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Abstract

Visual hallucinations (VH) represent one of the core features in discriminating dementia with Lewy bodies (DLB) from
Alzheimer’s Disease (AD). Previous studies reported that in DLB patients functional alterations of the parieto-occipital
regions were correlated with the presence of VH. The aim of our study was to assess whether morphological changes in
specific cortical regions of DLB could be related to the presence and severity of VH. We performed a cortical thickness
analysis on magnetic resonance imaging data in a cohort including 18 DLB patients, 15 AD patients and 14 healthy control
subjects. Relatively to DLB group, correlation analysis between the cortical thickness and the Neuropsychiatric Inventory
(NPI) hallucination item scores was also performed. Cortical thickness was reduced bilaterally in DLB compared to controls in
the pericalcarine and lingual gyri, cuneus, precuneus, superior parietal gyrus. Cortical thinning was found bilaterally in AD
compared to controls in temporal cortex including the superior and middle temporal gyrus, part of inferior temporal cortex,
temporal pole and insula. Inferior parietal and supramarginal gyri were also affected bilaterally in AD as compared to
controls. The comparison between DLB and AD evidenced cortical thinning in DLB group in the right posterior regions
including superior parietal gyrus, precuneus, cuneus, pericalcarine and lingual gyri. Furthermore, the correlation analysis
between cortical thickness and NPI hallucination item scores showed that the structural alteration in the dorsal visual
regions including superior parietal gyrus and precuneus closely correlated with the occurrence and severity of VH. We
suggest that structural changes in key regions of the dorsal visual network may play a crucial role in the physiopathology of
VH in DLB patients.
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Introduction

Dementia with Lewy bodies (DLB) is the second most common

form of dementia in the elderly after Alzheimer’s Disease (AD).

Despite the precise nosological relationship between DLB and AD

remains uncertain, persistent visual hallucinations (VH) along with

fluctuations in cognitive function and parkinsonism represent the

core feature in discriminating DLB from AD and other dementias

[1].

The physiopathology underlying VH in DLB is not well

understood. Causative models for complex VH have suggested

that the origin of this deficit may be related to a range of

pathological alterations affecting both the dorsal visual stream,

specialized for visuo-spatial attention and location, and the ventral

visual stream, designated to object recognition [2]. Abnormalities

within the ventral visual stream, revealed by white matter damage

to the inferior longitudinal fasciculus [3] and by increased Lewy

body pathology in the temporal lobe [4,5], were reported in DLB

patients with VH compared to those without VH, supporting the

role of a bottom-up dysfunction. Conversely, increased atrophy [6]

and Lewy body pathology [5] within frontal lobes were observed

in hallucinating DLB in comparison with non-hallucinating DLB

patients, supporting a top-down mechanism in the genesis of VH.

In this context, structural Magnetic Resonance Imaging (MRI)

could be a powerful tool to investigate the aetiology of core

symptoms in DLB. To date, several studies by using voxel-based

morphometry (VBM) found widespread cortical sites of grey

matter atrophy in DLB patients compared to healthy controls [7–

9] but only few of these studies could directly relate structural

evidences to the appearance of VH [6]. However, VBM presents

some limitations: the tissue volume changes among groups are

measured on a voxel by voxel basis after brain normalization to a

standardized space. The interpretation of results can be difficult

because the algorithm of analysis can involve brain sites that are in

close spatial proximity but not closely anatomically connected, and

given that any physical characteristic is measured directly [10].

Cortical thickness approach allows to perform cortical parcella-

tion and to measure with great reliability the pathological thinning

of the cortical grey matter. By measuring a real physical quantity

that is much easier to interpret and to localize in comparison to the

three-dimensional VBM, cortical thickness methods provide a

better localization of structural changes because the smoothing
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procedure is performed on a two-dimensional manifold which

reduces morphological artefacts due to ageing and pathological

processes [11].

Despite the potential advantage of cortical thickness analysis, to

date this approach has not been applied to DLB patients.

In the present study, we performed cortical thickness analysis to

verify the presence of cortical grey matter damage related to VH

in DLB patients. To this aim, firstly, we compared DLB patients

respect to healthy controls. Subsequently, we included a compar-

ison against AD groups to exclude possible pathologic alterations

arising as a result of a dementia process per se and not specific to

DLB pathology. Finally, relatively to DLB group, we performed a

correlation analysis between the cortical thickness and the

Neuropsychiatric Inventory (NPI) hallucination item scores to

highlight the cortical regions which were effectively related to the

occurrence and severity of VH.

Materials and Methods

Study Sample
The study was approved by the Institutional and Ethics

Committee of the University ‘‘G. d’Annunzio’’ Chieti-Pescara

(ID#157801). All procedures were conducted according to the

Declaration of Helsinki and subsequent revisions [12]. Data will be

made freely available upon request. All patients (or their

caregivers) and healthy subjects signed a written informed consent.

16 patients with AD and 19 patients with DLB were recruited

from our case cohorts of patients referring to Memory and

Movement Disorder Clinic; 15 age-matched healthy volunteers

were recruited from our non-demented case register cohorts. The

diagnosis of probable AD was based on National Institute of

Neurological and Communicative Diseases and Stroke/Alzhei-

mer’s Disease and Related Disorders Association criteria [13]. The

diagnosis of probable DLB was made by consensus guidelines [1]

with a specific restriction: we included only patients with the

presence of complex, recurrent VH, plus at least one additional

core feature (parkinsonism or cognitive fluctuations) or one core

and one suggestive feature [1].

All patients underwent MRI scan within six months before the

inclusion in the study and dopaminergic presynaptic ligand

ioflupane SPECT (DAT scan).

Clinical Assessment
Global tests of cognition included Clinical Dementia Rating

(CDR), Mini Mental State Examination (MMSE), Dementia

Rating scale-2 (DRS-2) [14] and Frontal Assessment Battery (FAB)

[15]. The motor part of the Unified Parkinson’s Disease Rating

scale (UPDRS) [16] was carried out to assess the presence and

severity of parkinsonian signs. NPI was used to assess neuropsy-

chiatric symptoms [17]; the occurrence and severity of VH was

assessed by the NPI item-2. Minimal International Classification of

Sleep Disorders criteria were performed to assess REM sleep

Behaviour Disorder (RBD) [18]; Clinician Assessment of Fluctu-

ations (CAF) [19], was used to evaluate the presence and severity

of cognitive fluctuations. All patients were also assessed with

electroencephalogram (EEG) recordings as EEG abnormalities

characterised by parieto-occipital dominant frequency modifica-

tions has previously demonstrated to reliably differentiate probable

DLB from AD patients [20].

Exclusion criteria were uncontrolled hypertension, myocardial

ischemia, peripheral vascular disease and chronic kidney.

MR Data Acquisition and Analysis
All acquisitions were carried out with a Philips Achieva 3 T

scanner (Philips Medical System, Best, the Netherlands) equipped

with 8-channel receiver coil. After scout and reference sequences,

a 3-dimensional T1-Weighted Turbo Field-Echo sequence (3D

T12W TFE, TR/TE = 11/5 ms, slice thickness of 0.8 mm) was

carried out. Participants with images characterized by motion

artefacts were excluded from the analysis.

Cortical thickness on T1-weighted image was estimated at each

vertex across the brain surface using Freesurfer software package

(http://surfer.nmr.mgh.harvard.edu). This method has been

previously described in detail by Fischl and Dale [21]. Specifically,

cortical reconstruction process included magnetic field inhomoge-

neity correction, affine-registration to Talairach-atlas and skull-

strip, segmentation of the subcortical white matter and deep grey

matter volumetric structures, intensity normalization, tessellation

of the grey and white matter boundary, automated topology

correction, and surface deformation following intensity gradients

to optimally place the grey and white matter and grey/

cerebrospinal fluid borders at the location where the greatest shift

in intensity defines the transition to the other tissue class. Once the

cortical reconstruction process is complete, registration to a

spherical atlas to match cortical geometry across subjects, and

subsequent parcellation of the cerebral cortex into units based on

gyral and sulcal structure were performed. Cortical thickness

measurements were obtained by reconstructing representations of

the gray/white matter boundary and the cortical surface. The

distance between these two surfaces was calculated individually at

each point across the cortical mantle: for each point on the white

matter surface, the shortest distance to the pial surface was first

computed; next, for each point on the pial surface, the shortest

distance to the white matter was found, and the cortical thickness

at that location was set to the average of these two values. All

subjects were aligned to a common surface template using a high-

resolution surface-based averaging technique that aligns cortical

folding patterns. The spatial cortical thickness distribution was

smoothed with a circularly symmetric Gaussian kernel of 10 mm.

Cortical brain regions affected by cortical thinning were

classified by using the Desikan-Killiany Atlas integrated in

FreeSurfer.

Statistical Analysis
SPSS version 14.0 was used for statistical analysis. Analysis of

variance (ANOVA) among groups and Tukey’s HSD post-hoc test

was performed on demographic and clinical data. Chi-squared test

was carried out for gender.

For each hemisphere, comparison among groups was per-

formed by using general linear model (GLM), including cortical

thickness as dependent factor and group (controls, AD and DLB)

as independent factor. MMSE, CAF and UPDRS scores were

included as covariates.

FreeSurfer processing stream was used to assess the pairwise

differences among groups (https://surfer.nmr.mgh.harvard.edu/

fswiki/FsgdFormat).

In DLB group, QDEC (Query, Design, Estimate, Contrast, https://

surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/QdecGroupAnalysis_

freeview) was used to individuate statistically significant regions

where NPI hallucination item scores and thickness were correlated.

MMSE, CAF, UPDRS scores were included as nuisance factors.

All results were corrected for multiple comparisons by using a

pre-cached cluster-wise Monte-Carlo Simulation [22] and mapped

on the surface. Significance level was set at p,0.05.

To perform partial correlations between NPI hallucination item

scores and mean cortical thickness values in the posterior regions

Dorsal Visual Network Damage in DLB Patients
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which were affected significantly in DLB in comparison with AD,

the mean cortical thickness values were extracted from each region

of interest (defined by Desikan-Killiany Atlas) by using ‘‘aparc-

stats2table’’ command line, (http://surfer.nmr.mgh.harvard.edu/

fswiki/aparcstats2table). Next, SPSS version 14.0 was used for

statistical computation and MMSE, CAF and UPDRS scores were

included as nuisance factors.

Results

One DLB patient, 1 AD patients and 1 control subject were

excluded from the statistical analysis due to the presence of motion

artefacts on MRI, leaving a total study cohort of 18 DLB, 15 AD

and 14 control subjects.

Demographic and Clinical Features
No differences on age, gender and educational level were found

in the three groups (table 1). Dopamine-transporter hypocapta-

tion in the caudate nuclei at SPECT-DAT scan was observed in all

DLB patients, and it was bilateral in 12 patients. SPECT-DAT

scan abnormalities were not observed in AD patients. Patients

were treated with L-Dopa (all DLB patients), rivastigmine or

donepezil (all AD and DLB patients, with no differences in daily

dosages), quetiapine (9 DLB and 7 AD), clozapine (5 DLB),

risperidone (5 AD) and clonazepam (the 16 DLB patients with

RBD).

Neuropsychological test scores for each group are presented in

table 1. AD and DLB patients exhibited no differences on global

test of cognition (CDR, DRS-2, MMSE). The severity of frontal

dysfunction, as assessed by FAB was similar in DLB and AD

patients. All DLB patients had VH (as for inclusion criteria),

whereas none of the AD patients and controls had VH.

Parkinsonism signs were present in all DLB patients while none

of the AD patients and controls showed extrapyramidal signs.

RBD were observed in 16 DLB patients but no in AD patients and

controls. Cognitive fluctuations were present only in DLB patients.

All DLB patients presented with an abnormal EEG pattern profile

consistent with a diagnosis of DLB. None of the AD patients or

controls had EEG abnormalities.

Cortical Thickness
Figure 1 panel A shows regional differences (corrected

p,0.05) in cortical thickness between DLB and age-matched

healthy controls. Cortical thickness was reduced in the posterior

regions of DLB. Specifically, pericalcarine, lingual gyri, cuneus

precuneus and superior parietal gyrus were affected bilaterally.

Figure 1 panel B shows regional differences (corrected

p,0.05) in cortical thickness between DLB and AD. Cortical

thickness was reduced in DLB compared to AD in the right

posterior regions including superior parietal gyrus, precuneus,

cuneus, pericalcarine and lingual gyri.

Figure 2 shows regional differences (corrected p,0.05) in

cortical thickness between AD patients and control subjects. In AD

cortical thinning was found bilaterally in temporal cortex, inferior

parietal and supramarginal gyri. Temporal regions were widely

affected in AD patients in both hemispheres, particularly in the left

hemisphere. Specifically, cortical thinning was observed in the

superior and middle temporal gyrus, part of inferior temporal

cortex, temporal pole and insula.

Table 1. Demographic and clinical features in all groups.

Characteristics Controls (n = 14) AD (n = 15) DLB (n = 18)

Agea,b 75.565.3 75.667.6 75.464.0

Male gender (in percentage)c 50% 47% 50%

Disease duration (years)d – 3.160.6 2.960.6

Education level (years)a,e 765 763 764

MMSEa,f 28.161.6 18.364.1 19.162.6

FABa,g 17.660.5 8.762.9 9.062.8

DRS-2a,h 136.660.6 91.7618.3 92.8613.8

CDRa,i – 2.560.5 2.460.5

CAF 0.060.0 0.060.0 5.163.9

UPDRS III 0.060.0 0.060.0 24.766.7

NPI-item 2 hallucinations 0.060.0 0.060.0 5.063.2

VH (n. of patients affected) – – 18

RBD (n. of patients affected) – – 16

qEEG abnormalites (n. of patients affected) – – 18

Values are expressed as mean 6 standard deviation (SD);
athe p-values were calculated using the one-way ANOVA; Tukey’s HSD post-hoc test was also perfomed when F-test was significant;
bmain interaction among groups: F = 0.007, df = (2,47), p = 0.993;
cthe p-values were calculated using chi-squared test: x2 = 0.553, df = 2, p = 0.758;
dthe p-values were calculated using the independent-samples t-test: t = 20.565, df = 31, p = 0.576;
eF = 0.007, df = (2,46), p = 0.762;
fmain interaction among groups: F = 2581.393, df = (2,47), p,0.001; post-hoc: controls vs. AD, p,0.001; controls vs. DLB, p,0.001 and AD vs. DLB, p = 0.762;
gmain interaction among groups: F = 1116.212, df = (2,47), p,0.001; post-hoc: controls vs. AD, p,0.001; controls vs. DLB, p,0.001 and AD vs. DLB, p = 0.917;
hmain interaction among groups: F = 2956.939, df = (2,47), p,; post-hoc: controls vs. AD, p,; controls vs. DLB, p, and AD vs. DLB, p = 0.967;
ithe p-values were calculated using the independent-samples t-test: t = 20.813, df = 31, p = 0.423.
Abbreviations: AD = Alzheimer’s Disease; CAF = Clinician Assessment of Fluctuations; DLB = dementia with Lewy bodies; DRS = Dementia Rating Scale; FAB = Frontal
Assessment Battery; MMSE = Mini Mental State Examination; N/A = not applicable; NPI = Neuropsychiatric Inventory; RBD = REM Sleep Behaviour Disorder;
qEEG = quantitative electroencephalogram; UPDRS = Unified Parkinson’s Disease Rating Scale; VH = visual hallucinations.
doi:10.1371/journal.pone.0086624.t001
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Correlation Analysis
Figure 3 shows cortical regions where cortical thickness and

NPI hallucination item scores were significantly correlated

(corrected p,0.05) in DLB group. These regions were located in

the right hemisphere and they included the precuneus and

superior parietal gyrus. Table 2 reports partial correlations

between NPI hallucination item scores and cortical thinning values

in posterior regions (superior parietal gyrus, precuneus, cuneus,

pericalcarine and lingual gyri) which were more altered in DLB

than in AD.

Discussion

With the present MRI study, we have evidenced that DLB

patients are characterized by marked cortical thinning in posterior

regions when compared with AD and age-matched healthy

controls.

Posterior cortical regions play a critical role in the visual

information processing, and their damage was related to recurrent

VH in DLB patients [6,23,24].

Consistently with neuroimaging [25–27], neuropathological

[4,28,29] and electrophysiological [30,31] studies, we found

structural abnormalities in the cuneus and in the higher visual

areas related to VH in DLB group.

Although previous studies reported abnormalities related to VH

in DLB or Parkinson’s Disease (PD) patients compared to control

groups [25–26], our findings reveal that the posterior cortical

regions were clearly thinned in the comparison between DLB and

control subjects, but also in the comparison between DLB and AD

patients evidencing that the changes are not linked to a generic

neurodegenerative (dementia) process. However, this observation

is limited only to DLB and AD. Indeed, previous studies reported

an association between cortical thinning in posterior areas and

disease stages and cognitive deterioration in Parkinson’s disease

patients [32–34], who share several clinical commonalities with

DLB patients. Future studies could evaluate if the structural

cortical alterations could be related to the presence of VH

occurring in the later stages of PD.

Additionally, despite both the dorsal and ventral attention

networks were affected in DLB as compared to controls and AD,

the correlation analysis between cortical thickness and NPI

hallucination item scores, suggested a greater involvement of the

dorsal attention regions including superior parietal gyrus and

precuneus in the occurrence and severity of VH in DLB.

The superior parietal region is implicated in visuo-spatial

working memory [35], retrieval and construction of spatial

representations [36], processing of visuospatial tasks [37] and

filtering distracting information [38]. In this way, deficits in visual

attention and in dorsal attention network have been described as

an important factor in the causal models of VH [39,40].

Particularly, we hypothesize that the reduction of cortical thickness

in the superior parietal regions may lead to the disruption in the

visual attention pathways, leading to the incorporation of

stereotyped form-objects into the visual field and predisposing to

VH [40].

Precuneus acts in concert with the parietal regions, elaborating

information about motor imagery and more abstract mental

imagery tasks [41]. Furthermore, precuneus activity has been

related to visual perseveration, autoscopic phenomena and visual

perseveration or recurrent appearance of a visual image after the

stimulus has disappeared [2]. In agreement with our findings, a

VBM study has demonstrated the relationship between precuneus

atrophy and the presence of VH in DLB patients [6]. PET studies

on DLB with VH reported hypoperfusion and hypometabolism in

occipital cortex (Brodmann area 17–19) and in precuneus [42–43]

as compared to control subjects. Posterior region of precuneus has

been described as a critical node of information convergence in the

parietal network [41] and its damage strongly supports the

Figure 1. Cortical thinning in DLB patients. Statistical maps
showing significant difference between DLB patients and controls
(panel A) and between DLB patients and AD (panel B). Areas with
cluster wise probability below p = 0.05 are shown, according to Monte
Carlo correction for multiple comparisons. Panel A: Colour rating from
red to yellow indicates local cortical thickness reduction in DLB patients
compared to controls. Panel B: Colour rating from red to yellow
indicates local cortical thickness reduction in DLB patients compared to
AD. Abbreviations: A = Anterior; P = Posterior.
doi:10.1371/journal.pone.0086624.g001
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Figure 2. Cortical thinning in AD patients. Statistical maps showing significant differences between AD patients and controls. Areas with cluster
wise probability greater than p = 0.05 are shown, according to Monte Carlo correction for multiple comparisons. Colour rating from red to yellow
indicates local cortical thickness reduction in AD patients compared to controls. Abbreviations: A = Anterior; P = Posterior.
doi:10.1371/journal.pone.0086624.g002

Figure 3. Correlation between cortical thickness and NPI hallucination item scores in DLB patients. Statistical map shows significant
regions where the cortical thinning in DLB patients and the NPI hallucination item were correlated (corrected p,0.05). Colour rating from red to
yellow indicates local negative correlation.
doi:10.1371/journal.pone.0086624.g003
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hypothesis of impaired dorsal visual processing in DLB patients

[39].

Despite impairment of dorsal stream is well defined in DLB

patients, the ventral stream resulted to be affected in both AD and

DLB as compared to controls. However a different distribution of

grey matter loss along the ventral pathway was found in DLB and

AD. Specifically, cortical thinning in lingual and pericalcarine giri

was observed in DLB, whereas a marked and diffuse cortical

thinning was found in the mesial temporal cortex in AD. This

latter structural alteration could be linked to greater memory

impairment affecting AD patients and it is in accordance with

previous morphometric studies [9,44,45]. Cortical thinning in

ventral stream of DLB could be related to greater dysfunction in

visual perception [2].

According to previous reports from our group [46–47], in the

current study we observed a higher prevalence of cortical thinning

in the right hemisphere in DLB patients. These findings might

suggest a specific role of the right hemisphere in the occurrence of

VH in DLB patients. A possible interpretation of these findings

could be given on the basis of established and dominant role of the

right hemisphere in visuo-spatial attention [48]. However, further

investigations across both functional and structural techniques are

required to clarify whether right hemispheric dysfunction is truly a

specific feature of DLB.

Different models have suggested a central role of posterior

regions in manifestation of VH [39,49]. Recently, Shine et al. [40]

have hypothesized that in presence of inability to activate the

dorsal attention network, the visuo-perceptual errors are processed

by neuronal networks unprepared for this task, such as the default

mode network and the ventral attention network. In this context,

our group have recently shown that DLB patients characterized by

fluctuations of alertness, RBD and VH may be linked to persistent

default-mode network activity [47]. Based on these evidences, we

proposed that structural changes in key regions pertaining to

dorsal attention network may be central to originate VH in DLB

patients.
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