechnology Department (Universi-
ty of Chieti), during orthodontic treatment. Informed consent
was obtained from each of them. Dental pulps were isolated
after tooth extraction as previously reported (Teté et al.,
2008; D'Alimonte et al., 2011), digested (1 h; 37 °C) in MEM
containing 100 U/ml penicillin, 100 μg/ml streptomycin
(Invitrogen, Milan, Italy), 500 μg/ml clarithromycin (Menarini,
Florence, Italy), 3 mg/ml collagenase type I (Sigma) and
4 mg/ml dispase (Roche, Monza, Italy). Cells were sepa-
rated by filtering through a 70-μm strainer (Falcon, Becton
Dickinson, Franklin Lakes, NJ, USA), then resuspended in
MSCGM and centrifuged (10 min; 1200 rpm). Cell pellet
was resuspended in the same medium and plated in 25 cm2

flasks. Cultures were incubated at 37 °C in a 5% CO2, and
the medium was changed twice a week. Experiments were
performed only in the first six cell passages.
Experimental protocol

To measure DPSC proliferation rate, cells were seeded at
2 × 103 cell/well onto 96-well plates whereas they were
plated at 4 × 104 cell/well onto 6-well plates to evaluate
mineralization by Alizarin Red S (ARS) staining and non
tissue specific alkaline phosphatase (ALP) activity assays or
at 2.5–5 × 105 cell/well onto 100 mm plates to study the
expression of immunophenotype markers by flow cytometry,
osteogenic markers by real time PCR analysis or adenosine
receptors (AR), to induce transient RNA silencing (siRNA) for
dishevelled protein and to evaluate intracellular signaling by
western blotting. The assays were performed at different
times, as indicated in the Results section. AR agonists
were administered at different concentrations to the cells,
starting 24 h after seeding. Afterwards, they were added
to the cultures at each medium change for the indicated
period. When present, the AR antagonists were adedd
30 min before the respective receptor agonists.
Flow cytometry

Cell staining of surface antigen CD73
Cells (5 × 105 cells/sample) were incubated with 100 μl

of 20 mM ethylenediaminetetraacetic acid (EDTA) at 37 °C
for 10 min. Cells were washed with 3 ml of washing buffer
and centrifuged (4 °C, 400 ×g, 8 min). Subsequently, sam-
ples were resuspended in 100 μl washing buffer containing
the appropriate amount of surface antibody (phycoerythrin-
conjugated anti-CD73, purchased from Becton Dickinson,
San Jose, CA); samples were incubated for 30 min at 4 °C in
the dark. Tubes were washed (3 ml of washing buffer),
centrifuged (4 °C, 400 ×g, 8 min) and cells were resuspended
with 1 ml 0.5% paraformaldehyde, incubated for 5 min at
room temperature, washed, centrifuged (4 °C, 400 ×g, 8 min)
and stored at 4 °C in the dark until the acquisition. Ten min
before the analysis, a specific solution, containing 7-amino-
actinomycin D (Becton Dickinson) was added to the samples
to exclude dead cells. Finally, cells were analyzed on a
FACSCalibur flow cytometer (BD), using CellQuest™ software
(Becton Dickinson).

Flow cytometry measurement
Quality control included regular check-up with Rainbow

Calibration Particles (6 peaks) and CaliBRITE beads (both
from Becton Dickinson). Debris was excluded from the
analysis by gating on morphological parameters; 20,000
non-debris events in the morphological gate were recorded
for each sample. All antibodies were titrated under assay
conditions and optimal photomultiplier (PMT) gains were
established for each channel (Lanuti et al., 2012). Data were
analyzed using FlowJo™ software (TreeStar, Ashland, OR).
Mean Fluorescence Intensity Ratio (MFI Ratio) was calculated
dividing the MFI of positive events by the MFI of negative
events (Miscia et al., 2009).

Cell proliferation

Cell proliferation was assayed by 3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxy phenyl)-2-(4-sulfophenyl)-2H-
tetrazolium (MTS) assay, using the CellTiter 96® AQueous

One Solution Cell Proliferation Assay (Promega, Milan,
Italy), according to the manufacturer's instructions. The
absorbance was measured at 490 nm, using a microtiter
plate reader (Spectracount™, PerkinElmer Life, Waltham,
MS, USA).

RNA isolation, RT-PCR and real time-PCR analysis

Total RNA from was isolated by using the RNeasy Plus
Universal Mini Kit (Qiagen Inc., Valencia, CA) according to
manifacturer's instructions. The quality of total RNA was
assessed by measuring the A260⁄280 ratio using a spectro-
photometer. For the reverse transcriptase reaction, M-MLV
Reverse Transcriptase reagents (Sigma-Aldrich) were used.
First strand cDNA was synthesized from 1.5 μg of total RNA
using the RT-PCR system RETROscript™ (Ambion, Monza,
Italy) with random hexamers. The resultant cDNA (2 μl) was
amplified in a 100 μl reaction volume containing PCR
reaction buffer, 1.5 mM MgCl2, 0.2 mM each deoxy-dNTP,
1 μM oligonucleotide primers (MWG Biotech, Ebersberg,
Germany), and 2.5 U AmpliTaq Gold™ DNA polymerase
(Applied Biosystems). The final cycle was followed by a
10-min incubation at 72 °C. PCR primers, annealing temper-
atures, and product sizes are shown in Table 1. Reaction was
also performed without the reverse transcriptase step as
control for genomic contamination. PCR products were
separated by 1.5% agarose gel electrophoresis in gels
containing ethidium bromide and visualized with UV light.
Direct sequencing of the RT-PCR bands was performed
for the analysis of the RT-PCR bands. Real-Time PCR
was carried out with the ABI Prism 7900 Sequence
Detection System (Applied Biosystems, Foster City, CA,
USA). Expression of Runt-related transcription factor-2
(RUNX-2) and ALP was evaluated at 3, 7 and 14 days in
DPSCs cultured in undifferentiating or osteogenic medium.
Commercially available TaqMan Gene Expression Assays
(RUNX-2, Hs00231692_m1, ALP, Hs01029144_m1) and the
TaqMan Universal PCR Master Mix (Applied Biosystems,
Foster City, CA, USA) were used according to standard



Table 1 Primer sequences used for RT-PCR analysis.

Gene Accession number Forward primer Reverse primer T (°C) annealing Product (bp)

hA1 NM_000674 TCTTCCTCTTTGCCCTCAGCT GCTCAGAACACTGTTGCCTCT 55 525
hA2a NM_000675.4 AGGGCTAAGGGCATCATTG GGATACGGTAGGCGTAGATGA 58 519
hA2b NM_000676 TGACTTCTACGGCTGCCTCTT TGACTTGGCTGCATGGATCT 55 487
hA3 NM_000677 TTTGCTGGCTGGTGTCATT AGGCATAGACGATAGGGTTCA 55 452
hGAPDH NM_002046 GAGTCCACTGGCGTCTTCAC GGTGCTAAGCAGTTGGTGGT 55 190
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protocols. Beta-2 microglobulin (B2M, Hs99999907_m1,
Applied Biosystems, Foster City, CA, USA) was used for
template normalization and duplicates were set up for
each samples.

Western blot analysis

Cells were harvested at 4 °C in a lysis buffer (in mM: Tris
buffer 50, NaCl 150, PMSF 1.0; 1% Nonidet-P40, 5 μg/ml
leupeptin, 5 μg/ml aprotinin), disrupted by sonication and
centrifuged (14,000 rpm, 5 min, 4 °C). Protein concentra-
tion was determined by Bio-Rad protein assay (Bio-Rad
Laboratories, Milan, Italy). Samples (50 μg), diluted in
SDS-bromophenol blue buffer, were boiled (5 min) and
separated on 12.5–15% SDS-polyacrylamide gels. Proteins
were transferred on a polyvinylidene fluoride membrane,
blocked with PBS/0.1% Tween20/5% non-fat milk (Bio-Rad
Laboratories) for 2 h at 4 °C, incubated overnight at 4 °C
with specific primary antibodies [polyclonal rabbit anti-A1
dilution 1:1000 (Abcam, Cambrige, UK), anti-A2A dilution 1:200,
anti-A2B, dilution 1:200, anti-A3, dilution 1:200 (Alomone Labs,
Jerusalem, Israel); anti-dishevelled (Dvl), dilution 1:200 (Santa
Cruz Biotechnologies, DBA Italia, Segrate (MI), Italy); anti-
phospho-glicogen synthase kinase3β (p-GSK3β, ser9), dilution
1:1000; (Cell Signalling Technology, Euroclone, Milan, Italy)]
and then exposed to donkey anti-rabbit HPR-conjugated
secondary antibody for 1 h at room temperature (GE
Healthcare Life Sciences, Milan, Italy; final dilution 1:5000).
The specificity of the antibodies used to determine the
presence of AR was previously established (Costa et al.,
2011; Gharibi et al., 2012). To determine the equal loading of
samples, the blots were stripped and re-probed with an
anti-ß-actin antibody (dilution 1:100, incubation for 1 h at
room temperature; Santa Cruz Biotechnologies). For protein
phosphorylation (p-GSK3β), cells were serum-starved for
24 h, washed three times in PBS and incubated in serum-free
media with or without drugs for the indicated periods,
as described in the Results section. The stimulation was
terminated by washing in ice-cold PBS containing 1 mM
sodium orthovanadate, followed by lysis in ice-cold immuno-
precipitation assay buffer containing protease inhibitors.
Immunocomplexes were visualized using the enhancing
chemiluminescence (ECL) detection system (GE Healthcare
Life Sciences) and quantified by densitometric analysis
(Molecular Analyst System).

Quantification of mineralization

Cells grown under undifferentiating condition were detached
(0.025% trypsin/0.04% EDTA dissolved in PBS, 10 min, 37 °C)
and re-seeded on culture plates. Three days after replating,
the cells were switched to Mesenchymal Stem Cell Osteogenic
Differentiation Medium. Visualization of calcium deposition
and extracellular matrix mineralization was obtained by ARS
staining assay performed after 21 days in vitro (DIV). This
assay was carried out according to the method by Gregory et
al. (2004). Unless differently indicated, the passages were
performed at room temperature. Cells were washed with PBS,
fixed in 10% (v/v) formaldehyde (Sigma-Aldrich) for 30 min
and washed twice with abundant dH2O prior to addition of
1 ml of 40 mM ARS (pH 4.1) per well. After cell incubation
(20 min) under gentle shaking, unincorporated dye was
aspirated, cells were washed with dH2O (4 ml) four times
further, while shaking for 5 min. Then water was carefully
discarded and plates were stored at −20 °C prior to dye
extraction. For staining quantification, 800 μl 10% (v/v) acetic
acid was added to each well. Cells were incubated for 30 min
with shaking, and then scraped from the plate, transferred
into a 1.5-ml vial and vortexed for 30 s. The obtained
suspension, overlaid with 500 μl mineral oil (Sigma-Aldrich),
was heated to 85 °C for 10 min, then transferred to ice for
5 min, carefully avoiding opening of the tubes until fully
cooled, and centrifuged at 20,000 ×g for 15 min. Five hundred
microliters of the supernatant was placed into a new 1.5-ml
vial and 200 μl of 10% (v/v) ammonium hydroxide was added
to neutralize the acid, assuring a pH between 4.1 and 4.5.
Aliquots (150 μl) of the supernatant were read in triplicate
at 405 nm by a spectrophotometer (Spectramax SM190,
Molecular Devices, Sunnyvale, CA, USA). For quantification
of staining, samples were treated as previously described
(Gregory et al., 2004).

Alkaline phosphatase activity assay

Tissue-nonspecific ALP activity was determined in DPSCs
during osteogenic differentiation as previously reported
(Laflamme et al., 2010). Cultured cells were washed with
PBS, lysed with 1 ml of Tris buffer (10 mM, pH 7.5, 0.1%
Triton X-100). Cell lysates were centrifuged (2000 rpm;
1 min); then, 20 μl of supernatant solution from each
sample was combined with 20 μl of 1 mM p-nitrophenyl
phosphate (p-NPP, Sigma; solution at pH 10.3 with
MgCl2-diethanolamine buffer) used as a substrate and
dispensed into 96-well plates. The samples were incubat-
ed in the dark at room temperature for 30 min; then, the
reaction was halted by adding 10 μl of 2 N NaOH. The
amount of p-NPP released was measured as absorbance at
405 nm on a microplate spectrophotometer (Spectramax
SM190). The protein content of each sample was deter-
mined by the Bradford method (Bradford, 1976). The
enzyme activity was expressed as nmoles of p-NPP released
per mg of protein per 30 min.
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Dvl-2 small interfering RNA transfection

Dishevelled-2 (Dvl-2) expression was knocked down with
Dvl-2 small interfering RNA (siRNA; Qiagen, Valencia, CA,
USA) which was designed and synthesized by Qiagen based
on human DvL-2 sequence (FlexiTube GeneSolution GS1856
for DVL2, Gene Accession Number: NM_004422). siRNA
transfection experiments in DPSCs were performed with
the Amaxa system (Amaxa, Cologne, Germany) using Human
MSC Nucleofector Kit and program C-17 for high cell survival
according to the manufacturer's protocol and 600 ng of
siRNA/1 × 106 cells (Lanuti et al., 2009). As a positive control
to monitor transfection efficiency, cells were transfected with
control vector pmaxGFP (green fluorescence protein) provided
in Nucleofector kit and analyzed 48 h later by fluorescence
microscopy and flow cytometry (see Fig. 1 of the Supplemental
material). Cells were submitted to osteogenic differentiation
24 h after siRNA induction. Knocking down of Dvl-2 was
revealed by western blot analysis performed at 3 days
after differentiation induction (Fig. 1 Supplemental material),
whereas its influence on ALP expression and activity was
assayed by real-time RT-PCR and colorimetric assay, respec-
tively, carried out at 3 or 7 days after cell commitment toward
osteogenesis (see Results).
Statistical analysis

Experimental values are expressed as mean ± SEM. Statisti-
cal analysis was performed by Student's t test. P values were
assumed as significant at 0.05. The data were analyzed by
Prism3 software (GraphPad, San Diego, CA, USA).
Results

Expression of CD73 and adenosine receptors in DPSCs

In this study, we used MSCs isolated from human dental pulp
that, grown under appropriate culture conditions, undergo
osteogenic and, to a lesser extent, adipogenic differentia-
tion. As we previously demonstrated (Teté et al., 2008;
D'Alimonte et al., 2011), undifferentiated DPSCs are nega-
tive for hematopoietic markers (CD14, CD34, and CD45),
while they express numerous surface mesenchymal markers
(CD29, CD90, CD105, CD166, CD146, and STRO-1), showing
an immunophenotypic profile consistent with the literature.
Undifferentiated DPSCs, like MSCs deriving from other
sources (Evans, 2012; Takedachi et al., 2012), also express
CD73, another mesenchymal marker, to a high extent (Figs.
1A–B). Such an expression was not modified in cells
submitted to osteogenic differentiation. Of interest, CD73
corresponds to the enzyme ecto-5′-nucleotidase, the activity
of which leads to the conversion of extracellular AMP, in turn
deriving from ATP catabolism, into adenosine.

As well, the expression of the four receptor subtypes for
adenosine, that are A1, A2A, A2B and A3 receptors, was similar
in DPSCs grown in either undifferentiating or osteogenic
medium for 14 DIV, as elicited by RT-PCR assay or western
blot analysis (Figs. 1C–D). The period of 14 DIV for carrying
out these experiments was chosen as the osteogenic dif-
ferentiation has already begun unequivocally, whereas the
mineralization of extracellular matrix was not so intense to
impair cell detachment, necessary to perform the subse-
quent molecular biological assays.

The stimulation of adenosine receptors differently
affects the activity of tissue nonspecific ALP assumed
as an index of osteogenic DPSC differentiation

We first screened the effects of the stimulation of AR by
endogenous or exogenous compounds on the DPSC capability
to differentiate towards an osteogenic phenotype when
grown in osteogenic medium. To this aim, we evaluated
the activity of ALP, an enzyme typically expressed on
the basolateral membrane of osteoblasts and related pre-
cursors (Nakano et al., 2004), that functions to promote
bone mineralization. In previous papers (Teté et al., 2008;
D'Alimonte et al., 2011) we demonstrated that in DPSC
committed to osteogenesis the activity of this enzyme was
maximal at 7 DIV (see also Fig. 4). Therefore, we chose
this time to perform our investigation. We observed that
addition to the culture of apyrase or ADA, able to metabolize
ATP/ADP or adenosine, respectively, did not affect ALP
activity (Fig. 2). On the contrary, the stimulation of A1R and
A2BR by the respective agonists (CCPA and NECA) caused a
dose-dependent increase of the enzyme activity and that of
A2AR and A3R by CGS21680 or Cl-IBMECA decreased or did
not affect it, respectively (Fig. 2). These stimulatory or
inhibitory effects were abolished by cell pre-treatment with
the respective receptor antagonists, that were unable to
modify DPSC osteogenic commitment when administered
alone to the cultures. Since in our hands the effect promoted
by A1R stimulation was greater than that consequent to the
activation of other AR, this finding prompted us to better
investigate the activity of A1R.

Effect of A1R stimulation on the proliferation
of DPSCs grown in undifferentiating and
osteogenic conditions

We first evaluated the ability of these cells to proliferate
using the MTS assay as an index of cell viability and
performing measurements from 2 up to 16 DIV. The duplica-
tion rate was greater in undifferentiated cells (Fig. 3A) as
compared to differentiating sister cells, even though both
types of cells reached a plateau phase around the 8–10th DIV.
The addition of CCPA at different doses (15–60 nM) and for
different periods (2, 4 and 8 DIV) significantly increased the
proliferation rate of differentiating DPSCs at the 8th DIV,
without substantially modifying that of undifferentiated cells
(Figs. 3B–C). The proliferating CCPA-induced effect was
counteracted by cell pre-treatment with 100 nM DPCPX
(data not shown).

Effect of the addition of CCPA on the differentiating
potential of DPSCs towards an osteoblast lineage

In order to better characterize the activity of A1R on the
osteogenic differentiation of DPSCs, we evaluated the effect
of the addition of CCPA on cell culture mineralization
measured by ARS staining and colorimetric detection. The



Fig. 1 Expression of CD73 and four subtypes of AR in DPSCs grown in undifferentiating or osteogenic medium. A–B) The
cytofluorimetric analysis was performed in DPSCs previously incubated with phycoerythrin(PE)-conjugated antibody against CD73.
The filled histogram shows the distribution of the antigen expression whereas the open histogram represents the distribution of the
respective irrelevant control. The values were expressed as mean fluorescence ratio (MFI) obtained dividing the MFI of positive events
by the MFI of negative events. Panel A is representative of three separate experiments performed using cells after different days in
vitro (DIV) whereas the numeric values of MFI ratio (B) are the mean ± SEM of three independent experiments. C–D) The presence of
the AR has been evaluated by RT-PCR (panel C) and western blot (panel D) analyses. Immune-detected bands have been obtained
from DPSCs grown as undifferentiated cells (lane 1) or in a osteogenic conditioning medium (lane 2) for 14 DIV. Expression of GAPDH
and β-actin was used as an internal control in C and D, respectively. The molecular weights (expressed as kilodaltons, kDa) reported in
the figures relating to western blot analysis are those currently indicated in literature for each receptor subtype and also in the data
sheets of the antibodies used for their detection. Data are representative of three independent experiments with very similar results.
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exposure of cells grown under osteogenic condition to
30 nM CCPA, added to the cultures at every change of
medium significantly increased extracellular calcium de-
position after 14 and 21 DIV, in comparison with values
determined in control (Fig. 4A). The ability of CCPA to
increase extracellular matrix mineralization was con-
firmed by ARS staining carried out in the same cells after
21 DIV (Fig. 4E).



Fig. 2 Effect of apyrase, ADA and selective agonists of different subtypes of AR on ALP activity evaluated in DPSCs grown for 7 days in
osteogenic medium. DPSCs were grown in undifferentiating (UM) or osteogenic (OM) medium; cells committed towards osteogenesis were
also exposed to apyrase (apy, 2 U/ml), or adenosine deaminase (ADA, 0.2 U/ml) or agonists of A1R (CCPA), A2AR (CGS21680), A2BR (NECA)
and A3R (Cl-IBMECA). The effect caused by these agonists was also evaluated in the presence of the respective AR antagonists (DPCPX,
ZM241385, PSB603 and MRS1220) that were administered 30 min prior to the agonist. ALP activity was assayed as described in the
Materials and Methods section and expressed as nmol of p-nitrophenol produced per mg of cell protein within a period of 30 min (nmol/mg
protein/30 min). Values are the mean ± SEM of 3 separate experiments in which different cell samples were used. *p b 0.05: statistical
significance vs. cells grown in UM; # p b 0.05; ###p b 0.001: statistical significance vs. cells grown in OM; °p b 0.05, °°p b 0.01:
statistical significance vs. cells grown in OM and exposed to the respective AR agonist (Student's t test).
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Additionally, we assayed the expression of RUNX-2, a key
transcription factor associated with osteogenesis (Komori,
2005), in parallel to that of ALP. The expression of these two
early osteogenic markers was significantly increased in
DPSCs grown in osteogenic medium and further enhanced
by cell exposure to CCPA at 3 and 7 DIV (Figs. 4C–D). This
result was confirmed by the evaluation of ALP activity, that
progressively increased in DPSCs grown in osteogenic
medium and was maximal at 7 DIV in comparison with that
of undifferentiated cells. DPSC exposure to CCPA enhanced
ALP activity over the effect caused by the addition of
osteogenic medium alone both at 3 and mainly at 7 DIV
(Fig. 4B), whereas the treatment of DPSCs with CCPA for a
longer period (up to 14 DIV) did not further influence the
enzyme activity promoted by osteogenic condition. All
CCPA-induced effects were counteracted by the contempo-
raneous presence of the A1R antagonist DPCPX (100 nM)
(Figs. 2A–E).

Molecular pathways involved in the CCPA increased
osteogenesis in DPSCs

We wondered whether the CCPA-induced increase of
osteogenesis in DPSCs grown under differentiating condition
was coupled to the activation of the canonical wingless
(Wnt) signaling pathway, as occurs in other human MSCs, i.e.
deriving from bone marrow and differentiating into osteo-
blasts (Krause et al., 2010). As shown in Figs. 5A–B, when
the cells were cultured in osteogenic medium for 3 and
7 DIV, there was a significant increase in the intracellular
level of Dvl, the most proximal cytosolic component known
in this pathway, that is usually enhanced when a member of
the Wnt family binds the cell receptors encoded by
the Frizzled gene family. In the same cells and at the same
times, we observed a parallel significant increase in the
expression of phosphorylated glycogen synthase kinase-
3beta (p-GSK-3β), another factor downstream Wnt signaling
pathway, that converges on the transcriptional regulator
β-catenin. Once phosphorylated, GSK-3β is no longer able to
cause the phosphorylation and then the ubiquitination/
degradation of β-catenin, thus favoring its translocation to
the nucleus (Fig. 5C), that in turn induces the transcription
of proteins involved in different body functions, including
osteogenesis (Logan and Nusse, 2004; Chen et al., 2012). The
exposure of our cells committed towards osteogenesis to
30 nM CCPA significantly enhanced, at 3 and 7 DIV, either
the intracellular level of Dvl, or the expression of p-GSK-3β
as compared to cells exposed to osteogenic medium alone
(Figs. 5A–B).

Involvement of Wnt/Dvl pathway in the CCPA induced
increase in DPSC osteogenesis

To demonstrate the involvement of Wnt pathway in the
CCPA-induced effects, we carried out further experiments
using differentiating DPSCs: in one set of cell cultures we
performed Dvl-2 siRNA transfection; in another set, normal
differentiating DPSCs were pre-treated with Dickkopf-1
(DKK-1), a known antagonist of the canonical Wnt pathway,
prior to the exposure to CCPA. As shown in the Supplemental
material, our transfection conditions were remarkably
efficient as in cells in which fluorescent GFP, assumed as a
positive control, was transfected, microscopical detection
and flow cytometric analysis revealed a very large amount of
positively transfected cells. The success of Dvl-2 silencing
was witnessed by western blot analysis showing that Dvl-2
immune-complex was significantly reduced in cells submit-
ted to siRNA and grown for 3 DIV in osteogenic medium as
compared to control cells. The exposure of these silenced
cells to CCPA did not reverse Dvl-2 knocking down (Fig. 6A).
Similarly, there was no increase in the expression and
activity of ALP evaluated in the same silenced cells after
7 DIV of osteogenic differentiation and CCPA was unable to
induce stimulatory effects on the enzyme expression/
activity (Fig. 6B), as previously demonstrated in control
cells (see also Fig. 5). Accordingly, the exposure of normal
DPSC to the Wnt inhibitor DKK-1 reduced the differentiation of
DPSCs exposed to osteogenic medium alone and abolished
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CCPA-increased mineralization of differentiating DPSCs, eval-
uated as ARS staining and colorimetric detection (Fig. 6C).
Discussion

In this study we demonstrated that DPSCs may be induced to a
greater differentiation into osteoblasts by selective stimula-
tion of A1R.
Fig. 3 Effects of CCPA on DPSC cell growth. Proliferation rate
was assessed by MTS assay in DPSCs grown under undifferentiating
or osteogenic condition (panel A) over a period from 2 to 16 days
in vitro (DIV). During a period ranging from 0 to 8 DIV some
undifferentiated (panel B) or differentiating (panel C) cultures
were exposed to CCPA administered at different doses at each
medium change. The proliferation rate was measured as the
absorbance detected at 490 nm in untreated cultures (control)
and in cultures exposed to CCPA. Results are expressed as
mean ± S.E.M. of three independent experiments, in which
different cell samples were used. *p b 0.05: statistical signifi-
cance vs. control (Student's t test).
We started our study based on the known capability of DPSC
to differentiate into osteoblasts (Huang et al., 2009; Ulmer
et al., 2010; D'Alimonte et al., 2011; Estrela et al., 2011).
Here, we confirmed data demonstrating that the prolifera-
tion rate of MSCs of dental origin, even when grown in
osteogenic condition, is rapid reaching a plateau around
8–10 DIV. This time is approximately half of that used by
stem cells deriving from other sources, in particular from
bone marrow (Huang et al., 2009; Alge et al., 2010; Costa et
al., 2011), that represent the benchmark for studies dealing
with properties of MSCs. Thus, DPSCs are a good model
to evaluate the influence of different substances on their
growth and differentiation towards an osteoblastic pheno-
type. These aspects are currently under intense evaluation
for future clinical applications in tissue engineering and
bone regeneration (Ulmer et al., 2010; Estrela et al., 2011).

We directed our attention to purines, ubiquitous substances
that, acting as signalingmolecules, are able to affect different
body functions, including osteogenesis (Gartland et al., 2012).
A number of papers have recently demonstrated that
different receptors to ATP are present in either osteoblasts
or osteoclasts and participate in bone remodeling process-
es (Orriss et al., 2010; Gartland et al., 2012; Noronha-
Matos et al., 2012). On the contrary, knowledge on the
functions of its metabolite, adenosine, at bone level is at
the very beginning.

Here, we showed that DPSCs, like MSCs deriving from
human or rodent bone marrow (Evans et al., 2006; Gharibi et
al., 2011; Costa et al., 2011), are provided with the four
subtypes of AR. In our cells, their expression was not
modified following DPSC differentiation, whereas in MSCs
from human or rodent bone marrow there was a dominant
expression of A2BR in undifferentiated cells and/or during
later stages of their osteoblastic differentiation (Costa et
al., 2011; Gharibi et al., 2011). The discrepancy may likely
be due to differences in the source from which MSCs were
derived (i.e. animals or aged women with osteoarthrosis
versus young healthy persons, in our case). The prevalence
of A2BR reasonably justifies also the greater influence exerted
by these receptors compared to that of A1R on the osteogenic
differentiation of MSCs used in the cited papers. We further
observed that either undifferentiated or differentiating DPSCs
express CD73, corresponding to 5′-ectonucleotidase enzyme,
in equivalent manner, differently from other MSCs in which
the enzyme expression/activity decreases during differentia-
tion (Costa et al., 2011; Liu et al., 2009a; Liu et al., 2009b).



Fig. 4 Effects of the treatment with CCPA, assessed after different periods (7–14 and 21 DIV), on the osteogenic differentiation of
DPSCs evaluated as extracellular matrix mineralization (panels A and E), ALP activity (panel B) and expression of osteogenic markers
such as RUNX-2 and ALP (panels C–D). In some experiments, cells were pre-treated with DPCPX, A1R antagonist, added 30 min prior to
the addition of CCPA. A and E) Mineralization of DPSCs, grown for 21 DIV in osteogenic medium, evaluated by cell staining
with Alizarin red S (ARS, panel E) and quantification of staining via extraction with ammonium hydroxide (panel A) at different periods
(7–14–21 DIV). The amount of released dye was measured by a microplate reader at 405 nm. The values, expressed as units of optical
density (O.D.), are the mean ± S.E.M. of three independent experiments, in which different cell samples were used. B) DPSCs were
grown in the absence or in the presence of CCPA. After different periods (3, 7 and 14 DIV), ALP activity was assayed as described in
the Materials and methods section and expressed as nmol of p-nitrophenol produced per mg of cell protein within a period of 30 min
(nmol/mg protein/30 min). Values are the mean ± SEM of three separate experiments. C–D) ALP and RUNX-2 expression evaluated as
real time PCR. This analysis was performed on total RNA extracted from DPSCs cultured in undifferentiating medium and osteogenic
differentiating medium, as described in Materials and methods, some of differentiating cells being exposed to CCPA for different
period of time (3–7–14 DIV). Data are the mean ± SEM of three separate experiments. *p b 0.05, **p b 0.01, ***p b 0.001:
significantly different from undifferentiated DPSCs; # p b 0.05: significantly different from DPSCs growing in osteogenic medium
(Student's t test).
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Thus, DPSCs are able to respond to the stimulation by
extracellular purine nucleosides which, for the most part,
are formed from the corresponding nucleotides, commonly
released from cells in physiological and even more in
pathological conditions. However, as observed elsewhere
(Costa et al., 2011; Shimegi, 1998), the activity of the
enzymes metabolizing extracellular ATP does not produce
amounts of endogenous adenosine able to influence the
osteogenic differentiation of DPSCs grown in normal (non
stressful/pathological-like) culture conditions. In fact, cell
exposure to apyrase or ADA, that increased or decreased
adenosine levels in the culture medium, or to AR antago-
nists alone did not modify the osteogenic commitment of
our cells. In contrast, the pharmacological and selective
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stimulation of AR subtypes, in particular of A1R or A2BR,
increased DPSC osteogenic differentiation, with a greater
effect by A1R activation. Since in our cells the specific
stimulation of A3R caused no modification of their osteo-
genic commitment, this also excludes that CCPA, even at
the highest dose (60 nM), reported as able to interact with
A3R in human cells (Klotz et al., 1998), may enhance DPSC
differentiation by interfering with these receptors. Note-
worthy, A1R influenced also the proliferation of differen-
tiating DPSCs, as previously observed in other cell types of
mesenchymal origin from humans or rodents (Costa et al.,
2011; Shimegi, 1998), without affecting cell cycle of DPSCs
grown in undifferentiating medium. Since they show a very
rapid duplication, we hypothesize that the proliferative
effect of CCPA might be obscured.

So far, literature on A1R has been in favor of a prevailing
role played by these receptors in the activation of
osteoclasts (Kara et al., 2010; He and Cronstein, 2012)
and some findings showed that the blockade of these AR
may induce favorable effects on osteoporosis or fracture
healing. However, our results showed that the stimulation
of A1R favors the commitment of MSCs towards osteogen-
esis. This effect might reinforce a similar one promoted by
purines acting on A2BR, whose expression seems to increase
with the age of cells/patients.

Noteworthy, the A1R-induced enhancement of osteogen-
esis in DPSCs is coupled to the activation of Wnt signaling
pathway and this is the first time to our best knowledge that
such an involvement has been documented. So far, we and
others have demonstrated that A1R stimulation is coupled to
the activation of the mitogen-activated kinase (MAPK) or the
phosphatidylinositol 3-kinase (PI3K)/Akt pathways (Schulte and
Fredholm, 2003; Ciccarelli et al., 2007; D'Alimonte et al.,
2007), in addition to the well known Gi protein-mediated
inhibition of the adenylate cyclase/cAMP system. In this
concern, previous data showed that the stimulation of this
enzyme system induced osteogenesis in human but not in
rodent derivedMSCs (Siddappa et al., 2008, 2010). Accordingly,
osteogenic effects caused by the stimulation of either A1R or
A2BR have been evaluated in terms of adenylate cyclase activity
(Costa et al., 2011; Gharibi et al., 2011). Surprisingly, the
effects evoked by the two AR stimulation on MSC osteogenesis
were similar whereas the invokedmechanism of action on cAMP
formation was the opposite. Tentavive explanations looked
at the other known molecular pathways coupled to these
receptors such as MAPK or PI3K/Akt signals. Our findings
demonstrated that there may be another possibility, as the
stimulation of A1R leads to the activation of Wnt pathway. At
Fig. 5 Pharmacological activation of A1R stimulates the accum
phosphorylation in the Wnt pathway in differentiating DPSCs. A–B)
different times. Levels of Dvl-2 or phosphorylated GSK3β were de
loaded per lane). Immunoblots, reprobed with antibody against
densitometric analysis, the values of which, normalized to β actin
mean ± SEM of three independent experiments. *p b 0.05, **p b 0.01
significantly different from DPSCs growing in osteogenic medium (St
Wnt pathway as related to the A1R stimulation. Dvl: dishevelled pro
frizzled receptors, or indirectly via A1R stimulation), increase of cyt
that results in the inhibition of the GSK3β activity. Thus, β-catenin is
ubiquitination/degradation. β-catenin from cytosol translocates int
present, there is an increasing interest in the activity of Wnt
signal in different cells and in particular in the modulation of
MSC differentiation into osteoblasts (Bain et al., 2003; Gregory
et al., 2005), even though results on this aspect are still
conflicting. In fact, a number of papers demonstrated that
activation of the canonical Wnt pathway may inhibit MSC
differentiation into osteoblasts (Eijken et al., 2008), promoted
by bone-morphogenetic protein 2 or dexamethasone (Silverio
et al., 2012; de Boer et al., 2004). This is true also for MSC from
dental tissues (Liu et al., 2009a; Liu et al., 2009b; Scheller et
al., 2008). In order to reconcile these opposite findings, it
should be considered that Wnt signal sustains cell differentia-
tion when activated during the first days/weeks of this
process, whereas the stimulation of this cascade in more
mature osteoblasts seems to cause an arrest of MSC differen-
tiation (van der Horst et al., 2005). In our opinion, a later
involvement of A2BR activating the adenylate cyclase/cAMP
system may support a complete and successful osteogenic
differentiation of MSCs. This hypothesis, however, deserves
further investigation.
Conclusions

In summary, DPSCs are a good model to study the con-
tribution of MSCs in bone remodeling and regeneration. Also,
purinergic signaling, that has been shown to regulate
proliferation, cell death, differentiation and successful
engraftment of stem cells originating from diverse origins
(Glaser et al., 2012), may contribute to modulate osteogen-
esis and bone damage repair. More in particular, the role
played by adenosine, that has long been neglected at the
bone level, seems now to attract an increasing interest.
Surely, there is still much work to do in order to understand
either the function of AR or the complexities of the signal
pathways activated as a consequence of their stimulation or
inhibition. But we are confident that this kind of research
may open a new interesting scenario aimed at a better
comprehension of the processes and substances involved in
bone remodeling and repair.
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DPSCs growing in osteogenic medium were exposed to CCPA for
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