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ABSTRACT: We propose a new complete memory-distributed
algorithm, which significantly improves the parallel implementation
of the all-electron four-component Dirac−Kohn−Sham (DKS)
module of BERTHA (J. Chem. Theory Comput. 2010, 6, 384). We
devised an original procedure for mapping the DKS matrix between
an efficient integral-driven distribution, guided by the structure of
specific G-spinor basis sets and by density fitting algorithms, and
the two-dimensional block-cyclic distribution scheme required by
the ScaLAPACK library employed for the linear algebra operations.
This implementation, because of the efficiency in the memory
distribution, represents a leap forward in the applicability of the
DKS procedure to arbitrarily large molecular systems and its
porting on last-generation massively parallel systems. The perform-
ance of the code is illustrated by some test calculations on several
gold clusters of increasing size. The DKS self-consistent procedure
has been explicitly converged for two representative clusters, namely Au20 and Au34, for which the density of electronic states is
reported and discussed. The largest gold cluster uses more than 39k basis functions and DKS matrices of the order of 23 GB.

I. INTRODUCTION

It is universally recognized that relativistic effects play a crucial
role in chemistry, especially for heavy elements.1−5 The special
properties of gold, notably including its catalytic activity6 both
in homogeneous and heterogeneous media, the liquidity of
mercury at room temperature, the lead-acid battery deriving
most of its voltage from relativistic effects7 are only a few
examples of chemical properties governed by relativity.8 Among
other effects, spin−orbit coupling plays a crucial role in
spectroscopy: it not only modifies the energetics of the
electronic states but also affects the nature of electronic
transitions and enables spin-forbidden excitations. These
phenomena are of high relevance in contexts as important in
modern technology as, for example, that of dye-sensitized solar
cells and organic light emitting diodes, where light absorption
and emission quantum yields may be enhanced using
complexes containing heavy elements with strong spin
forbidden transitions.9

For the above reasons, the development of accurate
theoretical and computational methods, based on first
principles, for the study and characterization of the electronic
structure in molecular systems containing heavy atoms is now
one of the most important challenges of theoretical chemistry
and computational science. The challenge clearly arises from
the fact that heavy elements have a very large number of

electrons, and both relativistic effects and electron correlation
play a crucial role.
A particularly suitable and promising theoretical framework

to appropriately treat these systems is the Dirac−Kohn−Sham
model (DKS). This combines the rigorous four-component
relativistic formalism derived from the Dirac equation with
density funcional theory (DFT), which is the method of choice
when many electrons are involved, as is the case of large
systems containing heavy elements. The relativistic variant of
the Hohenberg−Kohn theorem guarantees the formal existence
of a current−density functional description of the relativistic
systems but does not give any particular hint about how to
construct such a functional. So far, the actual implementations
of the DKS approach usually resort to the use of standard
nonrelativistic density functionals. In general, how to use these
functionals may not be trivial and present numerical
problems.10,11 Increasing the efficiency of the DKS method is
a crucial step to motivate further research for the development
of new functionals which properly use the relativistic four-
current density as the basic variable.
Important and significant computational progress has been

made in recent years.12−16 Our specific implementation of the
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four-component DKS theory in the package BERTHA17 is
based on the electron-density fitting approach that is already
widely used in the nonrelativistic context (see also refs 18−20).
We have implemented the variational Coulomb fitting approach
in our DKS method,21 with further enhancements resulting
from the use of the Poisson equation in the evaluation of the
integrals,22−24 and also from the extension of the density fitting
approach to the computation of the exchange-correlation
term.25 As shown very recently by Kelley and Shiozaki,26 these
density fitting techniques appear to be suitable for the
implementation of Dirac−Hartree−Fock including Coulomb,
Gaunt, and full Breit interaction.
The above-mentioned algorithmic advances have represented

a leap forward of several orders of magnitude in the
performance of the four-component DKS approach but left
two big hurdles untouched on the way toward truly large-scale
applications: one is the fact that the computational bottleneck is
progressively shifted toward the linear algebra operations and,
especially, matrix diagonalization; the other, related, problem is
the “memory bottleneck”. The huge basis sets required for the
accurate all-electron treatment of many heavy atoms at once
lead to matrix sizes that simply cannot be handled on a typical
computer. It seems clear that only a suitably designed data-
parallel, fully distributed-memory approach can be of help on
both counts. This kind of data-parallel paradigm is in fact in line
with the current architectural trend toward many cores and
massively parallel systems, where the computational resources
are made of many compute units (cores) having each a
relatively small amount of memory (we think here for instance
of Nvidia’s CUDA,27 Intel Many Integrated Core Architec-
ture,28 or the IBM BlueGene project29). It thus appears
important to achieve the right mix of scalability and extensive
memory distribution.
In our first parallel implementation,30 we adopted a sort of

master−slave paradigm which only partially solved the memory
bottleneck problem. The effective memory distribution was
achieved thanks to a specific feature of the SGI Altix 4700
system where we developed and tested the implementation.
This system offered a fast and transparent global memory
mechanism, the SGI NUMAflex.31 Here we present and discuss
a new implementation that poses the basis for the development
of a complete and explicit memory distribution scheme with the
aim of fully overcoming all the limitations mentioned above.
The parallel software framework and library we used are the
widely available (and often optimized) Message Passing
Interface (MPI)32 and ScaLAPACK libraries.33

In section II we briefly summarize the SCF procedure in
BERTHA, as well as the master−slave paradigm previously
implemented. We then describe in detail the new data-
distribution scheme. In section III, we discuss the efficiency
of our new approach as resulting from some large all-electron
calculations on several gold clusters of increasing size. Finally,
as an interesting benchmark application, we reach the
convergence of the SCF procedure for two large gold clusters,
Au20 and Au34, using large basis set and analyze their electronic
structure through an analysis of the respective density of states.

II. PARALLELIZATION STRATEGY
Recently, we reviewed the theoretical and computational
advances made in the last years in our DKS implementation,
especially underlining the main peculiarities of the formalism in
relation to the density fitting procedure.17 Further details of our
implementation can be found in the original papers.21,24,25,34−38

For the reader’s convenience, a brief summary follows, focusing
in particular on the steps making up a typical SCF iteration and
their computational costs.
In BERTHA, the spinor solutions of the DKS equation are

expanded as a linear combination of Gaussian G-spinor basis
functions. This allows for an exact evaluation of the density
elements as a finite linear combination of standard Hermite
Gaussian-type functions (HGTF). This formulation enables a
highly efficient analytic evaluation of all the required multi-
center G-spinor interaction integrals. Notably, the implementa-
tion takes advantage of the relativistic generalization of the J-
matrix algorithm, which allowed for a particularly efficient and
straightforward implementation of density fitting procedures
based on the Coulomb metric. This efficiency is further
enhanced by the choice of the fitting basis set consisting of sets
of primitive HGTFs of common exponents and spanning all
angular momenta from zero to the target values (for all details
see ref 21). This aspect was found to be particularly effective
when high angular momenta are necessary, which is indeed the
case of the molecular systems containing heavy elements. The
fitted density is directly used for the calculation of the
exchange-correlation potential in the limit of the generalized
gradient approximation. Using such a combined approach, the
Coulomb and exchange-correlation contribution to the DKS
Hamiltonian, which used to largely dominate the whole
computational cost, can be formed in a single step. The other
contributions to the DKS matrix, namely the kinetic energy and
electron−nuclei interaction terms, are computed once at the
beginning and do not change during the SCF procedure. The
reduction of the computational cost afforded by the density
fitting scheme was shown to be dramatic. Besides reducing the
scaling power for the construction of the DKS matrix from
O(N4) to O(N3), we gained an enormous reduction in the
prefactor, without appreciable effects on the accuracy.25 We
thus achieved the notable result that the DKS matrix
construction presents a computational cost that is of the
same order of magnitude as the linear algebra operations
typically required in the SCF procedure (i.e., matrix−matrix
multiplications and matrix diagonalization). Both of these
contributions present a formal scaling of O(N3).
Typically, in a SCF iteration, the Coulomb and exchange-

correlation matrix contribution (“J+K matrix” from now on)
takes about a third of the whole iteration time, while the rest of
the time is essentially related to a few linear algebra operations
(“Linear Algebra” from now on). These include clearly the
DKS matrix diagonalization, requiring half of the time, a level-
shifting phase which involves a double matrix multiplication
transforming the DKS matrix from basis function space to
spinor space, and finally a matrix multiplication necessary to
obtain the density matrix starting from the occupied positive-
energy spinors. The parallelization effort targets these time-
consuming phases, leaving unparallelized the smallest part
possible. Thus, we parallelized the above cited steps, leaving
unparallelized only a small part (less than 2% of the total SCF
iteration time) that is related to the density fitting procedure,
together with the HGTF expansion of the density. We will
label, from now on, this part of the code as “serial phase”.

1. Master−Slave Parallelization Strategy. In a previous
paper,30 we presented in detail a master−slave (MS)
parallelization scheme. We shall here briefly recall its main
aspects in order to provide the context in which the new data-
parallel (DP) scheme has been developed.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400752s | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXB



In the MS scheme, we adopted a paradigm which only
partially solved the memory bottleneck problem. In that model,
one of the concurrent processes, the master, allocates in fast
memory the entire arrays required for the calculation,
specifically: the G-spinor basis overlap, density, and J+K
matrices, while all other processes share the computation
burden. For large memory requirements, this model can only
work on parallel systems offering a node with a large amount of
memory or a fast transparent global memory mechanism. The
latter is the case of the SGI NUMAflex architecture31

mentioned earlier. In the MS approach, the master process
carries out the “serial phase” of the SCF iteration, while all the
concurrent processes share the burden of the other calculation
phases and have to allocate only some temporary small arrays
when needed. This approach can be summarized by the
pseudocode reported in Figure YY.
The parallelization of the J+K matrix construction is based

on the assignment of matrix blocks to be computed to each
available process except the master. The matrix block structure
is naturally dictated by the grouping of G-spinor basis functions
in sets characterized by common origin and angular
momentum (see also ref 37). The master process needs to
broadcast only a small vector of double precision numbers, of
size equal to the number of fitting basis fuctions, representing
the sum of the Coulomb and exchange-correlation potential in
the Coulomb metric (for details see ref 25). Each slave process
allocates only a local small array where it stores the J+K matrix
block it computes and, after the computation is done, sends the
block, together with its dimensions and position within the
global J+K matrix, to the master. The master stores each block,
as soon as it arrives, in the proper location of the allocated J+K
matrix. This MS approach guarantees a good overlap between
communication and computation during the “J+K matrix”
phase. In addition, the fact that each slave computes a small
portion of the J+K matrix at a time, provides also a good cache
reuse.30 After this step, the J+K matrix needs to be distributed
among all the processes, using the so-called two-dimensional
block-cyclic distribution.33 This distribution is mandatory to
use the various ScaLAPACK routines needed to perform the
linear algebra operations in parallel.

The ScaLAPACK routines we used for the DKS program are
PZHEMM in the “level shift” phase, PZGEMM in the “density”
phase, and finally PZHEGVX to carry out the complex DKS
matrix diagonalization. At the end, we collect on the master the
density matrix. Both the collection and distribution of the above
matrices are performed by routines implemented by us.30 Thus,
apart from the internal communication activity of the
ScaLAPACK routines, there are three explicit communication
operations: the slave-to-master transfer of the J+K matrix
blocks, the initial distribution of the DKS matrix, and the final
gathering of the resulting density matrix. Those communica-
tions take a running time that is, for a given matrix dimension,
almost independent of the amount of processors involved.30

Indeed the performance obtained with this approach appears to
converge to more than 80% of the theoretical maximum on 128
processors, and it turns out to be about 60% of the limit value
for an infinite number of processors (when the execution time
reduces to that of the unparallelized portion).30

As mentioned above, however, the MS scheme obviously
imposes, by construction, a limit to the size of the system that
can be handled and some specific constraints to the hardware
platform. In the most common situation, a “fat” node, working
as master and capable of allocating the memory required for the
whole arrays discussed above, is clearly necessary. We will show
in the following that an approach that avoids to allocate this big
amount of memory is possible. This approach will be most
suited to improve the performance of the DKS module of
BERTHA in terms of its memory usage and portability on
state-of-the-art massively parallel architectures.

2. New Data Parallel Strategy. As we just mentioned, the
main drawback of the MS parallelization scheme is that it
assumes that the master process can functionally allocate any
amount of memory as required. We have now overcome this
limitation by adopting a complete DP approach, where each
process performs a similar task on a different set of data, and
there is no distinction between master and slaves. In this new
scheme, the J+K matrix is never stored in a single process, but
is, at all times, distributed among the concurrent processes.
Because in the earlier MS implementation the master process
had only the role of controlling the required arrays and

Figure YY.
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dispatching the workload and did not share the computation
burden, a further benefit of the new DP scheme is that no
process is lost to the computation. This advantage, of course
especially felt for small numbers of processes, is augmented by
the better cache reuse resulting from the reduced size of the
local arrays. The new procedure for the J+K matrix
computation can be summarized by the following pseudocode:

Each process computes a balanced subset of blocks of the J
+K matrix and stores the result in a local array. This approach
does not require the collection of the matrix on a single process
and completely eliminates data communication during the
computation of the J+K matrix. Indeed, apart from the implicit
internal communication activity of the ScaLAPACK routines,
there only are four explicit communication operations. First we
need to initially distribute the overlap matrix; this communi-
cation takes place only once at the beginning of the entire DKS
procedure. Second, the root process broadcasts the vector of
fitting coefficients at the outset of the J+K matrix step. This is a

small vector whose dimensions are obviously related to the
fitting basis set size selected. The third communication step
takes place immediately after the J+K matrix computation. This
is an all-to-all communication performed by the DISTRIB-
UTESPARSE routine we are about to describe. The total
amount of data transferred in this step is in any case not larger
than the J+K matrix dimension. Moreover, as shown in Table I,
the time required for this communication is largely
independent of the number of processors involved. Finally,
after the “density” step,30 we need to perform a final gather of
the density matrix.

3. DISTRIBUTESPARSE Routine. At the end of the J+K
matrix computation, the matrix is completely distributed among
all processes, in accord with the matrix block structure dictated
by the grouping of G-spinor basis functions in sets
characterized by common origin and angular momentum
(integral driven distribution),37 as recalled earlier. However,
this distribution is not suitable for use by the subsequent
ScaLAPACK routines and so the matrix needs to be
redistributed according to the appropriate two-dimensional
block-cyclic distribution. To perform this redistribution we
implemented a specific routine (DISTRITUTESPARSE) which
maps the two distribution patterns: this step constitutes the
core of our new implementation and will be described in the
following.
The DISTRIBUTESPARSE algorithm we have implemented

permits the efficient remapping of an arbitrary distribution
scheme of a matrix among processors onto the block-cyclic
distribution required by the linear algebra routines of the
ScaLAPACK library. According to this two-dimensional block-
cyclic data distribution (BCDD), a dense matrix is decomposed
into blocks (“ScaLAPACK blocks”) of suitable size (“ScaLA-
PACK block-size”), which are then uniformly distributed along
each dimension of the process grid, so that every process owns
a subset of them. There is not a simple and predictable relation
between the BCDD and the integral driven distribution, indeed
the latter is dictated by the grouping of G-spinor basis functions
in sets characterized by common origin and angular
momentum, thus is a function of the basis set used as well as
of the molecular system and of the number of processes. The
BCDD is instead a function of the twodimensional virtual
process topology used and of the ScaLAPACK block-size. The
only possibility, with the present scheme, to directly optimize
the mapping of the two distributions given an input basis set
and molecular system is to modify the process topology and/or
the ScaLAPACK block-size, but this must be done for each
specific case.
As first step of DISTRIBUTESPARSE, each process must

share, via an MPI broadcast, some information about the blocks

Table I. Times in Seconds for the DISTRIBUTESPARSE (A) and DISTRIBUTE (B) Routines as a Function of Matrix Size and
Number of Processorsa

matrix dimension

1560 3120 6240 12480

no. of processors A B A B A B A B

4 0.11 0.12 0.43 0.47 1.71 2.35 2.86 8.81
16 0.06 0.11 0.17 0.48 0.56 1.87 2.57 7.31
32 0.06 0.10 0.15 0.43 0.46 1.72 1.92 6.91
64 0.09 0.10 0.26 0.45 0.64 1.78 2.05 7.08
128 0.15 0.11 0.51 0.46 1.09 1.85 2.76 7.47

aData obtained on IBM-SP6 and using MPI library. See section III for details.
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of the J+K matrix it currently owns as a result of the previous
computation. This information includes the set of processes it
needs to communicate with (in order to redistribute its blocks
according to the BCDD), data dimensions, etc. Once this
initialization phase is finished, each process packs the computed
J+K matrix elements into sets, according to the ScaLAPACK
blocks the elements belong to. The result of this step is a set of
blocks or sub-blocks each of which must eventually be owned
by a specific process of the ScaLAPACK grid. After this packing
step, data are ready to be sent to the legitimate owner and the
effective communication of the matrix blocks is carried out
through a series of MPI point-to-point primitives32 that, when
possible, are performed in parallel. Obviously the amount of
data exchanged cannot be easily predicted, being a complex
function of the problem size (molecular system, basis set used),
as well as of the processor grid shape33 adopted and obviously
of the ScaLAPACK block-size chosen. The DISTRIBUTES-
PARSE routine is much more complex than the DISTRIBUTE-
(mat,rank) routine of the previous MS approach. In the latter,
the entire matrix mat is stored in the local memory of a single
process rank that distributes it among all processes according to
the BCDD scheme. The DISTRIBUTESPARSE routine is
instead semantically equivalent to a long sequence of
DISTRIBUTE(mat,rank) calls, where each process rank in
turn calls the DISTRIBUTE routine for each one of the J+K
matrix blocks it has computed.
Although, as mentioned above, the communication activity

related to the DISTRIBUTESPARSE routine requires the
broadcast of some mapping information, this is of course
marginal compared to the actual matrix block transfer and, as a
result, the total communication time does not display any
appreciable dependence on the number of processes involved
and is very efficient. This is highlighted in Table I, where one
can see that the overall matrix redistribution time is less than 3
s, regardless of the number of processors involved, up to the
largest case treated, which involves a 12 480 × 12 480 matrix of
double precision complex numbers.
It is also worth noticing, as the table also shows, that the

DISTRIBUTESPARSE implementation improves over the
previous MS scheme (DISTRIBUTE function30) in which the
BCDD was carried out starting from a matrix entirely allocated
on the master process. This should be expected, because the
overall amount of data transferred in the new scheme is of
course normally smaller than the whole DKS matrix that was
distributed in the MS model. This is an additional welcome
feature.
Though the overall performance of the DISTRIBUTES-

PARSE routine improves over the DISTRIBUTE one, it may
be noticed that, for the matrices of size 1560 and 3120 using
128 processors, the former routine is slower than the latter
(Table I). This effect is explained by the fact that, when the
amount of data to be sent is too small, the overall performance
of the DISTRIBUTESPARSE routine is mainly driven by the
broadcasts needed during the initialization phase.

III. DISCUSSION
To put the new DP implementation of our DKS module to the
test, we performed several computations for a set of
representative gold clusters: Au2, Au4, Au8, Au16. The
corresponding DKS matrix sizes are 1560 for Au2 (37.1 MB),
3120 for Au4 (148.5 MB), 6240 for Au8 (594.1 MB), and 12480
for Au16 (2.3 GB). The large component of the G-spinor basis
set on each gold atom was derived by decontracting the double-

z-quality basis set of Dyall39 (22s 19p 12d 8f). The
corresponding small-component basis was generated using
the restricted kinetic balance relation.40 We used the BLYP
exchange-correlation functional, made of the Becke 1988
exchange functional (B88)41 plus the Lee−Yang−Parr (LYP)
correlation functional.42 As auxiliary basis set, we used the
HGTF basis optimized by us and denoted as B20 in ref 21. A
numerical integration grid34 has been employed with 61 200
grid points for each gold atom. Moreover we do not make use
of any cutoff scheme of cutoff threshold of analytical two-
electron integrals.
We report our results referring directly to the grid of

processors used rather than the total number of processors.
This is more appropriate to the ScaLAPACK environment,
which imposes a mapping of the total number of processes, P,
into a two-dimensional rectangular grid. This grid (Pr × Pc) will
have Pr rows and Pc columns, with PrPc = P. The importance of
the shape of the grid, as well as of the ScaLAPACK block-size
driving the block-cyclic decomposition, has been discussed in
detail in our previous work.30 The grid shape affects appreciably
the performance of the linear algebra routines and different
routines may be differently influenced depending on the block
size, number of processes, and size of molecular systems. In our
experience, we found a spread in performance of up to 50%,
with rectangular grids appearing to be relatively unfavorable for
the diagonalization step (the computationally most expensive
step) compared to square grids. Therefore, we prefer a square
processor arrangement when possible and choose Pr < Pc
otherwise. The block dimension used is 32. Before we proceed,
it is necessary to add a note about the system hardware and
software we used to test our code. All the results reported have
been obtained using an IBM SP Power 6 installed at CINECA
(i.e., IBM P6-575 Infiniband Cluster equipped with IBM
Power6 4.7 GHz CPU and Infiniband x4 DDR networking),
with the IBM implementation of the MPI library and the
ScaLAPACK library. An initial porting of our code to a
massively parallel architecture (the FERMI BluGene/Q
system) is encouraging and preliminary results will also be
briefly presented here.
In Table II, we report the speedup of the J+K matrix step,

both for the MS and the DP approaches. As can be seen, both

schemes display an excellent performance, which also testifies
of the good load balance implicit in their design. The Au2 and
Au4 cases are exceptional in that, because of their small size,
they rapidly reach a speedup limit. The DP approach, besides
achieving the complete memory distribution it has primarily
been designed for, is also slightly superior, as expected,

Table II. J+K Matrix Construction Speedup, for the Master−
Slave (MS) and Data-Parallel (DP) Approaches As a
Function of the Processor Grid Useda

cluster parallelization scheme 2 × 2 4 × 4 4 × 8 8 × 8 8 × 16

Au2 MS 2.9 9.6 14.5 26.6 26.6
DP 3.9 10.1 15.4 26.6 26.6

Au4 MS 2.9 10.6 24.0 35.6 54.6
DP 3.9 11.4 24.4 37.1 54.8

Au8 MS 3.1 15.4 32.3 58.7 100.5
DP 4.4 16.7 33.1 58.8 103.8

Au16 MS 2.8 15.2 31.3 62.5 119.5
DP 3.7 16.7 33.4 64.0 120.0

aAll the tests have been performed on the IBM-SP6 at CINECA.
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especially when running on few nodes, due to the extra
processor gained to the computation. As the number of
processes increases, furthermore, the DP scheme still retains a
slight edge essentially because of the negligible communication
activity. We even observe cases of superlinear performance
when the small size of the local arrays permits improved cache
reuse to prevail over other factors.
We mention that the good load balancing of the J+K matrix

step for gold cluster calculations can be achieved also in the
case of molecules containing different atoms. We performed
some calculations on the organometallic system [(Ph3P)Au-
(C2H2)]

+, and the results are presented as Supporting
Information. These tests used two different G-spinor basis

sets derived by decontracting a double-ζ and a triple-ζ quality
basis set. The results show no appreciable deviance in terms of
speedup.
The overall performance of the two parallelization strategies

is summarized in Figure 1 where we report the overall speedup
of a SCF iteration obtained using both the MS and the new DP
scheme, together with the maximum theoretical speedup
computed according to Amdahl’s law43 taking into account
the unparallelized fraction. We can see that the DP design
increases the overall performance of our parallel DKS module,
by up to 15% depending on the number of processors. Table III
reports the elapsed times of the different phases of the SCF
iterations, for the various gold clusters and different numbers of

Figure 1. Overall speedup for the MS (dashed lines) and DP (solid lines) approaches for the various gold clusters investigated: purple for Au2, green
for Au4, blue for Au8, and red for Au16. The maximum attainable speedup resulting from Amdahl’s law is in each case also reported (dotted−dashed
lines).

Table III. Elapsed Real Times (s) for the Various Phases of the DKS Calculations on Some Gold Clusters As a Function of the
Number of Concurrent Processes Employed (Indicated by the ScaLAPACK Grid Shape)a

Cluster Step

MasterSlave Data Parallel

Serial 2 × 2 4 × 4 4 × 8 8 × 8 8 × 16 2 × 2 4 × 4 4 × 8 8 × 8 8 × 16

Au2 J+K matrix 14.34 5.00 1.49 0.99 0.54 0.54 3.67 1.42 0.93 0.54 0.54
Linear Algebra 25.44 4.03 2.03 1.76 1.76 1.79 3.72 1.97 1.72 1.76 1.83
Serial phase 3.79 3.23 3.84 3.63 3.63 4.07 3.39 3.40 3.41 3.41 3.41
Total iteration 43.57 12.26 7.36 6.38 5.93 6.40 10.78 6.79 6.06 5.71 5.78

Au4 J+K matrix 105.30 35.87 9.92 4.39 2.96 1.93 26.71 9.24 4.31 2.84 1.92
Linear Algebra 202.56 24.76 13.49 7.93 7.25 6.79 25.35 12.74 7.63 7.04 6.83
Serial phase 15.59 15.51 16.48 15.67 15.73 15.82 14.73 15.00 14.79 14.82 14.85
Total iteration 323.45 76.14 39.89 27.99 25.94 24.54 66.79 36.98 26.73 24.70 23.60

Au8 J+K matrix 885.63 282.02 57.44 27.44 15.08 8.81 202.57 53.11 26.74 15.05 8.53
Linear Algebra 2051.89 198.09 64.13 43.30 35.34 30.21 185.96 64.90 41.92 34.39 29.37
Serial phase 75.04 75.11 75.67 75.79 76.32 76.53 70.17 70.26 70.30 70.81 71.04
Total iteration 3012.56 555.22 197.24 146.53 126.74 115.55 458.70 188.27 138.96 120.25 108.94

Au16 J+K matrix 6563.00 2348.56 432.19 209.46 105.03 54.92 1776.84 393.91 196.31 102.51 54.70
Linear Algebra 13681.08 1915.55 451.51 298.43 215.36 165.83 1899.12 447.61 293.58 210.33 161.88
Serial phase 390.60 390.98 405.23 406.97 405.72 406.84 377.90 377.79 379.07 379.30 379.73
Total iteration 20634.68 4655.09 1288.93 914.86 726.11 627.59 4053.86 1219.31 868.96 692.14 596.31

aData are reported for both the MS and DP implementations, as well as for the serial code. The linear algebra times reported are the sum of the three
ScaLAPACK driven steps (level shift, diagonalization, and density) and include the communication time for the block−cyclic array distribution.
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processors employed (shown in their PrPc ScaLAPACK
arrangement). We note here that the linear algebra operations
perform almost identically in both the MS and DP cases. The
small difference is mainly due to the communication needed for
the matrix distribution, which we include in this entry and, as
discussed earlier, is more efficient in the DISTRIBUTESPARSE
function of the DP approach. As a general remark about
ScaLAPACK, in-depth analysis using the SCALASCA perform-
ance toolset44 shows that even if they generally present a good
load balancing (depending on matrix dimension, ScaLAPACK
block-size, and virtual process topology used) communication
represents a bottleneck. In fact, most of the communication in
the present parallelization scheme is due to ScaLAPACK itself,
and essetially to the diagonalization routine. Therefore, the
linear algebra steps represent essentially the sole efficiency
limiting factor in porting the code to high latency and low
bandwidth network clusters.
Interestingly, a further somewhat surprising benefit of the

homogeneous array distribution of the DP implementation is
that the “serial phase” of the computation appears to be
consistently slightly faster (by about 10%) than what is
measured for the serial code and for the MS approach. We
attribute this to the more efficient overall process management
resulting from the much reduced memory allocated by the ex-
master process carrying out the serial fraction.
We mention here that a preliminary porting, with no

optimization attempt, of our DP code to the FERMI
BlueGene/Q system at CINECA (equipped with IBM
PowerA2 1.6 GHz CPU and 11 links → 5D Torus Network
interface) also gave encouraging results. Using 128 processes
for the Au16 cluster the performance of the J+K matrix step was
99.7% of that of the 8 × 16 grid on the SP Power 6, while the
ScaLAPACK portion performed 24% faster. The porting also
displayed good scalability properties, as the J+K matrix step on
256 processes (a 16 × 16 grid) turned out to be 75% faster than
on 128. (We cannot give absolute speedup ratios as we could
not run the serial code on the FERMI BluGene/Q.) This shows
that the new implementation is, as designed, effectively “open-
ended” in terms of memory demands and can successfully be
ported to massively parallel architectures with small memory-
per-core figures.
We performed several numerical tests to check the effective

numerical stability of the code. These show that, in the SCF
procedure, the program can achieve convergence on the energy
to within 10−9 hartree for the Au8 and Au16 clusters, both of
them using a 4 × 4 two-dimensional virtual process grid. The
convergence on the density (maximum absolute element of the
density matrix difference between the last two cycles) is 10−6.
We did not register any numerical instability also for the
organometallic compound [(Ph3P)Au(C2H2)]

+ with conver-
gence on the energy to 10−8 hartree, again on a 4 × 4 grid. This
efficiency and numerical stability, unprecedented in the 4-
component DKS framework, promises for the first time
substantial reward for serious efforts toward new theoretical
and computational achievements, including the implementation
of automatic geometry optimization techniques.
A. Benchmark Applications: Density of States in Au20

and Au34. In order to prove the effective usability and
numerical stability of our new parallel implementation, we
carried out two complete SCF calculations on two
representative gold clusters, namely Au20 and Au34 with a
large basis set. The structures of the clusters were preliminarly
optimized using the zero order relativistic approximation

(ZORA) with small core and a QZ4P basis set as implemented
in the ADF package.45−48 The large component of the G-spinor
basis set used in BERTHA was obtained by decontracting the
Dyall basis set for gold of triple-z quality (29s, 24p, 15d, 11f, 3g,
1h).39 This is a larger basis set than that used in the Au2−Au16
test calculations. The corresponding small component basis was
generated using the restricted kinetic balance relation.40 In the
largest case, this results in a DKS matrix of dimension 39576
(23.3 GB). We used the BLYP density functional. A numerical
integration grid34 has been employed with 61 200 grid points
for each gold atom. The calculations were carried out on the
IBM SP6 machine cited above, using 64 processors and with a
total energy convergence threshold of 10−6 hartree. The time
required to complete a single SCF iteration in the case of Au34
was about 4.5 h and each single-point DKS calculation required
about 25 iterations to reach convergence.
In Figure 2, we report the electronic structure of Au20 in

terms of the density of states (DOS) resulting from the 220

positive-energy electronic states with highest energy. These
correlate with the electrons in the ds shell of the isolated atoms.
We include for comparison the results obtained by three
different calculations using ADF, in combination with the
nonrelativistic Hamiltonian (n.r.), the scalar relativistic ZORA
Hamiltonian, and spin−orbit ZORA Hamiltonian. In all cases,
we treat explicitly all electrons in the self-consistent field
procedure in combination with the TZ2P basis set.45−47 In all
cases, a Gaussian broadening of 0.05 eV has been used. The
computed DOS shows, as one may expect, a strong dependence
on the theory used. The n.r. Hamiltonian yields a pattern of
states that is in evident qualitative mismatch with that of the
reference DKS calculation: the presence of states at energies
around −4.5 eV is the clear evidence of an artificial
destabilization of the valence electrons that arises from neglect
of relativistic effects. If these effects are included, even in the
approximate scalar fashion provided by the scaled ZORA
Hamiltonian, the agreement with DKS improves and the
satellite states (at −4.5 eV) disappear. The remaining mismatch
may be largely attributed to the spin−orbit coupling effect that
is indeed absent in the scalar ZORA treatment. This is
confirmed by the comparison with the spin−orbit ZORA
calculation which is indeed in very good agreement with our
DKS results.

Figure 2. Density of states (DOS) of the Au20 cluster using different
Hamiltonians and including our DKS calculation. A Gaussian
broadening of 0.05 eV is used.
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In Figure 3, we give the comparison of the DOS in the Au20
and Au34 clusters. The cluster structures are reported in the

upper panel of the figure. The DOS of Au34 presents a more
uniform distribution than that of the Au20 case. This is strictly
related to its amorphous geometry. Such a structural/symmetry
dependence of the electronic state distribution is well-known in
the literature and has been be used to identify the cluster
geometries with the aid of spectroscopy measurements.49

IV. CONCLUSIONS AND OUTLOOK
The technological breakthroughs that are taking place drive the
computing infrastructure toward many-core solutions, as clearly
shown by the Top50050 ranking and manufacturers roadmaps.
The success in harnessing computing power for the needs of
scientific progress depends ever more strictly on our ability to
exploit these new architectures and the classic performance
doubling every 18 months is in that respect no more for free:
changes in programming paradigms and coding are mandatory,
and it is often no simple exercise to translate transistor growth
into practical performance. Our continuing optimization of the
Dirac−Kohn−Sham module of the package BERTHA strives to
go in that direction.
We completed a parallelization scheme that permits the

efficient use of distributed memory. At its core is an original
procedure for mapping the DKS matrix distribution between an
optimal integral-driven scheme for its parallel construction,
guided by the structure of our specific basis sets and by the
density fitting algorithms used, and the two-dimensional block-
cyclic scheme required by the ScaLAPACK routines employed
to perform the required linear algebra operations. The resulting

implementation of BERTHA is virtually open-ended in terms of
memory requirements and extends its applicability to
“arbitrarily” large systems containing heavy atoms. We showed
that it can be ported very effectively on massively parallel
architectures with little memory per core. The unprecedented
benchmark we have reported here is an all-electron large-basis
four-component relativistic DKS calculation on a Au34 cluster.
We are now working at the effective parallelization of the
remaining small serial portion of the code. The current
parallelization scheme can be applied to the evaluation of exact
exchange, and we are working exactly on this at the moment.
We showed that DKS approach can be implemented in an
efficient way and with a high numerical stability. We hope that
this may stimulate new theoretical research for developing new
exchange-correlation functionals depending on the four-current
density.
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