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Abstract: Understanding how to reduce the influence of physiological noise in resting state fMRI data
is important for the interpretation of functional brain connectivity. Limited data is currently available
to assess the performance of physiological noise correction techniques, in particular when evaluating
longitudinal changes in the default mode network (DMN) of healthy elderly participants. In this 3T
harmonized multisite fMRI study, we investigated how different retrospective physiological noise cor-
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rection (rPNC) methods influence the within-site test-retest reliability and the across-site reproducibil-
ity consistency of DMN-derived measurements across 13 MRI sites. Elderly participants were scanned
twice at least a week apart (five participants per site). The rPNC methods were: none (NPC), Tissue-
based regression, PESTICA and FSL-FIX. The DMN at the single subject level was robustly identified
using ICA methods in all rPNC conditions. The methods significantly affected the mean z-scores and,
albeit less markedly, the cluster-size in the DMN; in particular, FSL-FIX tended to increase the DMN z-
scores compared to others. Within-site test-retest reliability was consistent across sites, with no differ-
ences across rPNC methods. The absolute percent errors were in the range of 5–11% for DMN z-scores
and cluster-size reliability. DMN pattern overlap was in the range 60–65%. In particular, no rPNC
method showed a significant reliability improvement relative to NPC. However, FSL-FIX and Tissue-
based physiological correction methods showed both similar and significant improvements of reprodu-
cibility consistency across the consortium (ICC 5 0.67) for the DMN z-scores relative to NPC. Overall
these findings support the use of rPNC methods like tissue-based or FSL-FIX to characterize multisite
longitudinal changes of intrinsic functional connectivity. Hum Brain Mapp 37:2114–2132, 2016. VC 2016

Wiley Periodicals, Inc.

Key words: task-free fMRI; resting-state networks; default mode network; physiological noise correc-
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INTRODUCTION

The default mode network (DMN) refers to a set of ana-
tomical regions that are functionally connected, especially
during periods of cognitive rest, and that deactivate dur-
ing externally directed cognitive tasks [Raichle and
Snyder, 2007]. The activity in the DMN has been associ-
ated with inner cognitive processes [Buckner et al., 2008]
that can be affected by a variety of brain diseases [Castel-
lanos et al., 2013]. Further, DMN connectivity has been
correlated to validated biomarkers, such as b-amyloid
(Ab) and total tau protein (T-tau) in cerebral spinal fluid
(CSF) (Li et al., 2013). These biomarkers have been used in
preclinical contexts to predict the onset or track the staging

of dementia-related cognitive deterioration in elderly
[Hedden et al., 2009; Vannini et al., 2012]. Overall, such
results make resting-state functional Magnetic Resonance
Imaging (fMRI) DMN connectivity a promising biomarker
candidate that is non-invasive and easy to acquire.

The functional connectivity (FC) of the DMN is meas-
ured via correlations of blood oxygen level dependent
(BOLD) time series among its distinct regions [Buckner,
2012]. Despite its potential, the analysis of resting-state
fMRI data remains challenging due to several confounds
present in the BOLD signal [Murphy et al., 2013], in partic-
ular the physiological signal fluctuations related to time-
varying signals of non-brain origin including cardiac and
respiratory activities (Birn, 2012).

A variety of techniques and algorithms have been pro-
posed to reduce the “biological noise” component of the
BOLD signal. These techniques include the use of cardiac
and respiration measures during the experiment, short TR
acquisitions to avoid aliasing of cardiac and respiratory
fluctuations [Birn et al., 2008; Rasmus et al., 2006; Lund,
2001], tissue-based regressions like averaged white matter
(WM) and CSF fMRI signals as nuisance regressors [Jo
et al., 2010; Behzadi et al., 2007] or use Bayesian methods
to track the frequency trajectories of cardiac and respira-
tion for removing physiological noise [S€arkk€a et al., 2012].
Other methods exploit canonical correlations analysis to
identify autocorrelated physiological noise [Churchill and
Strother, 2013] or independent component analysis (ICA)
to identify and remove noise signals defined by a spatial
reference atlas like in PESTICA [Beall and Lowe, 2007;
Beall, 2010] manually selected like in FSL-FIX [Griffanti
et al., 2014; Salimi-Khorshidi et al., 2014] or spectral prop-
erties of the ICA components [Soldati et al., 2009].

To date, very few studies have directly compared how
different physiological noise correction (PNC) methods

ABBREVIATIONS

(f)MRI (functional) Magnetic resonance imaging
(group) ICA (group) Independent component analysis
(r)PNC (retrospective) Physiological noise correction
BOLD Blood oxygen level dependent
DMN Default mode network
EPI Echo planar imaging
FC Functional connectivity
FD Framewise displacement
FSL-FIX FMRIB’s ICA-based Xnoiseifier
GE General Electric
ICC(s) Intraclass correlation coefficient(s)
MNI Montreal neurological institute
NPC No physiological correction
PESTICA Physiologic Estimation by Temporal ICA.
QA Quality assurance
ROI Region of interest;
TRT reliability Test-retest reliability
tSNR Temporal signal-to-noise ratio
WM White matter
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affect the test-retest (TRT) reliability of FC within the
DMN, which is of high relevance for the minimization of
unwanted variability in longitudinal studies. In a recent
study, Birn et al. [2014] investigated a group of young
healthy subjects at a 3T site with a focus on PNC methods,
using direct measures of cardiac and respiratory activity
while also including tissue-based regressions (no ICA
methods were used). They found that PNC, in general, did
not improve TRT reliability.

TRT datasets are unique and often challenging to obtain,
so their public availability may help generalizing the
results from different analyses methods. The Consortium
for Reliability and Reproducibility [Zuo et al., 2014] is a
recent effort that created a public repository of various
TRT resting state fMRI datasets independently collected
worldwide on 3T MRI machines (Siemens, Philips, GE)
using a variety of MR acquisition protocols. To the best of
our knowledge it remains unclear how PNC may affect
TRT reliability in the context of a multicenter MRI study.
In particular, reliability (or lack thereof) may be exacer-
bated in heterogeneous populations such as healthy
elderly subjects. In the context of the current study, this
age group is relevant because the patterns of physiological
noise variability might not be the same in young and
elderly people [Nicolini et al., 2012; Schulz et al. 2013; Tay-
lor and Johnson, 2010]. The contributions of cardiac and
respiratory activity on BOLD signal fluctuations as a func-
tion of age are unknown, so a conservative approach is to
consider that physiological effects in young and elderly
people may be different. In the context of multisite experi-
ments, retrospective fMRI based PNC (rPNC) methods are
of special interest because short TR acquisitions or direct
physiological measurements are more challenging to
implement uniformly across clinical sites that may not
have special equipment or access to special MRI
sequences.

The purpose of this study was to evaluate whether dif-
ferent rPNC approaches, intended as methods that mini-
mize the cardiac and respiratory components in the
resting state BOLD fMRI signal, would differently affect
the within-site TRT reliability of DMN connectivity (z-
scores, cluster-size, cluster-overlap) and the consistency of
the reliability across a consortium. The rPNC methods
were four, all based on ICA or region of interest (ROI)
estimates from the fMRI signal (no physiological correction
(NPC), Tissue-based regression, PESTICA and FSL-FIX).
The raw data of this study is public so it can be used to
evaluate additional physiological or head motion correc-
tion methods.

MATERIALS AND METHODS

Several aspects of the subjects, study design, and data
preparation steps used in this FC study were already
described in recent morphometric [Jovicich et al., 2013;
Marizzoni et al., 2015], diffusion [Jovicich et al., 2014] and

resting state [Jovicich et al., 2016] MRI studies but are here
repeated for completeness and with the appropriate
modifications.

Subjects

Fifteen clinical sites (13 MRI sites) participated in this
study across Italy (Brescia, Verona, Genoa, Rome, Chieti,
Perugia and Naples), Spain (Barcelona), France (Marseille,
Lille, and Toulouse), Germany (Essen, Leipzig), Greece
(Thessaloniki) and The Netherlands (Amsterdam). The
Brescia site was responsible for the coordination and anal-
ysis of the whole study and did not acquire MRI data.
Each MRI site recruited five local volunteers within an age
range of 50–80 years. The subject’s age range corresponds
to that of the clinical population that will be studied with
the protocols tested in this reproducibility study. Each
subject underwent two MRI sessions completed at least 7
days (but no more than 60 days) apart at the site. This
short period between the test and retest sessions was cho-
sen to minimize biological changes that could affect the
reliability of the measures and to mimic the variability
expected from separate sessions, as measured in longitudi-
nal studies. Table I summarizes information about age,
gender and TRT interval times of the subjects scanned at
each MRI acquisition site. All participants were volunteers
with no history of major psychiatric, neurological or cogni-
tive impairment (referred to as healthy in this study), were
Caucasian and provided written informed consent in
accordance with the local ethical committee for each insti-
tution. Exclusion criteria were described in previous work
[Jovicich et al., 2014].

MRI Acquisitions

The thirteen 3T MRI sites that participated in this study
used a variety of MRI system vendors and models (Sie-
mens, GE, and Philips). Table I summarizes the main MRI
system and EPI acquisition differences across sites. Only
vendor-provided sequences were used.

Each subject had a total of two resting state EPI acquisi-
tions (rsfMRI), one from the test session and one from the
retest session. In each session the following single shot EPI
acquisition parameters were common across sites: nominal
voxel size 3 3 3 3 3 mm3, TE 5 30 ms, TR 5 2.7 s, Ernst
flip angle of 858, one-pass interleaved axial slices acquired
(equidistant choice in Philips, default options in GE and
Siemens) oriented parallel to the AC-PC line covering the
full brain, 0.45 mm slice gap (15% slice thickness), 40 sli-
ces, 200 volumes, fat suppression, no parallel imaging. TR
was chosen to be the shortest common possible value in
the consortium allowing full brain coverage while keeping
consistent temporal resolution across sites. The total rest-
ing state acquisition duration was 9 min, a duration that
has been shown appropriate for reliable intrinsic connec-
tivity results [Liao et al., 2013; Van Dijk et al., 2010; Zuo
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et al., 2013]. Each MRI session included the acquisition of
two T1 weighted anatomical scans [Jovicich et al., 2013].
Subjects were instructed to keep their eyes closed, stay
relaxed and try to avoid falling asleep.

Other acquisition parameters including head RF coil
characteristics, pulse sequence and fat suppression meth-
ods were difficult to standardize due to system differen-
ces. The choices for these parameters were made based on
the optimal or possible options available at the different
platforms (see Table I). All images from multi-channel
coils were reconstructed online as the sum of the squares
across channels. When allowed by the MRI system, images
were reconstructed and saved disabling additional filtering
options that could differ across scanners introducing dif-
ferent degrees of smoothing.

Pre-Processing of Functional MRI Data with NPC

Pre-processing was performed in the individual space of
each subject using a combination of FSL [Jenkinson et al.,
2012] and AFNI [Cox, 1996] programs in the same order
as they are listed. The following pre-processing steps were
performed with NPC (Fig. 1). The first four volumes were
discarded (fslroi, FSL) to allow for steady state stabiliza-
tion of the BOLD fMRI signal. Then, EPI volumes were
realigned (mcflirt, FSL) and six head movement parame-
ters were calculated; slice timing correction based on the
slice acquisitions parameters at each site (slicetimer, FSL);
non-brain voxels removal (bet2, FSL); temporal filtering
with a bandpass filter (0.01–0.1 Hz) (fslmaths, FSL) to
remove low and high-frequency signal fluctuations. Addi-
tional confounds, such as the six head movement parame-
ters and their derivatives (1d_tool.py, AFNI), temporally
filtered (1dBandpass, AFNI) as the main signal [Hallquist
et al., 2013], were removed from the data using multiple
linear regressions (3dDeconvolve, AFNI) for an overall of
12 regressors of no interest plus linear and quadratic
trends. Neither regressors nor volumes were censored. 4D
EPI volumes were spatially smoothed using 6 mm full-
width at half-maximum Gaussian filter (susan, FSL) and
normalized to mean signal intensity by a single factor
(fslmaths, FSL).

Retrospective Physiological Noise Correction
Methods

In addition to the case of NPC, the following three
methods for rPNC were evaluated: (i) PESTICA correction
[Beall and Lowe, 2007]; (ii) Tissue-based correction [Weis-
senbacher et al., 2009]; and (iii) FSL-FIX correction [Grif-
fanti et al., 2014; Salimi-Khorshidi et al., 2014]. Each of
these methods followed a slightly different preprocessing
workflow, as schematically shown in Figure 1 and
described below. All preprocessing pipelines, with or
without rPNC, were performed in single subject space.
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PESTICA Correction

Physiologic Estimation by Temporal ICA (http://www.
nitrc.org/projects/pestica/) (PESTICA) is a freely available
retrospective physiologic denoising algorithm (AFNI,
MATLAB) that estimates the cardiac and breathing cycle
directly from the BOLD fMRI data using temporal ICA
[Beall and Lowe, 2007]. The software defines two
regressors-of-no-interest from the two most correlated
independent components to spatial template references of
heart beating and breathing, converts and regresses them
out from the main signal using IRF-RETROICOR [Beall,
2010].

Following the developers’ recommendations, PESTICA
v2.0 was run before slice timing correction. Default param-
eters suggested by the developers were used, such as tem-
poral ICA dimensionality (15 components) and the full
range for cardiac and respiratory estimators (48–85 bpm
for cardiac and 10-24 bpm for breathing). All recom-
mended PESTICA QA tools were used to verify that the
algorithm performed properly: (1) visual inspection to
assess the correct coregistration of the current EPI volume
and the mean EPI template provided within PESTICA; (2)
Plots of cardiac and breathing estimators; (3) coupling
maps of cardiac and respiratory profiles.

Tissue-Based Correction

Brain Tissue-based correction is a common method to
remove physiological confounds without a predefined
model of noise [Birn et al., 2009; Bright and Murphy, 2013;
Weissenbacher et al., 2009]. This method relies on the
assumption that BOLD fluctuations in WM and CSF are
dominated by physiological noise, whereas BOLD fluctua-
tions in gray matter (GM) combine signals from neural ori-
gin and physiological noise. One approach, the global
regression method, removes the mean signal from the full
brain. Therefore it might cause the loss of neural signal
from GM. Instead, regression of the average WM and CSF
time series from GM is expected to reduce the impact of
physiological fluctuations in GM. Therefore we chose the
latter approach, here referred to as Tissue-based correc-
tion. Tissue-based correction is hence applied during mul-
tiple linear regressions together with movement confounds
(Fig. 1).

Tissue-based correction requires processing of T1 ana-
tomical images in order to spatially define WM and CSF
masks. In this study, for each subject, we only used the
first individual anatomical volume acquired at test to
define WM and CSF masks. Non-brain tissue was initially
removed from center-oriented T1 anatomical volumes (bet,

Figure 1.

Resting-state fMRI preprocessing outline. The diagram shows
main pre-processing steps for each rPNC method under investi-
gation: NPC (blue); PESTICA (P, green); Tissue-based (TB,
orange); FSL-FIX using standard (FIX-S, red) or site-specific clas-
sifier (FIX-T, violet). MC, motion correction; SC, slice-timing
correction; BE, brain extraction; BP, band-pass filter (0.01–0.1
Hz); MLR, multiple linear regression; SS, spatial smoothing
(FWHM 5 6 mm); N, mean intensity normalization; MNI, MNI

coregistration. TB correction required anatomical image prepro-
cessing: BE, brain extraction; SEG, segmentation; WM/CSF, white
matter/CSF regressors; BP, band-pass filtering of regressors
(WM/CSF regressors were bandpass filtered). Anatomical BE
images were also used for FSL-FIX (see text). [Color figure can
be viewed in the online issue, which is available at wileyonlineli-
brary.com.]
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FSL); the anatomical volume was then registered to the
original EPI (align_epi_anat.py, AFNI); segmented in WM
and CSF using partial volume segmentation (fast, FSL).
Masks were thresholded at 0.99 (3dcalc, AFNI) to reduce
the inclusion of gray matter voxels into the masks. In
order to avoid gross co-registration and segmentation
errors visual inspection was used. Two regressors of no
interest were calculated from brain-extracted EPI as the
mean time series within the non-gray matter masks
(3dcalc, AFNI), temporally filtered as the main signal
(1dBandpass, AFNI), and removed together with move-
ment confounds by multiple linear regressions (3dDecon-
volve, AFNI). The total number of nuisance regressors in
this analysis pipeline was therefore 14 (six head move-
ment, six derivative of head movement, mean WM and
CSF time series).

FSL-FIX Corrections

FMRIB’s ICA-based Xnoiseifier (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/FIX) (FSL-FIX) exploits single-subject spa-
tial ICA to auto-classify noisy components and remove
them from the main signal [Griffanti et al., 2014; Salimi-
Khorshidi et al., 2014]. Components classified as noise
include physiological, head movement and other artifacts
relative to image acquisition. The classification of noise
components can be performed either by using one of sev-
eral training files provided by the authors or by generating
a data-specific training set on one’s own data. In this study
both approaches were investigated.

Following the developers’ suggestions, FSL-FIX was run
after the NPC preprocessing pipeline. No changes were
made to the preprocessing pipeline to be consistent across
all rPNC methods examined. Temporal filtering was used
consistently with common practice and works implement-
ing FSL-FIX [Griffanti et al., 2014]. Spatial smoothing was
also performed, since it returned high reproducibility of
the tSNR across multiple sites in our previous works [Jovi-
cich et al. 2016]. Single-subject ICA was run with auto-
matic estimation of dimensionality using MELODIC on
preprocessed data including the brain-extracted anatomical
images. From the various pre-defined FIX training sets
offered, we selected the one (herein referred to as FIX-
standard) generated from a set of acquisition and prepro-
cessing conditions as close as possible to those employed
in this study (Standard.RData: TR 5 3s, Resolution 5 3.5 3
3.5 3 3.5mm3, session 5 6 mins, default FEAT preprocess-
ing including default spatial smoothing).

The data-specific FIX training set (herein referred to as
FIX-training) was generated separately for each MRI site
using the two acquisition sessions of each subject (i.e., a
total of 10 resting state runs per site). FIX-standard and
FIX-training corrections were run using a signal/noise
threshold of 75 and 20, respectively. Thresholds were
determined as the minimum value to consistently remove
at least those components that were visually related to

physiological artifacts across subjects, sessions and sites.
For FIX-standard this could not be achieved with a thresh-
old lower than 75, whereas the implementation of site-
specific classifiers in FIX-training allowed the usage of
considerably smaller thresholds.

Characterization of Group DMN For
Each MRI Site

After pre-processing with each rPNC method in the
individual space of each subject across all preprocessing
workflows, we performed group independent component
analysis (group ICA), using MELODIC (http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/MELODIC) to extract the site-specific
group DMN, for each site and each rPNC method sepa-
rately. For each site and rPNC method, all subjects and
sessions (i.e., 10 resting state runs) were spatially normal-
ized to the MNI template via linear (affine) registration
[Jenkinson et al., 2002] and subsampled at a resolution of
4 mm isotropic voxels, then decomposed into 10 inde-
pendent components [Jovicich et al., 2016], using the
multi-session temporal concatenation procedure in
MELODIC. A higher number of components were not
extracted to avoid splitting of the DMN [Abou-Elseoud
et al., 2010; Jovicich et al., 2016].

An automatic selection procedure was used for each
MRI site and rPNC method to select the group DMN from
the 10 ICs in each dataset. In particular, an overlap mea-
sure was used to select the DMN using only the posterior
regions (posterior cingulate and precuneus, left/right pari-
etal cortex) from an independent functional DMN template
[Rosazza et al., 2012] to avoid circularity. The component
with the highest number of voxels in common with the
template was chosen as representative of the DMN. Both
our components and the DMN template were thresholded
at z-scores> 2.3, P< 0.01 [Beckmann and Smith, 2004]. The
automatically selected group DMN for each site was visu-
ally inspected in order to assess overall resemblance with
standard DMN patterns including its main co-activation
areas.

Characterization of Single-Subject DMN

For each site and rPNC method, dual-regression was
then used to derive the single subject and session DMN
from the site-specific group DMN [Beckmann and Fili-
ppini, 2009; Zuo et al., 2010]. Single-subject DMN volume
maps were thresholded at z> 2.3, P< 0.01 (Beckmann and
Smith, 2004). To account for spatial DMN variability across
sessions and subjects, we used a functional cluster-
criterion that defined the DMN by four main clusters
(3dclust, AFNI). These clusters were (i) posterior cingulate
and precuneus (BA31, BA30, BA29, BA23), (ii) left/right
parietal cortex (BA39, BA40, BA22, BA7) and (iii) medial
prefrontal cortex (BA9, BA10, BA32, BA24) (Franco et al.,
2009).
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To avoid inaccuracies for the definition of DMN activa-
tion maps, clusters were defined as made of voxels no
more than 4mm apart and a cluster volume of at least
1,800 micro-liters, per each ROI. These clusters were ana-
tomically constrained by a reference DMN template
derived from conducting a group ICA overall the consor-
tium with NPC implemented. For each rPNC method, spa-
tial convergence defined as the percent overlap between
each individual DMN component and this reference tem-
plate was calculated to quantify single-subject DMN vari-
ability across MRI sites after image processing.

Mean z-scores in the DMN (i.e., the mean z-score across
all voxels in the four main clusters) and relative activation
cluster-size (i.e., the total number of voxels in the four
main nodes) were characterized for each subject, session,
and rPNC method. Furthermore, the DMN activation
cluster-overlap between sessions (i.e., the total number of
common voxel coordinates between sessions) was also cal-
culated for each subject and rPNC method.

Within-Site TRT Reliability of DMN

The main goal of this study was to evaluate the effects
of different rPNC techniques on the precision of the
DMN-derived measurements. To this end, we considered
a measure of TRT reliability within each site in the consor-
tium. Within-site TRT reliability was studied for each
rPNC method using the following three metrics: (1) abso-
lute percent change of mean DMN connectivity; (2) abso-
lute percent change of DMN cluster-size, and (3) Jaccard
index for DMN cluster-overlap across sessions [Bennett
and Miller, 2010; Maitra, 2010; Meindl et al., 2010]. These
measurements were then used for the statistical analysis of
within-site TRT reliability and its reproducibility consis-
tency across the consortium.

Across-Site Reproducibility Consistency of the
DMN

For each DMN reliability measure and each rPNC con-
dition, we used intra-class correlations, ICC(2,1) to quan-
tify the degree of consistency of TRT reliability scores
(here defined as reproducibility consistency) across all 13
sites in the consortium [Bennet and Miller, 2010]. Consid-
ering subjects as “raters” and sites as “targets,” ICC meas-
ures the proportion of variance between-sites out of the
total variance. This formulation returns positive coeffi-
cients in the range 0–1 with values close to 1 indicating no
strong site differences or biases in TRT reliability scores.
Reproducibility consistency was measured using an in-
house Matlab script; we used a leave-one-out approach to
define the standard deviation of the ICCs.

Head Movement Measures

Head movement is known to negatively influence FC
estimates [Power et al., 2012; Van Dijk et al., 2012]. In
order to estimate the amount of head movement, we calcu-
lated the framewise displacement (FD) to summarize
instantaneous head movement in the data [Power et al.,
2012]. Head movement estimations were derived from the
six realignment parameters for each subject and session.
Head rotation parameters were converted from radians to
millimeters in terms of the corresponding displacement on
a r 5 50 mm sphere, representing the average distance
between cortex and head center [Power et al., 2012]. To
summarize head movement, we calculated the mean and
maxima FD in each subject and session. These movement
metrics were used to test for significant differences
between sessions (paired t-test) as well as MRI site effects
(Kruskal-Wallis test).

Statistical Measures

All statistical measures were performed using IBM SPSS
Statistics for Macintosh, Version 22.0. We conducted non-
parametric Kruskal-Wallis tests to evaluate MRI site effects
for each DMN-derived measurements and related TRT
reliability scores under each rPNC approach. The variance
estimated was used to calculate reproducibility consistency
of reliability across sites, for each DMN-derived measure-
ment, respectively. The Kruskal-Wallis test was used on
the various TRT reliability scores to obtain a statistical
measure of site independence. The ICC analysis was used
as a descriptive measure of reproducibility consistency
across sites, for each DMN-derived measurement and
rPNC method. We used non-parametric Friedman test to
evaluate rPNC effects in each site of the consortium and, if
MRI site effects were not found (Kruskal-Wallis, P> 0.05),
even on the pooled data across the consortium. rPNC
method effects on the reproducibility consistency values
were also evaluated using Friedman test.

To increase the statistical power of the present analysis,
in addition to the non-parametric analysis we also con-
ducted a 2-way ANOVA on the pooled reliability scores
across rPNC methods and sites for each DMN-derived
measurement, separately. The indexes of kurtosis and
skewness were examined to assess the distributional shape
of TRT reliability scores and determine whether the
assumption of normality was met (kurtosis range: [22, 2]/
skewness range: [21, 1]) [Bulmer, 1997; Mat Roni, 2014].

Finally, bivariate Pearson’s correlations were conducted
to evaluate the existence of a relationship between the
TRT reliability of connectivity measurements (z-scores,
cluster-size, cluster-overlap) and across-session averaged
movement estimates (mean FD). The significance level for
all the statistics was set at P< 0.05. Statistics were cor-
rected for multiple comparisons over all possible pairwise
combinations (13 sites for Kruskal-Wallis and five rPNC
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methods for the Friedman test) using the method of
Dunn-Bonferroni [Dunn, 1964] at a 5 0.05.

RESULTS

Head Movement Measures

The consortium distributions of the head movement
parameters are shown in Supporting Information Figure 1.
Overall we found low head movement: mean (SD)
(0.11 6 0.1 mm) with only 8% of time points exceeding
0.25 mm and 1% of them exceeding 0.5 mm. Mean FD
range was (0.02–0.37 mm) where only the 4% of subjects
exceeded higher mean FD than 0.25 mm. Maxima FD
range was (0.07–3.32 mm) with roughly the 3% of subjects
exceeding 1.5 mm (half-voxel size). Mean FD showed sta-
tistical differences across sites (Kruskal-Wallis, v2(12,
n 5 130) 5 31, P 5 0.002 uncorrected) but not across ses-
sions (paired t-test, P 5 0.99). Likewise, maxima FD
showed site effects (Kruskal-Wallis, v2(12, n 5 130) 5 24,
P 5 0.02 uncorrected) and no statistical difference between
the two sessions (paired t-test, P 5 0.51). Given that the
overall head movement was considered low and that ICA
tends to separate movement components, we decided not
to censor volumes in this study [Power et al., 2012]. This
also lets us use group ICA on time series of the same
length (196 vols).

Effects of MRI Site and rPNC on DMN: Mean z-
Scores and cluster-Size

Despite the low number of subjects (five per sites, two
repetitions for each), group ICA successfully revealed
DMN activation maps in al l MRI sites and for all rPNC
methods, consistently detected via automatic selection
(sample site shown in Fig. 2). rPNC methods, however,
showed no significant impact on the consistency of group-
level DMN estimates across MR sites (Kruskal-Wallis,
v2(12, n 5 65) 5 19.4, P 5 0.08). Template matching was
consistently higher than 50% across all MRI sites and
rPNC methods. Furthermore, the difference between the
first and second ranked components was often higher than
30%, suggesting negligible variability between the selected
DMN components across MRI sites (Supporting Informa-
tion Table I).

Single-subject DMN maps were also successfully
obtained using dual regression for each rPNC method and
site (sample subject shown in Fig. 3). In NPC and FIX-
training conditions, DMN patterns were either not found
or did not exceed the threshold in one and five subjects,
respectively. This allowed us to measure the median and
its interquartile range (IQR) across subjects and sessions
for the average DMN z-scores and cluster-size for each
rPNC approach and MRI site (Fig. 4).

We found that FIX-standard classified 85% of single sub-
ject ICA components as noise across the entire consortium,

whereas FIX-training, performed with a more conservative
threshold, classified and removed 71% (see Supporting
Information Fig. 2A). FIX-standard removed a larger pro-
portion of components than FIX-training at each site with
the exception of site 2 (see Supporting Information Fig.
2A). In any case, both techniques were effective at attenu-
ating physiological noise, overall (see Supporting Informa-
tion Fig. 2B for sample noise ICs).

Spatial convergence of single-subject DMN maps was
overall medium-to-high within a range of 58–61% (Sup-
porting Information Table II). Despite this convergence, a
Kruskal-Wallis test revealed considerable MRI site effects
in the spatial convergence of single-subject DMN maps.
These were found for NPC, PESTICA, Tissue-based and
FIX-standard and abolished only for FIX-training [Kruskal-
Wallis, v2(12, n 5 125) 5 17, P 5 0.2].

A Kruskal-Wallis test also revealed significant MRI site
effects in both DMN mean z-scores [v2(12, n 5 129) 5 29;
P 5 0.004 uncorrected] and cluster-size values [v2(12,
n 5 129) 5 42; P< 0.001 uncorrected] when NPC is applied
(Table II). Similarly to single-subject DMN spatial conver-
gence, MRI site effects persisted even after applying PES-
TICA, Tissue-based and FIX-standard methods. Only FIX-
training canceled MRI site effects in DMN mean z-scores
[Kruskal-Wallis, v2(12, n 5 125) 5 17; P 5 0.2], cluster-size
[Kruskal-Wallis, v2(12, n 5 125) 5 15; P 5 0.3].

In general, FSL-FIX tended to increase median values
of mean z-scores within the DMN nodes relative to the
other methods (Fig. 4A): FIX-standard significantly
increased median values of mean z-scores relative to
NPC in four sites and FIX-training in five sites (Table
III). We also evaluated how physiological noise correction
methods affect the number of active voxels (z> 2.3) out-
side the selected DMN nodes in any of the main tissue
compartments: GM, WM and CSF. We found that, out-
side the DMN, FSL-FIX was the only method to show
significant increases of voxels relative to NPC in the GM
and surrounding WM and CSF tissue (Supporting Infor-
mation Fig. 3). Furthermore, these accretions in mean z-
scores were not circumscribed to the DMN component
but were also found in other components of known
resting-state networks (Supporting Information Table III).
The other rPNC methods did not exert any significant
change on median values of mean z-scores relative to
NPC in single sites. We found fewer rPNC effects for
DMN cluster-size across sites relative to mean z-scores
(Fig. 4B, Table III).

Effects of rPNC Method on TRT Reliability: DMN
Connectivity, Cluster-Size and Cluster-Overlap

Figure 5 shows the TRT reliability of the DMN connec-
tivity metrics within each MRI site and rPNC method. We
report the median (IQR) value across subjects at each site
and rPNC method, for each DMN-derived measurement
under investigation. We found that no rPNC method
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significantly influenced TRT reliability relative to NPC at
each single site for any DMN-derived measurement (Fried-
man test P> 0.05, Bonferroni corrected). Furthermore, dif-
ferences between rPNC methods were not systematic

across MR sites. We found no statistically significant MRI
site effects (Kruskal-Wallis, P> 0.05) for the TRT reliability
of mean z-scores in the DMN or the reliability of its vol-
ume cluster-size under all rPNC method conditions. We

Figure 2.

Automatic selection of the group DMN at a sample MRI site. (A)
Group ICA decomposition in 10 ICs (rows) for each physiological
correction method (columns) is shown for one sample site (site
1). Activation maps include both positive (z> 2.3) and negative
(z<22.3) co-activations. Colored squares show the components
that were automatically selected as the DMN in each rPNC con-
dition. (B) Proportion of overlapping voxels between each inde-

pendent component (IC) and the DMN template is reported for
each rPNC method. Only positive z-score (z> 2.3) were consid-
ered for the selection. (C) The IC with maximum spatial overlap
with the posterior regions of the DMN template was selected as
the site-group DMN for each rPNC method respectively. See
text for more details. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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found statistically significant MRI site effects (Kruskal-
Wallis, P< 0.05) for the TRT reliability of cluster-overlap
in the DMN. However, these effects did not survive multi-
ple comparisons.

Therefore, we pooled together all the TRT reliability
scores of each rPNC method across subjects and sites to
examine overall TRT reliability (Fig. 6). Absolute percent
errors ranged from 5 to 11% for DMN z-scores and
cluster-size reliability. DMN cluster-overlap was in the
range 60–65%. There was a statistically significant differ-
ence in the TRT reliability of mean z-scores and volume
cluster-size in the DMN, depending on the rPNC method
implemented, mean z-scores: v2(4) 5 14; P 5 0.009, uncor-
rected; Cluster-Size: v2(4) 5 21; P< 0.001, uncorrected;
(Table III). Multiple comparisons applied via pairwise
comparisons revealed that the median (IQR) mean z-scores
reliability error of PESTICA, 4.6% (6%), was statistically
different from FIX-training, 10.6% (16.9%), (Z 5 23.6,
P 5 0.003). Pairwise comparisons revealed that the median
(IQR) cluster-size reliability error of Tissue-based, 5.3%

(6.3%) was statistically different from FIX-standard, 9.4%
(12.1%), (Z 5 24.08, P< 0.001) and FIX-training, 7.3%
(12.6%), (Z 5 23.03, P 5 0.03). However, no rPNC method
showed a statistically significant reduction of TRT reliabil-
ity of mean z-scores or and cluster-size in relation to NPC
within the DMN (Fig. 6).

We found that mean FDs did not correlate with absolute
percent errors of DMN mean z-scores and cluster-size for
all rPNC methods. However, we found that TRT reliability
of cluster-overlap (i.e., the Jaccard index) was significantly
anti-correlated with mean FD when using FSL-FIX (FIX-
standard: r(63) 5 20.4, P< 0.01 and FIX-training:
r(58) 5 20.3, P< 0.01).

With respect to the ANOVA framework, the distributions
of TRT reliability scores were not normally distributed for
mean z-scores (kurtosis: 2.5, skewness: 1.6) and cluster-size
(kurtosis: 4.5, skewness: 1.9). However, a square root trans-
formation was found to make these distributions more
Gaussian-like (mean z-scores: kurtosis: 20.1, skewness: 0.5;
cluster-size: kurtosis: 0.2, skewness: 0.6). The TRT reliability

Figure 3.
Single-subject DMN example. Reconstructed DMN map after dual regression on a sample single
subject (site 1) is shown for each rPNC method (columns) at test (top row), retest (middle
row) and its across-session spatial overlap (bottom row). [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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scores of the cluster-overlap were instead normally distrib-
uted (kurtosis: 0.3, skewness: 20.5).

After this transformation, statistically significant rPNC
method effects were found in TRT reliability of mean z-
scores [F(4,12) 5 4.5, P 5 0.002 uncorrected]. In addition,
statistically significant MRI site effects were found in the
TRT reliability of both mean z-scores [F(4,12) 5 2, P 5 0.02
uncorrected] and cluster-size [F(4,12) 5 6, P< 0.001 uncor-
rected]. However, consistently with non-parametric statis-
tical tests, both rPNC method and MRI site effects in the
TRT reliability of both DMN-derived measurements did
not survive multiple pairwise comparisons. Importantly,
none of these metrics showed interaction effects.

Considering the TRT reliability of cluster-overlap (i.e., the
Jaccard index), statistically significant MRI site effects
[F(4,12) 5 8.3, P< 0.001 uncorrected] and interaction between
rPNC methods and sites [F(4,12) 5 1.9, P< 0.01 uncorrected]
were found. Multiple pairwise comparisons performed
between MRI sites for each rPNC method revealed that MRI

site effects were exacerbated under FIX-training correction
and minimized under Tissue-based correction, respectively.

Effects of rPNC Method on the Reproducibility
Consistency of TRT Reliability

Figure 7 shows reproducibility consistency (ICC) results
for the three DMN-derived measurements (mean z-scores,
volume cluster-size and cluster-overlap). We found a stat-
istically significant difference in the reproducibility consis-
tency of all these measurements [mean z-scores: v2(4) 5 52,
P< 0.001; cluster-size: v2(4) 5 54, P< 0.001; cluster-overlap:
v2(4) 5 45, P< 0.001], depending on the rPNC method
implemented (Fig. 7). For mean z-scores, pairwise compar-
isons revealed that the median (IQR) ICC values applying
Tissue-based, 0.67 (0.04), and FIX-standard, 0.68 (0.04) was
statistically different from NPC, 0.55 (0.02), (Z 5 23.5,
P 5 0.005; Z 5 24.2, P< 0.001; respectively). For cluster-

Figure 4.

Within-Site DMN functional connectivity and cluster-size results.
Median (IQR) across subjects for supra-thresholded (A) mean z-
scores (z> 2.3) and (B) volume cluster-size (N8 active voxels at
z> 2.3) within each site and for each PNC method. rPNC
effects were evaluated within each site using Friedman test

(P< 0.05, corrected with Dunn-Bonferroni method). Physiologi-
cal correction using FIX tended to increase FC but not cluster-
size in the DMN across sites. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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size, pairwise comparisons revealed that median (IQR)
ICC values are significantly reduced applying all rPNC
methods excepted for FIX-standard (PESTICA, 0.47 (0.04),
Tissue-based, 0.54 (0.02), and FIX-training, 0.28 (0.03))
compared to NPC, 0.65 (0.04), (Z 5 4.7, P< 0.001; Z 5 3.2,
P< 0.01; Z 5 6.5, P< 0.001, respectively). For cluster-
overlap, pairwise comparisons showed that median ICC
values for FIX-training, 0.61 (0.02), were significantly
reduced compared to NPC, 0.74 (0.02), (Z 5 4.1, P< 0.001).

DISCUSSION

In the present study, we investigated the influence of
some rPNC methods on the TRT reliability of intrinsic
DMN connectivity measured in elderly participants across
a consortium of 13 MRI sites. The main results are as fol-
lows: (1) The DMN at the single subject level was robustly
identified using ICA methods in all rPNC conditions; (2)
Relative to NPC, physiological noise correction methods
significantly affected the median DMN z-score connectivity
and cluster-size metrics, with FIX-based methods giving
significantly higher values; (3) Within-site DMN reliability
metrics were consistent across MRI sites and not signifi-
cantly different across rPNC methods; (4) In particular,
none of the physiological correction methods were able to
significantly improve the TRT reliability relative to NPC;
(5) Relative to NPC, FSL-FIX and tissue-based methods
showed similar and significantly higher consistency of
median DMN z-score reliability across the consortium.

A recent study showed that, despite MRI acquisition
harmonization efforts, this consortium showed high vari-
ability of temporal signal-to-noise ratio (tSNR) across sites
[Jovicich et al., 2016]. In this study we extend those find-
ings to show that, in spite of the high tSNR variability, the
site-group DMN was able to be automatically selected for
all rPNC methods, allowing robust DMN characterization
at the single-subject level. This suggests that the rPNC
methods evaluated here are valid candidates for longitudi-
nal multisite resting-state fMRI studies with elderly partic-
ipants. However, the overlap measure using a full DMN-
template was not always successful at automatically
detecting the DMN among the components at every site
and rPNC condition. The accuracy of the automatic selec-
tion procedure improved only once frontal regions were
excluded from the template. This was due to high variabil-
ity of frontal DMN areas in terms of co-activation cluster-
size (number of active voxels), spatial coordinate locations
of active voxels in relation to the template, and the pres-
ence of large structured noise in these regions in other
components. The FC variability in frontal regions might be
a sign of age-related decline of mean z-scores in the DMN
of healthy aging subjects [Damoiseaux et al. 2008, Huang
et al., 2015].

An intrinsic challenge of characterizing resting-state net-
works with ICA methods is the possibility of network
splitting [Abou-Elseoud et al., 2010], which can also affect
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TABLE III. Statistical testing for rPNC-effects

DMN measurements Test-retest reliability

Centers Mean Z-score Cluster-size Mean Z-score Cluster-size Cluster-overlap

Site 1 v2(4) 5 13; P 5 0.1 v2(4) 5 8; P 5 1 v2(4) 5 2; P 5 1 v2(4) 5 5; P 5 1 v2(4) 5 6; P 5 1
Site 2 v2(4) 5 8; P 5 1 v2(4) 5 14; P 5 0.1 v2(4) 5 5; P 5 1 v2(4) 5 6; P 5 1 v2(4) 5 2; P 5 1
Site 3 v2(4) 5 24; P< 0.01 v2(4) 5 22; P< 0.01 v2(4) 5 11; P 5 0.4 v2(4) 5 3; P 5 1 v2(4) 5 6; P 5 1
Site 4 v2(4) 5 19; P 5 0.01 v2(4) 5 17; P 5 0.03 v2(4) 5 8; P 5 1 v2(4) 5 16; P 5 0.04 v2(4) 5 6; P 5 1
Site 5 v2(4) 5 31; P< 0.01 v2(4) 5 8; P 5 v2(4) 5 3; P 5 1 v2(4) 5 1; P 5 1 v2(4) 5 1.6; P 5 1
Site 6 v2(4) 5 34; P< 0.01 v2(4) 5 8; P 51 v2(4) 5 13; P 50.1 v2(4) 5 31; P 51 v2(4) 5 13; P 5 0.2
Site 7 v2(4) 5 10; P 5 0.5 v2(4) 5 3; P 5 1 v2(4) 5 2; P 5 1 v2(4) 5 4; P 5 1 v2(4) 5 5; P 5 1
Site 8 v2(4) 5 11; P 5 0.4 v2(4) 5 1; P 5 1 v2(4) 5 7; P 5 v2(4) 5 8; P 5 v2(4) 5 7; P 5
Site 9 v2(4) 5 21; P< 0.01 v2(4) 5 9; P 5 1 v2(4) 5 2; P 5 1 v2(4) 5 3; P 5 1 v2(4) 5 4; P 5 1
Site 10 v2(4) 5 19; P 5 0.01 v2(4) 5 29; P< 0.01 v2(4) 5 7; P 5 1 v2(4) 5 9; P 5 0.9 v2(4) 5 10; P 5 0.5
Site 11 v2(4) 5 14; P 5 0.1 v2(4) 5 13; P 5 0.1 v2(4) 5 10; P 5 0.4 v2(4) 5 7; P 5 1 v2(4) 5 5; P 5 1
Site 12 v2(4) 5 16; P 5 0.05 v2(4) 5 5; P 5 1 v2(4) 5 2; P 5 1 v2(4) 5 5; P 5 1 v2(4) 5 5; P 5 1
Site 13 v2(4) 5 26; P< 0.01 v2(4) 5 16; P 5 0.05 v2(4) 5 4; P 5 1 v2(4) 5 10; P 5 0.5 v2(4) 5 6; P 5 1
All sites – – v2(4) 5 14; P 5 0.1 v2(4) 5 21; P< 0.01 v2(4) 5 7; P 5 1

Friedman tests performed for each site (rows) and DMN-derived measurement (columns 1–2) and relative TRT reliability (columns 4–6)
scores are here reported (adjusted P-values across 13 sites using Bonferroni correction). Mean z-score and volume cluster-size showed
significant rPNC effects within many sites. In contrast, the TRT reliability of these DMN-derived measurements showed rPNC effects
only rarely. The test was also performed on the scores from the entire consortium (last row) in case no site-effects were found for these
estimates (see Table II).

Figure 5.

Within-site test-retest reliability of DMN-derived measurements
for each rPNC method. Median (IQR) across subjects for test-
retest reliability scores in the DMN: (A) absolute percent
change for functional connectivity; (B) Cluster-size error (0%
highest reliability, 100% lowest reliability); (C) Jaccard index of
DMN spatial overlap (0% lowest reliability, 100% highest reliabil-
ity). High test-retest reliability was found for any rPNC method

and DMN-derived measurement in all sites. rPNC effects were
evaluated within each site using Friedman test (P< 0.05, cor-
rected with Dunn-Bonferroni method). No systematic rPNC
effects were found across the different sites. Statistically signifi-
cant differences between rPNC methods were rarely found.
[Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]



reproducibility [Zuo and Xing 2014]. In this study, the
DMN splitting phenomenon was addressed in several
ways: first, we kept the number of ICs low and constant
for all sties [Abou-Elseoud et al., 2010]. Second, we used a
supervised algorithm to select the group component with
maximum overlap to a DMN reference template and we
visually inspected the group DMN results. As with most
studies, it is possible that some components of the DMN
were not properly included in our estimations, and instead
were distributed through one or more of the other rejected
components. However, since the rPNC methods were
applied at the single-subject level before group ICA, after
which all rPNC methods followed a similar workflow, we
expected that comparison of rPNC methods would not be
strongly biased by DMN splitting effects.

We found that, among the rPNC methods, FSL-FIX
increased mean z-scores in the DMN with no impact on
the DMN cluster-size in many sites of the consortium.

This finding is potentially due to the fact that FSL-FIX
removes a larger proportion of signal-of-no-interest from
the data than the other rPNC methods (such as residual
motion artifacts), leading to an increase in mean z-scores
within the DMN. This effect was found also in other
resting-state networks. This suggests that, the application
of FSL-FIX could increase the sensitivity of group ICA to
detect the DMN in healthy aging subjects and discern
abnormal connectivity patterns in clinical aging, a task
known not to be straightforward [Bai et al., 2008; Koch,
2012]. Importantly, training the classifier at each site
improved MRI site consistency in DMN-derived measure-
ments and confined individual spatial DMN maps within
converging spatial locations across MRI sites. Relative to
no physiological correction, FSL-FIX was found to increase
the number of active voxels in gray matter areas outside
the DMN nodes, together with surrounding white matter
and CSF voxels. This finding stresses the importance of

Figure 6.

Overall test-retest reliability of DMN-derived measurements as
function of rPNC method. Consortium median (IQR) of TRT reli-
ability of each DMN-derived measurement: mean z-score (left),
cluster-size volume (right), overlap-size (bottom). For each DMN-
derived measurement, rPNC effects were evaluated using Fried-

man test (P< 0.05, corrected with Dunn-Bonferroni method). We
found that no rPNC method statistically reduced the test–retest
% error of FC and cluster-size nor increased the Jaccard index for
the cluster-overlap in the DMN. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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the selection of nodes that will be defined as members of
the DMN.

These findings are consistent with previous works
showing that DMN connectivity estimates strongly depend
on how thoroughly physiological and other confounds are
removed upstream [Beall and Lowe, 2010; Birn, 2012; Mur-
phy et al., 2013]. Of note, in this work we only considered
ICA (with a specific number of components) to character-
ize the DMN. This choice was mainly motivated by the
high DMN reliability obtained via ICA in our previous
work [Jovicich et al., 2016].

The TRT reliability of DMN connectivity metrics was
consistent across all MRI sites for all rPNC methods,
which allowed the averaging across sites to estimate con-
sortium reliability metrics. Absolute percent errors were in
the range of 5-11% for DMN z-score and cluster-size reli-
ability. Jaccard indexes were in the range 60–65% for
DMN cluster-overlap reliability. Only for FSL-FIX an
inverse correlation between motion and Jaccard indexes
was found. This dependence might originate from the
additional cleaning of residual motion-related spatial maps
implemented by FSL-FIX, which leads to higher characteri-
zation of subject-specific DMN maps when the overall
motion detected is lower.

These results are consistent with similar measures
recently reported in a single-site study with young healthy
participants [Meindl et al., 2010]. In the present study with
elderly participants, we found high reliability of DMN
cluster-size and moderate DMN cluster-overlap, consistent

across sites, albeit not influenced by rPNC methods. The
statistical evaluations of MRI site effects in TRT reliability
scores were performed using both parametric and non-
parametric approaches: both tests agreed in the lack of MRI
site effects for DMN mean z-scores and cluster-size reliabil-
ity. DMN cluster-overlap reliability results differed across
tests, giving no MRI site effects with the non-parametric
test but significant MRI site effects with the 2-way ANOVA.
Given the low number of subjects it is difficult to interpret
this difference since the non-parametric test is robust to out-
lier but underpowered with low samples while the 2-way
ANOVA has the opposite characteristics.

In particular, no rPNC correction method showed signif-
icant DMN reliability improvements relative to NPC.
These findings are in agreement with those from a recent
single-site study [Birn et al., 2014] that found that neither
independent physiological measures (cardiac and respira-
tory measures) nor Tissue-based correction improved the
TRT reliability of mean z-scores among ROIs, including
the DMN in young adults. Our study extends those results
in several ways: population age, multicentric MRI consor-
tium and rPNC methods.

To the best of our knowledge, this is the first study that
investigates the influence of some rPNC methods on the
consistency of DMN connectivity reliability in a multisite
study. In fact, although DMN reliability is consistent
across sites, we found that rPNC methods can still influ-
ence the degree of reproducibility consistency across the
consortium. When considering mean z-scores in the DMN,

Figure 7.

Reproducibility consistency of DMN-derived measurements
across sites. Reproducibility consistency measured via ICC
(mean 6 standard deviation) is here shown for each DMN-
derived measurement (bar groups) and rPNC method (color
bars). For each DMN-derived measurement, rPNC effects were
evaluated using Friedman test (P< 0.05, corrected with Dunn-

Bonferroni method). Tissue-based and FIX-standard increase the
reproducibility consistency of TRT reliability of average z-score
reliability (left) with respect to NPC; in contrast, FIX-training
increases variability of reliability estimates across different sites.
[Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]
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Tissue-based and FIX-standard correction methods signifi-
cantly improved the reproducibility consistency of the
DMN amongst the different 3T MRI sites. This effect may
be driven by exploiting individual anatomical information
(T1-anatomical) to remove physiological noise from non-
gray matter tissue. This suggests that the use of single-site
derived spatial priors in PESTICA may not be sufficient to
contrast multisite heterogeneity. When considering repro-
ducibility consistency, FIX-training did not perform as
well as FIX-standard. This may be related to the deviation
of non-brain related percent variance classified between
the two methods (FIX-training retained higher signal var-
iance, very likely not to be associated to the DMN). Fur-
thermore, such variability was unequally distributed
across sites, leading to overall lower reproducibility consis-
tency of the DMN relative to FIX-standard. Therefore, we
recommend adopting a higher signal-noise threshold for
FSL-FIX in longitudinal multisite resting-state FC studies.

CONCLUSIONS

In this study, we found that the application of rPNC
allows the consistent characterization of single-subject
DMN in elderly participants despite the tSNR variability
present in a multicentric consortium. FSL-FIX tended to
increase mean z-scores in the DMN with no impact on the
cumulative cluster-size. We found that rPNC methods do
not significantly influence the TRT reliability of mean z-
scores, cluster-size and cluster-overlap in the DMN. In
particular, none of the correction methods showed a con-
sistent improvement of reliability relative to performing
no correction. However, we found that Tissue-based and
FSL-FIX significantly reduce variability of TRT reliability
scores of mean z-scores in the DMN in this multicentric
study. Overall, these findings support the application of
Tissue-based or FSL-FIX physiological noise correction
methods in multisite longitudinal resting-state fMRI
studies.
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