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In the educational field, it is common to analyze the probability of a cor-
rect response to a test item as a continuous function of the item parameters
and the subject ability. This relation is given by the item response func-
tion. Since test data are expressed as curves, they can be analyzed through
the functional data analysis approach. Indeed, several researchers suggest to
estimate the shape of the item response function through a non-parametric
approach in order to catch unusual or unforeseen features in the curve. On
the contrary, item response theory models assume a specific parametric func-
tional form for the item response function. In this paper, we propose an
alternative method that combines the parametric specification of the com-
mon item response theory with the functional data analysis approach. In
particular, we aim to classify the items through some clustering algorithms
exploiting the characteristics of convex function spaces. The key idea is to
transform the function space of the items in a convex space which guaran-
tees desirable properties. Specifically, we prove that, exploiting the convexity
property, the functional mean belongs to the same function space as the item
response functions. The applicability of our proposal in the educational field,
is demonstrated through a real data set concerning test data of the INVALSI
mathematics test administered to upper secondary school students.
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1 Introduction

Item Response Theory (IRT) refers to a class of statistical models used to describe the
association between the response behaviour of subjects to a set of categorically scored
items and the underlying latent trait which is indirectly measured by the items (Lord
and Novick, 1968). This relation is given by the item characteristic curve or item re-
sponse function, which shows how the probability of success on a test item depends on
the examinee ability level.
In this context, test data are presented as curves, thus, the functional data analysis
(FDA) approach (Ramsay and Silverman, 2005; Ferraty and Vieu, 2006) may be con-
sidered. FDA refers to the analysis of curves or functions in a continuous domain. This
approach assumes the existence of unknown smooth functions f(·) which generate and un-
derlie the data. However, in real applications, the functions are observed as a sequence of
discrete data at a finite number of points of the domain, thus, the FDA approach primar-
ily aims to fit the true form of the underlying function through some suitable techniques,
such as basis functions expansion and regularization. This approach has been used in
many research fields, such as meteorological (Ramsay and Dalzell, 1991), medical (Pfeif-
fer et al., 2002), spectometric (Reiss and Ogden, 2007), and ecological (Gattone and Di
Battista, 2009; Di Battista et al., 2016) ones. Although FDA is a method to analyze
observed curves, Ramsay (1997) highlights that it can also be applied to those implied
by and estimated from data that are not at all curves at first sight, such as test data.
Indeed, in most IRT models, it is assumed that the item response curve is included in a
restricted class of functions defined by a specific mathematical models, such as normal
ogive, step, polynomial, logistic functions. However, several researchers suggest to esti-
mate the shape of the item response function in the functional framework, without prior
restrictive assumptions about its mathematical form. Ramsay (1991), for example, uses
the Kernel regression to non-parametrically estimate the item response function; Rossi
et al. (2002) and Matthew (2007) model the log-odds of the item response functions with
B-splines, because this transformation of the item response function does not necessar-
ily imply constraints on its value. The authors claim that a non-parametric approach is
a more flexible method than the standard IRT, because it allows to model unusual or
unforeseen features of the curve. However, parametric models are often motivated by
some level of analysis of the psychological processes involved in the choice that an exam-
inee makes when confronted with an item. Moreover, simple parametric models exhibit
desirable statistical and mathematical properties, tempting one to wish that they are
true (Ramsay, 1997). In this paper, we propose an alternative method for the analysis
of test data, which combines the parametric specification of the common IRT models
with the FDA approach. Our proposal allows to preserve the usual interpretation of
test data in the IRT framework, nevertheless taking advantage of the functional data
analysis tools. Indeed, the FDA approach grants a deeper analysis of those phenomena
varying in a fixed domain (Ramsay and Silverman, 2005; Ferraty and Vieu, 2006) and,
in an educational framework, allows the evaluation of the items behavior throughout the
reference domain. In this context, the observed item response curves are expressed by
a specific parametric function, thus, the function space is constituted by a set of curves
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belonging to the same parametric family (De Sanctis and Di Battista, 2012; Di Battista
and Fortuna, 2013). The novelty of our method lies in exploiting the known form of
the function underlying the data. It allows to work directly on the function space by
avoiding the use of smoothing techniques. In particular, we refer to the characteristics
of the convex function spaces, in order to achieve some desirable properties. The main
advantage in dealing with convex subset of functions is that we can obtain a synthesis
measure of the observations that belongs to the same function space as the data. How-
ever, not all the functions constitute a convex function space. For example, in this paper,
we refer to the parametric logistic IRT models (Lord and Novick, 1968) that specify the
probability of a correct response to an item as a logistic function of items and subjects
parameters. Thus, the subset of functions is neither a vector subset nor a convex subset.
In this setting, we propose a transformation one-to-one that converts non-convex subset
of functions to a convex one. In this way, it is possible to obtain functional summary
statistics belonging to the same function space as the data.
The advantages of this approach become clear when the functional k-means algorithm is
considered. The k-means algorithm is an iterative procedure that assigns curves to the
cluster whose centroid is closest according to a specific distance. The functional centroids
is the representative function of a cluster; thus, it should belong to the same function
space as the observed functions. However, the method may also be applied to other
cluster algorithms such as the agglomerative Ward’s hierarchical method. Moreover, as
the parametric functional form of the observations is known, the functional distance can
be directly computed in the explicit form of the functions. Thus, clustering results do
not differ depending on how the curves are fitted to the data.
The paper is organized as follows: Section 2 reviews standard parametric logistic IRT
models; Section 3 deals with functional clustering algorithms for those functional data
that belong to a specific parametric family, focusing on the k-means clustering algo-
rithm and the Ward’s hierarchical clustering method. Furthermore, the Section presents
a suitable procedure for non-convex subsets, in order to compute functional centroids
that belong to the same subset of the observed functions. Section 4 applies our method
to a real data set concerning the INVALSI mathematics test administered to upper
secondary school students. Section 5 provides some concluding remarks.

2 Parametric IRT models

Item response theory (IRT) refers to a family of latent trait models that is commonly used
to study a latent trait (usually the subject ability) associated with a set of categorically
scored items in a test (Lord and Novick, 1968). It provides a mathematical model to
explain the relationship among item characteristics, subject ability and the probability of
a correct response and assume that both persons as well as items have a position on the
same underlying dimension the test is measuring (Braeken, 2008). Although IRT models
have a predominant role in educational assessment, they become a popular framework
in many fields, including customer satisfaction surveys (Bradlow and Zaslavsky, 1999;
Valentini et al., 2011) and public health (Aggen et al., 2005; Sharp et al., 2006).



436 Di Battista, Fortuna

The basic representation of IRT models is given by (Lord and Novick, 1968):

P (X = x|θ) = f(η, θ) (1)

where X represents the score on the test item; x is a possible value for the score; η
is a vector of parameters that denotes the characteristics of the test item, θ represents
the single parameter that describes the subject characteristics and f is a function which
defines the relationship among the item parameters and the probability of the response.
Different IRT models arises from different functional forms assumed for f , and a differ-
ent number of item parameters. The most common IRT models for dichotomous items
assume one (Rasch, 1960), two (Birnbaum, 1968) or three (Birnbaum, 1968) item pa-
rameters and define f in Equation (1) as a logistic function. The Rasch model and the
two parameters logistic (2PL) model specify the probability of a correct response on an
item as a function of items and subject parameters respectively as follows:

Pj(θi) = P (Xij = 1|θi, βj) =
exp(θi − βj)

1 + exp(θi − βj)
(2)

Pj(θi) = P (Xij = 1|θi, αj , βj) =
exp[αj(θi − βj)]

1 + exp[αj(θi − βj)]
(3)

where Xij denotes the observed response of the i -th subject (i = 1, ..., n) to the j -th item
(j = 1, .., J), with Xij = 1 representing the correct responses and Xij = 0 the incorrect
one; θi indicates the ability of the i -th subject; while αj and βj are the discrimination
and the difficulty parameter of the j -th item, respectively. The conditional probability
functions in Equations (2) and (3) are called item characteristic curves or item response
functions; they specify how the probability of an item response changes due to changes
in the latent variable and, clearly, they are monotonically increasing functions of the
latent trait (Braeken, 2008). The parameters α and β describe the shape of the item
response function. In particular, β is a location parameter and represents the point on
the latent continuum where the probability of a positive response for the i-th subject
is equal to 50%. The larger the difficulty parameter, the more the ability a respondent
must have to endorse that item. The discrimination parameter, α, is the slope of the
item characteristic curve at the value of the location parameter. It reflects how well the
item is able to differentiate between subjects having different ability levels and indicates
how strongly related the item is to the latent trait. Items with high discriminations are
better at differentiating respondents around the location point, in that small changes in
the latent trait lead to large changes in probability. The Rasch model can be viewed as
a special case of the 2PL model where the discrimination parameters are constant over
items, that is αj = 1 ∀j, j = 1, 2, ..., J .
The three parameters (3PL) logistic model introduces a nonzero lower asymptote for the
probability of a correct response. It can be expressed as follows:

Pj(θi) = P (Xij = 1|θi, γj , αj , βj) = γj + (1− γj)
exp[αj(θi − βj)]

1 + exp[αj(θi − βj)]
(4)
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where γj is known as the guessing parameter of the j-th item and represents the prob-
ability of getting the item correct just trying a guess. When γj = 0 the 3PL model
resembles the 2PL model.
The basic assumptions behind the above models are:

• Unidimensionality: the set of items are indicators of a single continuous latent
variable θ;

• Local independence: the subject responses to a set of items are uncorrelated for a
given value of θ;

• Monotonicity: the probability of correct response to the item increases as the abil-
ity of the examinees increases.

Under these conditions, in case of dichotomous items, the expected score on the j-th
item for the i-th subject, is equal to the probability to obtain a correct response at a
given ability level:

E(Xij |θi) = Pr(Xij = 1|θi) = Pj(θi) i = 1, 2, ..., n; j = 1, 2, ..., J (5)

and the expected test score of the i-th subject is given by (Grayson, 1988; Huynh, 1994;
Matthew, 2007):

E(Xi|θi) = E

(
J∑
j=1

Xij |θi

)
=

J∑
j=1

E(Xij |θi) =
J∑
j=1

Pj(θi) i = 1, 2, ..., n (6)

In the IRT framework, the plot of the expected test score in Equation (6) against θ is
typically called test characteristic curve, TCC(θi), that shows the expected test score
as a function of the underlying latent variable, θ.
For dichotomous items, it is more useful to consider the proportion of correct answers
in the tests, thus, the expected test score is divided by the maximum possible score
(Weiss, 1995) and the TCC turns out to be equal to the average of all the item response
functions:

TCC(θi) =

J∑
j=1

P (Xj |θi,ηj)
J

(7)

In this formulation, it is possible to compare TCC from tests with different numbers of
test items.

3 Functional clustering on convex function spaces

Test data may do not appear explicitly as functional data, because they are usually
zeros and ones indicating unsuccessful and correct answers to test items. Nevertheless,
in the educational field, it is common to analyze the probability of a correct response as
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a continuous function of the item parameters and the subject ability. In this context,
the observed data consist of a set of item response functions, Pj(θi), j = 1, 2, ...J , one
per test item that, usually, are expressed by a specific parametric model. Thus, the
functional data observed for each unit, belong to a function space, say S, with m real
parameters, that is:

S = {f(η; θ)} (8)

where f is a parametric function, η = (η1, η2, ..., ηm)T represents a set of unknown item
parameters taking values in a parameter space Ω; θ is the domain of the functions (θ ∈ R),
and S is a subset of some Lp(X) space. In particular, according to the parametric IRT
models introduced in Section 2, η represents the items parameters vector and f is a
logistic function. Under parametric IRT models, Pj(θi) can be viewed as the regression
of item score on the underlying variable θ (Lord and Novick, 1968) and the logistic
function specifies a monotonically increasing function such that higher ability results in
a higher probability of success.
In this setting, test data can be analyzed in the FDA framework. Moreover, since
the functional form of the observations is known in advance, the approximation of the
function underlying the data through smoothing techniques is not required (Di Battista
et al., 2016). The main advantage to be gained by the FDA approach is the analysis
of curve characteristics with functional tools. In particular, each item can be studied
through the shape of the item characteristic curve. Indeed, the curves in a functional
data set may present a variety of distinctive patterns corresponding to different shapes
and variation that can be identified by clustering the functions (Tarpey, 2007; Sangalli
et al., 2010b). Starting from J parametric item response functions, Pj(θi) ∈ S, we aim
to identify a set of homogeneous clusters in Lp by determining a partition of the space
according to the minimal distance. In particular, an L2 metric in function space is applied
combined with both a k-means algorithm and hierarchical methods for finite dimensional
data. Specifically, the k-means algorithm (Forgy, 1965; MacQueen, 1967) is an iterative
procedure initialized by fixing K clusters, Ck, k = 1, 2, .....,K, and by randomly selecting

in S a set of arbitrary initial centroids, {φ(q)1 (x), ..., φ
(q)
K (x)}, one for each cluster. At

each q-th iteration, q = 0, 1, ..., Q, the curves are assigned to the cluster whose centroid
is closest according to a specific distance. Then, the cluster means are updated based
on the assignment of curves to clusters and the algorithm continues to iterate until no
more curves are reassigned to clusters (Sangalli et al., 2010a). Specifically, let Pj(θi),
j = 1, 2, ..., J be J item response functions in a subset S of Lp and let φk(θi) be the
centroid of the k-th cluster, then, the k-means algorithm finds a partition of the subset
S into K clusters by minimizing the sum of squared error criterion (Jain and Dubes,
1988; Tan and Witten, 2015) between the cluster center and the functions belonging to
the cluster as follows:

J(C) = min

K∑
k=1

∑
Pj(θi)∈Ck

d2
(
Pj(θi), φk(θi)

)
= min

K∑
k=1

∑
Pj(θi)∈Ck

||Pj(θi)− φk(θi)||2 (9)

In standard applications of k-means clustering, data points in Rn are assigned to clusters
using the minimal Euclidean distance to the cluster centers. If the data are functions, the
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following L2 metric in function space may be more appropriate for clustering (Tarpey,
2007):

d(Pj(θi), φk(θi)) = ||Pj(θi)− φk(θi)||2 =

(∫
|Pj(θi)− φk(θi)|2d θ

) 1
2

(10)

Since the centroid is the representative function of a cluster, it should belong to the same
function space as the item response functions (Di Battista et al., 2016). According to
the standard FDA approach, functional summary statistic are computed by averaging
the functions across the replications (Ramsay and Silverman, 2005). This procedure
leads to a function belonging to the same subset of the functional data only in a convex
space. However, under the IRT models, the subset of functions, S, is neither a vector
subset nor a convex subset. In order to obtain functional centroids belonging to the same
function space as the data, we refer to a one-to-one transformation, T , which converts
a non-convex subset of functions, S, in a convex subset, C. Through T , it is possible to
consider the functional mean in the convex subset, then, we can return it to S with the
inverse transformation T−1. In particular, for test data, T is expressed as the logit of
the item response functions:

T
(
Pj(θi)

)
= logit

(
Pj(θi)

)
= ψj(θi) (11)

where ψj(θi) are the corresponding functions in the convex subset C. It is easy to verify
that the centroid of the k-th cluster belong to the same function space as the item
response functions. Indeed, the functional centroids with respect to T are given by:

φT,k(θi) = T−1

( ∑
Pj(θi)∈Ck

T
(
Pj(θi)

)
Jk

)
(12)

where Jk is the number of item response functions in the k-th cluster, with
∑K

k=1 Jk = J .
Taking advantage of the convexity properties, the transformation T allows us to define
the functional mean in the usual way obtaining an element of S. Thus, the centroids in
Equation (12) belong to the same function space as the functions. Then, the squared
error criterion with respect to T can be defined as follows:

JT (C) = min

K∑
k=1

∑
Pj(θi)∈Ck

d2
(
T (Pj(θi)), T (φk)

)
= min

K∑
k=1

∑
Pj(θi)∈Ck

||T (Pj(θi))−T (φk)||2

(13)
and the cluster membership of the observations is determined by minimizing (13) over
all the K clusters.
Moreover, since S is a parametric set of functions, the functional distance in (10) can
be computed directly on the explicit form of the functions. For this reason, clustering
results do not depend on how the curves are smoothed to the data, contrary to the
standard FDA approach. Indeed, it is well known that, functional k-means clustering
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results vary according to the method used for fitting the curves (Tarpey, 2007). Thus,
in the standard FDA framework, the primary question of interest is how best to linearly
transform the data prior to clustering.
Hierarchical clustering techniques may be also adopted for functional data (Ferreira and
Hitchcock, 2009). In this setting, the classification strategy consists of a series of parti-
tions, which may run from a single cluster containing all the functions (divisive methods),
to J clusters, each containing a single function (agglomerative methods). In order to
determine which groups should be merged (for agglomerative approach) or divided (for
divisive approach), different metrics and linkage methods can be used. For functional
data, the L2 metric in (10) represents a suitable choice to define dissimilarities among
functions. Concerning the linkage methods, the most common are: the single linkage
(Sneath, 1957), the complete linkage (McQuitty, 1966), the average linkage (Sokal and
Michener, 1958), or the Ward’s minimum variance method (Ward, 1963). In particular,
if we refer to the Ward’s minimum variance method for agglomerative hierarchical clus-
tering, the problem of defining a mean function that belongs to the same function space
as the item response functions arises again. Indeed, this method minimizes the total
within-cluster error sum of squares. Thus, at each step, the algorithm finds the pair of
clusters that leads to minimum increase in total within-cluster variance after merging.
This increase is a weighted squared distance among the cluster mean functions. The
latter can be suitably computed through Equation (12). Ward’s method presents some
similarities with the k-means algorithm as it is the only one, among the agglomerative
hierarchical clustering methods, that is based on a classical sum-of-squares criterion, pro-
ducing groups that minimize within-group dispersion at each binary fusion. However,
Ward’s method uses merging of sub-clusters to achieve this goal as opposed to k-means
algorithm which employs an iterative reassignment of points.

4 Application: INVALSI mathematics test for the upper
secondary school students

The framework previously described is applied to a real data set drawn from annual
surveys conducted by the Italian national institute for the evaluation of the school sys-
tem (INVALSI). The INVALSI regularly develops standardized tests to assess Italian
language and mathematics skills of students at different school grades: primary (second
and fifth grade), lower secondary (sixth and eight grade), and upper secondary (tenth
grade) school. In this paper, we consider the INVALSI mathematics test administered
to upper secondary school pupils at the end of the scholastic year 2011-2012. These data
are based on a nationally representative sample of about 42000 students. The INVALSI
mathematics test consists of 54 items covering four main content domains: numbers (17
items), shapes and figures (12 items), functions and relationships (11 items) and data and
previsions (14 items) (INVALSI, 2012). Several types of items are designed: multiple-
choice with one correct answer and three distractors (21 items), complex multiple-choice
with more true-false items (13 items), open-ended items with a unequivocal answer (13
items), and open-ended items that require students to give both a numeric answer and
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the adopted procedure (7 items). All type of items are dichotomously scored, by assign-
ing 1 point to correct answer and 0 otherwise. The INVALSI mathematics test may be
found on the ‘test area’ of the web-site www.invalsi.it.
The responses of upper secondary school students on 54 dichotomous items are ana-
lyzed applying the parametric IRT models introduced in Section 2. In this context, the
observed data consist of a set of J parametric item response functions, Pj(θi), display-
ing the smooth relationship between the probability of success on an item, the item
characteristics and the latent ability continuum. A preliminary analysis is conducted to
test the equal discrimination across items by comparing the Rasch model and the 2PL
model in Equations (2) and (3), respectively. According to the likelihood ratio (LR)
test (LR=37786, with 54 degree of freedom, p < 0.001), the 2PL model fits the data
significantly better than the Rasch model. Information criteria supported this result, as
the Akaike’s Information criterion (AIC) (Akaike, 1974) and the Bayesian Information
criterion (BIC) (Schwarz, 1978) for the 2PL (AIC=2378763, BIC=2379696) are less than
those of the Rasch model (AIC=2416441, BIC=2416908). Thus, we conclude for a signif-
icant difference in discriminating power among the items. The 3PL model should not be
considered because in the INVALSI mathematics test for the upper secondary school, the
presence of significant distortions due to cheating or guessing phenomena has not been
detected (INVALSI, 2012). This is mainly due to the presence of an outside observer
during the test administration in the sample classes. Thus, the INVALSI mathematics
test data are analyzed according to a 2PL parametrization. Item parameters estimates
of the 2PL model are obtained through the R package ”ltm” (Rizopoulos, 2006), using
marginal maximum likelihood estimation. Table 1 shows the discrimination and the dif-
ficulty parameters for each item, together with their standard errors and z-values. The
items are reported in ascending order, according to the difficulty parameter.
In the IRT literature, the parameter estimates are useful descriptors of the data, as
they provide a numerical summary of item characteristics. However, we point out that
the analysis of the shape of each item response function through functional tools may
provide further information. In particular, we aim to identify specific common patterns
among the INVALSI mathematics test items applying the functional k-means algorithm
introduced in Section 3. We initialized the k-means procedure by fixing three clusters
(K = 3), as suggested by the analysis of the average silhouette values (Rousseeuw, 1987)
computed for different numbers of clusters (Table 2). Then, each item of the INVALSI
mathematics test is assigned to its nearest cluster center, by minimizing the sum of
squared error criterion in (9). In particular, we use the one-to-one transformation T
between the non-convex subset of the item response functions, S, and a convex subset
C in Lp(X); that is, the logit transformation in Equation (11) which yields to the corre-
sponding item response functions, ψj(θi), in the convex subset C. Then, the functional
centroid is computed in the subset C as follows:

T (φk) =
1

Jk

∑
ψj(θi)∈Ck

ψj(θi) =
1

Jk

∑
ψj(θi)∈Ck

(αjkθi−αjkβjk) = αkθi−αkβk ∈ C k = 1, 2, ...,K

(14)
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Item difficulty (β) discrimination (α) Item difficulty (β) discrimination (α)

Value Std.err z.value Value Std.err z.value Value Std.err z.value Value Std.err z.value

M1 a -3.77 0.10 -36.19 0.78 0.02 31.62 M10 b 0.45 0.02 28.93 0.78 0.01 60.82

M4 b -2.83 0.08 -37.34 0.51 0.01 35.64 M15 0.63 0.01 46.42 1.04 0.01 70.64

M2 a -2.32 0.05 -51.04 0.77 0.02 45.62 M21 0.66 0.01 53.54 1.23 0.02 75.60

M4 a -2.07 0.04 -49.66 0.70 0.02 46.14 M13 0.73 0.01 50.04 1.00 0.01 69.11

M2 b -1.80 0.02 -75.35 1.30 0.02 57.47 M24 0.78 0.01 77.62 1.91 0.02 80.58

M7 b -1.70 0.03 -51.46 0.71 0.01 49.53 M22 0.86 0.03 29.93 0.48 0.01 42.21

M2 c -1.70 0.02 -74.20 1.23 0.02 58.87 M1 c 0.86 0.02 37.64 0.62 0.01 51.28

M6 a -1.66 0.02 -71.57 1.15 0.02 58.99 M20 0.87 0.01 70.12 1.41 0.02 77.01

M11 a -1.63 0.02 -83.71 1.50 0.02 60.70 M9 d 0.88 0.03 33.02 0.53 0.01 45.34

M9 c -1.11 0.02 -51.30 0.78 0.01 56.00 M5 0.92 0.02 48.46 0.81 0.01 60.82

M14 b -1.08 0.02 -69.29 1.17 0.02 67.17 M1 b 0.95 0.03 37.80 0.59 0.01 48.98

M4 c -0.98 0.02 -56.67 0.94 0.02 62.47 M16 1.18 0.02 63.91 1.00 0.02 66.34

M29 a -0.93 0.02 -45.37 0.73 0.01 55.01 M3 1.28 0.02 56.61 0.82 0.01 59.87

M23 a -0.78 0.01 -63.28 1.28 0.02 72.32 M25 1.34 0.02 67.61 1.02 0.02 65.85

M9 a -0.64 0.04 -16.41 0.31 0.01 28.35 M11 c 1.36 0.02 80.43 1.31 0.02 70.58

M26 a -0.50 0.01 -41.03 1.10 0.02 70.58 M12 1.44 0.02 95.09 1.70 0.02 70.90

M18 -0.46 0.01 -47.43 1.54 0.02 78.57 M14 c 1.51 0.02 75.80 1.17 0.02 66.75

M6 b -0.46 0.01 -32.63 0.89 0.01 63.96 M6 c 1.52 0.02 92.86 1.62 0.02 69.61

M26 b -0.36 0.01 -29.77 1.03 0.01 69.40 M2 e 1.59 0.02 98.54 1.79 0.03 68.28

M10 a -0.30 0.01 -22.89 0.89 0.01 64.85 M23 b 1.65 0.02 76.80 1.18 0.02 65.40

M29 c -0.24 0.02 -15.77 0.72 0.01 57.00 M9 b 1.69 0.05 35.64 0.45 0.01 38.30

M7 a -0.16 0.01 -12.22 0.90 0.01 65.67 M11 b 1.94 0.03 60.71 0.84 0.02 55.61

M27 -0.13 0.01 -11.90 1.16 0.02 74.29 M17 1.94 0.03 74.11 1.13 0.02 61.07

M28 -0.05 0.01 -4.27 1.14 0.02 73.88 M19 2.99 0.10 30.27 0.36 0.01 30.19

M2 d 0.02 0.01 2.17 1.86 0.02 83.97 M30 3.28 0.10 33.06 0.42 0.01 32.27

M8 0.07 0.01 7.76 1.46 0.02 80.83 M14 a 4.16 0.16 26.39 0.33 0.01 25.92

M26 c 0.14 0.01 11.68 1.02 0.01 70.48 M29 b 4.69 0.62 7.59 0.08 0.01 7.72

Table 1: Item Parameters estimates of the 2PL model for the INVALSI mathematics test

Number of clusters (K) Average silhouette values

2 0.49

3 0.54

4 0.51

5 0.47

Table 2: Average silhouette values for different numbers of K for functional k-means
algorithm
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Figure 1: Classification of the Pj(θi) into three clusters (the first marked by dashed lines,
the second by solid lines and the third one by circle-solid lines) through the
functional k-means algorithm

where αk = 1
Jk

∑Jk
j=1 αjk; αkβk = 1

Jk

∑Jk
j=1 αjkβjk; and Jk is the number of functions

belonging to the k-th cluster. Applying the inverse transformation of the logit in (11),
the functional centroid of the Pj(θi), with respect to T , is obtained as follows:

φT,k(θi) = T−1(φk) =
exp
(
T (φk)

)
1 + exp

(
T (φk)

) =
exp(αkθi − αkβk)

1 + exp(αkθi − αkβk)
(15)

where φT,k(θi) belongs to S and, thus, presents the same functional form as the observed
data. Then, the cluster membership is determined by minimizing Equation (13) overall
the K clusters, on the basis on the L2 distance in (10). Figures 1 shows the partition
of the subset S of item response functions into three clusters. The first group (dashed
lines in Figure 1) represents the easier and less discriminating items. It is composed
by 16 items (M1 a, M2 a, M2 b, M2 c, M4 a, M4 b, M4 c, M6 a, M7 b, M9 c, M11 a,
M14 b, M18, M23 a, M26 a, M29 a) which are mainly open-ended type related to data
and previsions content domain. The second cluster (solid lines in Figure 1) represents
the most difficult and more discriminating items. It is composed by 9 items (M2 e,
M6 c, M11 c, M12, M14 c, M17, M20, M23 b, M24) which are all open-ended type and
are mostly related to numbers content domain. Finally, the third cluster (circle-solid
lines in Figure 1) contains quite easy and quite discriminating items. It consists of
29 items (M1 b, M1 c, M2 d, M3, M5, M6 b, M7 a, M8, M9 a, M9 b, M9 d, M10 a,
M10 b, M11 b, M13, M14 a, M15, M16, M19, M21, M22, M25, M26 b, M26 c, M27,
M28, M29 b, M29 c, M30) which are chiefly of multiple-choice type and mainly refer to
numbers and to shapes and figures content domain. The characteristics of each cluster
may be captured in an immediate way by analyzing the shape of the functional centroids
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Figure 2: Functional centroids of the three clusters

in Figure 2.
The same data set is analyzed through a functional agglomerative hierarchical Ward’s
method. Also in this case, we consider the one-to-one transformation T in order to ob-
tain a convex subset C of the item response functions and the cluster mean of each group
is computed as in (15). As shown by the dendrogram in Figure 3, it is possible to clearly
identify three clusters among the INVALSI mathematics test items. Figures 4 shows the
classification of the subset S of item response functions into three clusters, according
to the hierarchical method. The first group (dashed lines in Figure 4) represents the
easiest and less discriminating items. It is composed by 12 items (M1 a, M2 a, M2 b,
M2 c, M4 a, M4 b, M4 c, M5, M6 a, M7 a, M9 b, M10 b) which are mainly of complex
multiple choice type, related to both data and previsions and function and relationship
content domains. The second cluster (solid lines in Figure 1) represents difficult and
very discriminating items. It is composed of 16 items (M3, M6 c, M8, M11 b, M11 c,
M12, M13, M14 c, M15, M16, M17, M19, M20, M23 a, M23 b, M24) which are chiefly
of open-ended type and are related especially to numbers content domain. Finally, the
third cluster (circle-solid lines in the Figure 1) contains fairly easy and quite discriminat-
ing items. It consists of 26 items (M1 b, M1 c, M2 d, M2 e, M6 b, M7 b, M9 a, M9 c,
M9 d, M10 a, M11 a, M14 a, M14 b, M18, M21, M22, M25, M26 a, M26 b, M26 c,
M27, M28, M29 a, M29 b, M29 c, M30) which are mainly of multiple-choice type and
mostly refer to number and to shapes and figures content domains. Figure 5 shows the
INVALSI mathematics test items per clusters, according to the two functional clustering
methods. These algorithms provide a quite similar classification. However, we highlight
that the functional k-means algorithm works well because, as shown in Figure 5, it bet-
ter merges in the same cluster items with similar characteristics and shapes. On the
contrary, with the functional hierarchical Ward’s method, there are some item response
functions whose shape is clearly in contrast with the trend of the cluster.
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Figure 3: Cluster dendrogram for functional hierarchical Ward’s method applied to the
INVALSI mathematics test

Number of clusters (K) Average silhouette values

2 0.51

3 0.40

4 0.48

5 0.41

Table 3: Average silhouette values for different numbers of K for non-functional k-means
method

In order to increase the soundness of the theoretical framework and to assess the results
of our method, the same data set is analyzed through a traditional (non-functional)
approach for clustering test items. In particular, a non-functional k-means clustering is
implemented for the INVALSI mathematics test data. A key difference lies in the choice
of the number of clusters. Indeed, through a traditional k-means clustering approach,
the analysis of the average silhouette values suggests to only consider two clusters (Ta-
ble 3). Figures 6 shows the classification of the INVALSI mathematics test items into
two clusters, according to non-functional k-means algorithm. The two clusters are both
composed by 27 items. The first cluster (M1 a, M2 a, M2 b, M2 c, M2 d, M4 a, M4 b,
M4 c, M6 a, M6 b, M7 a, M7 b, M8, M9 a, M9 c, M10 a, M11 a, M11 b, M18, M23 a,
M26 a, M26 b, M26 c, M27, M28, M29 a, M29 c) represents items that are enough easy
and less discriminating. The items are principally of multiple-choice type and refer to
both data and previsions and to functions and relationships content domain. The second
cluster (M1 b, M1 c, M2 c, M3, M5, M6 c, M9 b, M9 d, M10 b, M11 b, M11 c, M12,
M13, M14 a, M15, M16, M17, M18, M19, M20, M21, M22, M23 b, M24, M25, M29 b,
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Figure 4: Classification of the Pj(θi) into three clusters (the first marked by dashed
lines, the second by solid lines and the third one by circle-solid lines) through
functional hierarchical Ward’s method

M30) contains difficult and more discriminating items. The items in the cluster are espe-
cially of multiple-choice and open-ended type and refer to the numbers content domain.
The traditional k-means algorithm hides a very important cluster (the third clusters in
both the functional clustering algorithms) which includes quite easy and enough discrim-
inating items. As shown in Figure 6, the latter are mixed in the first and in the second
clusters; thus, the traditional k-means approach does not reveal an important feature
of the INVALSI mathematics test. The Rand index (RI) (Rand, 1971) and its adjusted
version (ARI) proposed by Hubert and Arabie (1985) are computed in order to provide
a measure of agreement between the two partitions obtained from functional and non-
functional k-means algorithms. As we expected, the values of both indices (RI=0.63;
ARI=0.25) indicate a low level of agreement between the two partitions. Compared
to the traditional k-means approach, our method is more suitable to highlight different
kinds of items, by returning a greater degree of detail for the INVALSI mathematics
test items. The reason is that the functional k-means approach takes into account the
behavior of the functions for each point of the domain; whereas, a traditional k-means
approach is based on just some item response function feature.

5 Concluding remarks

The aim of this paper is to develop a functional approach within the IRT context, in
order to classify the items in homogeneous groups, by considering the difficulty and the
discrimination of the items and the subject ability. The study of test data through
the combined use of the IRT parametric specification and the functional data analysis



Electronic Journal of Applied Statistical Analysis 447

Figure 5: Classification of the Pj(θi) into three clusters according to functional k-means
and functional hierarchical Ward’s method

approach yields several advantages. Firstly, the proposed method allows to analyze
the item as a function, by preserving the usual interpretation of test data in the IRT
framework. Indeed we exploit the known form of the function underlying the data by
avoiding the use of smoothing techniques. Secondly, since the items are analyzed as
curves, the functional data analysis tools are able to evaluate the functions at each point
of the domain. Thirdly, with regard to clustering algorithms, the conversion of the
IRT function space to a convex one through the one-to-one transformation T , allows to
compute a functional centroid for each cluster that belongs to the same function space
as the item response functions. In this way, the typical properties of the mean function
are ensured. We also proved that the functional cluster algorithms are more sensitive
than the traditional ones to identify distinct items features. Finally, our methodological
results are particularly useful in order to identify the characteristics of each cluster,
evaluating the behaviour of the functional centroid.
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Figure 6: Classification of the Pj(θi) into two clusters according to non-functional k-
means algorithm
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