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ABSTRACT
Elastic-electroactive biological media are sensitive to bothmechanical and electric forces. Their active
behavior is often associated with the presence of reinforcing fibers and their excitation-contraction
coupling is due to the interplay between the passive elastic tissue and the active muscular network.
In this paper we focus on the theoretical framework of constitutive equations for viscous electroactive
media. The approach is based on the additive decomposition of the Helmholtz free energy accompa-
nied to the multiplicative decomposition of the deformation gradient in elastic, viscous and active
parts. We describe a thermodynamically sound scenario that accounts for geometric and material
nonlinearities.

1. Introduction

The term elastic-electroactive (EA)media refers to a wide
range of materials and physical systems which are sensi-
tive to mechanical forces and electric fields. Piezoelectric
crystals [1] and electroactive polymers [2–5] are the two5
most studiedmacroclasses of EA systems, but recently the
active electromechanical coupling has been extended to
the less explored world of biological tissues [6]. A com-
mon feature of EA media is the ability to spontaneously
deform upon the application of an electric field and to10
show a mechanoelectric feedback (MEF) when mechani-
cal forces are applied. The latter behavior is likely due to
the modification of the original configuration of the elec-
tric field caused by the deformation of the system and in
some cases to induced anisotropy of the material [7–9].15

Soft active materials often exhibit rate dependent
behaviors at different scales [10, 11]: stress relaxation
at constant strain, creep at constant stress, hysteresis
during loading and unloading, strain-rate dependence.
For most biological materials, the viscoelastic response20
is due to the interactions between proteoglycans in the
ground substance and the reinforcing collagen fibers.
For example, cartilage—mainly made of water (∼ 75%),
collagen fibers, and extracellular matrix—and trabecular
bone show viscoelastic properties due to fluid flow dur-25
ing loading; intervertebral discs (∼ 78% of water) show
viscoelasticity due to fluid flow during loading and shear
forces between matrix and fibers during fiber straighten-
ing. Viscous behaviors are motivated biologically by the
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Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/ucme.

protection against the injuries that can be induced by fast 30
actions and are justified physiologically by the composite
structure of the tissues [12].

When the involved deformations are small and the
materials are linear elastic, viscosity can be described with
linear theories, using mechanical rheological analogs or 35
Boltzmann’ superposition principle. Idealizedmechanical
analogs, based on simplified reological components, can
be used to describe also nonlinear viscoelastic materials:
the generalized Maxwell model, which is an extension of
the standard solid model, is often adopted to describe vis- 40
cositywithin finite kinematics. A promising approach that
allows to incorporate viscoelastic behaviors in a sound
thermodynamical framework relies on the introduction
of dissipation potentials [13]. Starting from a general-
ized theory of viscoelasticity [14], recent contributions 45
on the topic have been developed in the context of soft
electroactive polymers [3–5, 15, 16]. Furthermore, viscos-
ity in multiphysics coupling and viscomagnetomechani-
cal effects have also been proposed [17–19].

In spite of the vast literature on the subject [20–22], 50
the role of viscous stresses on electric fields and the
reverse feedback lack of accurate consideration, in partic-
ular when their mutual interactions need to be accounted
for, as in the case of anisotropic active biological media. In
view of tackling this particular aspect, in this work we dis- 55
cuss a general theoretical framework for active viscoelas-
ticity in fiber reinforced tissues, and apply the theory to
the numerical simulation of the peristalsis in a portion of
the human intestine.
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On the wake of two decades of intense experimental60
and modeling research, in this work we aim at clarify-
ing the thermodynamical basis of multiphysics model-
ing in soft excitable tissues. Experimental evidence has
shown important differences in the pattern of peristaltic
wave propagation along the intestine. In particular, varia-65
tions in the pacemaker site and correspondingly in speed,
direction, and extension of excitation have been recorded
in vivo. Slow waves, and longitudinal and circular action
potentials, showing their characteristic propagation pat-
tern, have been detected [23]. The observation of abnor-70
mal propagating waves in smooth muscle organs other
than the heart allowed to generalize and extend the con-
cept of arrhythmias and reentrant excitations [24].

The paper is organized as follows. Section 2 describes
briefly the biophysics of the human wall intestine, while75
Section 3 presents a general theoretical framework of
the viscoelectroactive mechanical problem. In Section 4
the constitutive relationships are described by decoupling
the Helmholtz free energy according to a multiplicative
decomposition of the deformation gradient. By the way80
of a case study and using a simplified model of the intes-
tine electrophysiology, in Section 5 we present an illus-
trative simulation of peristaltic contraction, in a portion
of human colon reconstructed from virtual colonoscopy
images. In Section 6 limitations and future perspective are85
discussed.

2. Biophysics of intestine

Human intestine belongs to the class of excitable
deformable tissues responding differently upon isotonic,
isometric or dynamic conditions. Gastrointestine (GI) 90
wall, in particular, is a very complex system consisting
of four main layers with definite and peculiar structures:
(i) mucosa, (ii) submucosa, (iii) circular muscularis (CM)
and longitudinal muscularis (LM), and (iv) serosa. For
the purpose of the present work, in the following we con- 95
sider the sole muscularis layer. Intestine peristaltic activ-
ity in the muscularis layer is a complex phenomenon that
involves excitable and deformable cells, called smooth
muscle cells (SMC). Muscle contraction, in particular,
is characterized by multiple superposed time-dependent 100
phenomena at the microscale which render the chemo-
mechanical reaction process markedly dependent on the
typical frequency of the system [25].

GI wall anatomy and function. The contractile prop-
erties of SMCs are the result of the interaction of actin 105
and myosin filaments; see Figure 1. SMC contraction
is activated by the migration of calcium ions supplied
by hydrolysis processes. SMC protein filaments show
a specific spatial organization within the intestine wall
which allows for contraction up to 80% of their rest- 110
ing length. Moreover, SMCs contract at a very low fre-
quency and exert force for long times. This aspect is

B/w in print, colour online

Figure . Schematic representation of the smooth muscle cells. Internal contractile structures cartoon description in the material and
activated states.
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energetically fundamental for reducing the overall contin-
uous dissipation.

SMC within the intestine wall are grouped in bun-115
dles of about 1,000 fibers and arranged in two preferen-
tial orientations, e.g., longitudinal (ML) or circumferen-
tial (MC). Fibers are highly interconnected in the bun-
dle and with other bundles, in order to spread the bio-
electrical potentials efficiently. The resulting structure is120
a functional syncytium, typical of electroactive biological
tissues, able to support reaction-diffusion processes with
associated propagating behaviors [26, 27]. Additionally,
ML and MC bundles show connection points that enable
correct peristaltic sequences.125

Electrophysiology. The electrical activity of intestine
is characterized by slow waves and superimposed fast
spikes. Slow waves, characterized by a frequency of 3–12
oscillations per minute, wavelength of 5–10 cm, an aver-
age duration of 6 s, and voltage membrane oscillations130
of 5–15 mV, are fundamental to regulate GI contractil-
ity. The interstitial cells of Cajal (ICC) form a specialized
SMC pacing system responsible of the slow wave gener-
ation and propagation together with the nervous system
[28]. ICC are located between the longitudinal and cir-135
cumferential muscularis and are organized in a homoge-
neous network. Interestingly, slow wave oscillations are
present along the whole intestine also when contractions
are not present, but their frequency gradually reduces
in the aboral direction. Fast spiking waves are real volt-140
age action potentials (AP) signals that appear during the
contraction of the intestine walls. Fast spike onset super-
poses to slow waves when a threshold of about−40mV is
reached, and are characterized by a frequency of 1–10 Hz
and a duration of 10–20 ms.145

Consequently to the presence of the two electric sig-
nals, the electromechanical behavior of the GI system is
very sensitive to small variations of the resting membrane
potential, and several chemical, electrical and mechani-
cal factors can modify this state, e.g., acetylcholine, nora-150
drenaline and sympathetic stimulations, intestine wall
stretching (stretch activated channels), and temperature
changes [29].

Movements & contractions. The contraction of the GI
apparatus is driven by the electric peristalticmotion. Peri-155
staltic waves propagate in an anterograde direction with
a velocity of 0.5–2 cm/min, showing deceleration from
the proximal to the distal intestine. In the small intes-
tine, for example, themean wave velocity is 1 cm/min and
requires 3–5 hours to move the chime from the pylorus to160
the ileocaecal valve. Peristalticmovements are fundamen-
tal to obtain a calibrated mix of the chime, since differ-
ent actions have to take place in different portions of the
GI systemwith specific timings. The overall phenomenon

of chime motion is known as migrant motor complex 165
(MMC).

3. Active electromechanical model formulation

We refer to a body of reference mass density per unit vol-
ume ρ0 undergoing a motion x = x(X, t ), where X are
the coordinates in the material configuration and x are 170
the coordinates in the spatial configuration. The volume
and the boundary with outward normal N in the mate-
rial configuration are denoted by �0 and ∂�0, respec-
tively. We denote with F = ∇Xx the deformation gradi-
ent, with C = FTF the Cauchy-Green deformation ten- 175
sor, and with ρ the mass density per unit current vol-
ume. The local form of the mass balance and of the linear
momentum read

det F = J = ρ0

ρ
, ρ0

dV
dt

= ∇X · P + ρ0B, (1)

where B are the body forces per unit of mass, V is the
material velocity, P the first Piola-Kirchhoff stress ten- 180
sor, and ∇X · the material divergence operator. The angu-
lar momentum balance is satisfied through the symmetry
of the product PFT = FPT and the boundary tractions T
are expressed through the Cauchy’s relation T = PN .

Denoting E, D, and � the material electric field, the 185
material electric induction, and the material polariza-
tion density, respectively, and assuming, as usual, that the
material electric field is the gradient of the electric poten-
tial ϕ

E = − ∂ϕ
∂X

= −∇Xϕ,

the equations of electrostatics in material form read 190

∇X × E = 0, ∇X · D = 0,

where∇X× denotes the material curl operator. Themate-
rial electric induction, in particular, is given as

D = Jε0C−1E + �, (2)

where ε0 is the dielectric constant of the vacuum. The
first term in (2) accounts for electric field distortions due
to material deformations while the polarization tensor � 195
must be characterized via a constitutive relationship.

Electrophysiology is governed by the electric current
balance, a reaction-diffusion equation known as cable
equation. The local material form is given by

CE
Dϕ
Dt

= −1
J
∇X · HE + IE, (3)

where CE is the electric capacitance, IE the total ionic 200
transmembrane current, and HE the electric flux. The
material time derivative of the electric potential is defined
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as

Dϕ
Dt

= ∂ϕ

∂t
+ dX

dt
· ∇Xϕ.

According to a standard notation, the symbol · denotes
the scalar product. Boundary conditions are expressed205
as −[[HE]] · N = ω, where ω denotes the surface charge
density in the material configuration, while the electric
flux is assumed to follow a linear dependence on the gra-
dient of the electric potential (Fick’s law)

HE = −JKE∇Xϕ,

where KE denotes a material second-order tensor of elec-210
tric conductivities.

In order to setup a thermodynamic approach to the
electromechanical problem, we begin by introducing a
specific internal energy U of the system dependent also
on the electric field [30]. Accounting for the mass and the215
linear momentum balances (1), and using the superposed
dot to denote the rate of a quantity, the local form of the
rate energy balance becomes

U̇ = P : Ḟ + E · Ḋ + ρ0Q − ∇X · HT , (4)

where U̇ is the specific rate of the internal energy, Q the
heat supply per unit mass, and HT the material energy220
flux vector. In turn, the dissipation inequality assumes the
form [1]

T �̇ = TṄ −U + E · Ḋ + P : Ḟ − 1
T
HT · ∇XT ≥ 0,

(5)
where �̇ denotes the total entropy production, Ṅ the rate
of entropy production per unit reference volume, T is
the temperature, and : denotes the contraction between225
tensors.

4. Constitutive relations for active media

We follow a sound thermodynamical approach [31–33]
and assume that the local thermodynamic state of the
bodyB0 is completely defined by the deformation gradient230
F , temperature T , electric field E, and by a set of internal
variables Q. In the present context, internal variables are
included to consider the presence of viscosity and will be
specified according to the material model and to the dis-
sipative process considered.235

We depart from the alternative Helmholtz thermody-
namic potential A, a Legendre transform of the internal
energy potential, which, in turn, is a function of the state
variables

A = U − D · E − TN = A(F,T,E,Q) (6)

and consider the total stress P as the sum of an equilib- 240
rium stress PE , function of the state variables, and a vis-
cous stress Pv , which additionally depends on the rate of
deformation Ḟ , i.e.,

P(F,T,E,Q; Ḟ ) ≡ PE (F,T,E,Q)+ Pv (F,T,E,Q; Ḟ ) .
(7)

PE is defined as the total stress when no deformation rate
is present: 245

PE(F,T,E,Q) ≡ P(F,T,E,Q; 0) .

Following the standard variational procedure, the consti-
tutive equations derive as

PE = ∂FA(F,T,E,Q), N = ∂TA(F,T,E,Q),
D = −∂EA(F,T,E,Q),

with the thermodynamic forces Y conjugate to the inter-
nal variables defined as

Y ≡ −∂QA(F,T,E,Q).

The thermodynamic framework is then completed with 250
the introduction of kinetic relations for Pv and Q̇ [34, 35].
We conveniently introduce a dual dissipation potentialψ∗

dependent on the deformation rates Ḟ , such that the vis-
cous stress derives as

Pv = ∂Ḟψ
∗(F,T,E,Q; Ḟ ). (8)

The functional form of the dual dissipation potential is 255
chosen according to the kind of viscosity considered, as
long as it is convex in order to satisfy the sign of the dissi-
pation inequality [35].

Since in the following we refer to isothermal processes,
in all the successive equations we drop the dependence on 260
the temperature T .

4.1. A general Helmholtz potential for active
electromechanics

As customary for a system undergoing multiphysics pro-
cesses in finite deformations, we adopt the multiplicative 265
decomposition of the deformation gradient as the most
convenient mathematical representation of the change of
the system’s configuration [9, 36–38]. In view of model-
ing the viscous-active coupling, we start from the assump-
tion that the deformation gradient decomposes into elas- 270
tic F e and active Fa parts [6]; see Figure 2a. But instead of
considering a purely elastic behavior of the material, we
introduce viscosity, described schematically by the stan-
dard solid equivalent model shown in Figure 2b. Thus,
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Figure . (a) Sketch of themultiplicative decomposition of the deformation gradient tensor in elastic and active part for an inviscid hyper-
elastic model. (b) Schematic representation of the reological equivalent standard solid model for the viscous behavior. (c) Sketch of the
multiplicative decomposition of the deformation gradient tensor in elastic, viscous and active part.

we replace the elastic deformation gradient with the prod-275
uct between an elastic deformation gradient F e and a vis-
cous deformation gradient Fv , that will account for rate-
dependency; see Figure 2c:

F = F eFvFa. (9)

The elastic part of the deformation gradient is related
to the passive response of the material, while the active280
part is introduced to describe the geometrical changes
induced by the electric field on unconstrained portions
of the material. The viscous deformation gradient, which
is naturally dependent on time, can be considered as
an internal variable Fv ≡ Q, and its evolution will be285
governed by suitable kinetic relations. Assumption (9)
introduces multiple ideal intermediate non compatible
configurations where a single inelastic phenomenon takes
place without inducing stresses in the continuum [35].
The compatibility requirement will relax the body from290
the last intermediate configuration to the current config-
uration, where equilibrium and compatibility conditions
are fully satisfied.

In the view of reducing the complexity of the nonlin-
earities of the constitutive description, the Helmholtz free295

energy can be conveniently split into the sum of three
distinct contributions (elastic, viscous, and active) by
assuming a full separation of the arguments. This choice,
motivated by the physical distinction between passive,
viscous, and active behaviors, allows to maintain in each 300
contribution the functional dependency on the state vari-
ables obtained in the absence of other behaviors. In par-
ticular, when the approach is adopted in the hyperelastic
modeling of multiscale and multiphysics media, only the
elastic contribution to the free energy density is consid- 305
ered a function of the elastic deformation gradient [35,
39]. Thus, we assume the additive decomposition of the
free energy density in three contributions in the form

A(F e, F,E, Fv ) = Ae(F e)+ Av (Fv )+ Aa(F,E). (10)

The term Ae represents the classical strain energy density
of hyperelastic materials, while Av is a dissipative term 310
that describes viscous phenomena and must be related
to a time interval. The term Aa, instead, is an inelastic
free energy density that accounts for the electric field and
for all its effects, including inelastic deformations. From
assumptions (9)–(10), the equilibrium stress PE and the 315
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thermodynamic forcesY follow as

PE = Pp + Pa, Y = −∂FvA = −Y e −Y v −Y a .

(11)
The thermodynamic framework allows us to clearly dis-
tinguish between a passive stress Pp

Pp = ∂F eAe(F e) ∂FF e = PeFv−TFa−T
,

and an active stress Pa

Pa = ∂FAa(F,E),

where we denote with T (−T ) the transpose (inverse of320
the transpose). The stress Pp derives from the strain
energy density Ae, which in the intermediate configura-
tion defines the elastic stress Pe, work-conjugate to F e.
The active stressPa is originated by the inelastic partAa of
the free energy. The choice of the expression Aa is intrin-325
sically linked to the definition of the Fa. In turn, Fa must
be chosen according to the micro- and macrocharacteris-
tics of the material, including the underlying microstruc-
ture. As previously mentioned, the kinetic equations for
the evolution of the viscous stress are derived from a dual330
dissipation potential ψ∗, which can be dependent on the
viscous rate of deformation Dv and possibly on the elec-
tric field E:

Pv = ∂Ḟvψ
∗(Dv ,E) . (12)

The deformation rate Dv is defined as

Dv = 1
2

(
ḞvFv−1 + Fv−T ḞvT

)
.

Once the dissipation potential has been assigned, the vis-335
cous potential can be evaluated within a time interval
t
as (see Appendix A for details)

Av (Fv ,E) ≈ 
t ψ∗(Dv ,E) .

Upon finite element discretization, the active viscoelastic
problem requires the solution of the nonlinear semidis-
crete balance equation (1)2 and reaction-diffusion equa-340
tion (3) at assigned time steps ti. In the present approach,
we make recourse to a staggered method and solve sep-
arately the reaction-diffusion equation, by assuming a
rigid solid, and the linear momentum equation. Time
integration of the reaction-diffusion equation is achieved345
by means of an explicit parabolic algorithm, with time
steps sufficiently small to satisfy the Levy-Courant sta-
bility conditions. For the chosen mesh size, with hmin =
0.035 mm, the time step was 
t = 0.0059 ms. The
resulting electric field is used to solve explicitly the bal-350
ance equation through a dynamic-relaxation algorithm
[40, 41]. Within each iteration of the dynamic-relaxation
algorithm, the state variables attendant the constitu-
tive behavior are evaluated using a variational approach
briefly described in Appendix A.355

Figure 3 visualizes the complex relationships between
the physics involved in the proposed viscoelectromechan-
ics model, and introduces the corresponding mathemat-
ical descriptors. In the material configuration, �0, the
external loading P is applied over the passive component 360
(blue large external spring), the two sets of oriented active
fibers (red internal contractile elements), and the viscous
components (green internal dashpot). The active map-
ping Fa, causing the contraction of the two active inter-
nal springs through an electric stimulation induced by the 365
electric field E, deforms the system into the active inter-
mediate configuration�a. In general, themodified length
of the two contractile elements does not satisfy geometri-
cal compatibility. The active part of the Helmholtz poten-
tial produces the active stressPa. The non compatible con- 370
figuration stimulates the dashpot and the external spring,
that work in a combined manner to reach the final com-
patible and balanced configuration. Viscous and elastic
deformation gradients change in time, and at intermedi-
ate times it is possible to refer to a dissipative intermediate 375
configuration �v characterized by a rate of deformation
Dv . The dissipative configuration differs from�a through
the viscous deformation gradient Fv and from the spa-
tial configuration through the elastic deformation gradi-
entFa, and is characterized by the equilibrium stressPE = 380
Pe + Pv + Pa. The final configuration� is reached when
the viscous rate of deformation, and the viscous stress Pv ,
goes to zero. Thus, the equilibrium stress in the material
configuration equals the sum of passive and active stress
Pp + Pa; its counterpart in the spatial description corre- 385
sponds to the Cauchy stress σ .

5. Case study: Human colon peristalsis

Now we specialize the coupled material model to repro-
duce intestine peristalsis, by adopting a specific and sim-
plified form of the intestine electrophysiology. Then we 390
apply the theory to describe the electromechanical behav-
ior of a portion of the human colon, which geometry has
been obtained through a semiautomatic segmentation of
colonoscopy images. The numerical model of the intes-
tine is characterized by the presence of two sets of fibers 395
with local orientations a1 and a2, respectively. This choice
is in line with the anatomical intestine description pro-
vided in Section 2.

5.1. Intestine electrophysiology

In our numerical application we use a simplified model 400
of electrical activity for mammalian small intestine that
accounts for the interaction of fast and slow waves [42].
The electrical activity is restricted to two cell systems, i.e.,
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Figure . Schematic diagramof thedifferent physics considered in the viscous electromechanicalmodel and explaining the corresponding
model symbology.

the LM and the ICC. According to this approach, the gen-
eral nonlinear electric dynamics in Eq. (3) is described405
in each cell system by a pair of partial reaction-diffusion
equations [43]. Equations involve two variables per sys-
tem, uj and v j, defining dimensionless transmembrane
potentials and slow currents, respectively, in the current
configuration �. Membrane voltage is mapped back to410
physical dimensions as

ul = Vl −Vl,m

Vl,M −Vl,m
, ui = Vi −Vi,m

Vi,M −Vi,m
,

where Vl is the dimensional transmembrane potential of
the LM layer, Vl,m and Vl,M are the minimum and maxi-
mum physiological values of the same potential, respec-
tively; Vi, Vi,m, and Vi,M are the corresponding variables415
for the ICC layer. In the spatial version of Eq. (3), the four

reaction-diffusion equations are given by

∂ul
∂t

= hE,l + IE,ul ,
∂vl

∂t
= IE,vl , (13)

∂ui
∂t

= hE,i + IE,ui,
∂vi

∂t
= IE,vi (14)

where indices l, i refer to the LM and ICC variables,
respectively. The spatial fluxes hE, j and currents IE,uj , IE,v j 420
specialize as

hE,l = −Dl∇ul, hE,i = −Di∇ui,
IE,ul = −vl + f (ul )+ Fl (ul, ui) ,
IE,vl = εl[γl (ul − βl )− vl],
IE,ui = −vi + g (ui)+ Fi (ul, ui) ,
IE,vi = εi (z) [γi (ui − βi)− vi] .

where∇2 denotes the Laplace operator. The recovery vari-
ables show dependence in time, and the coupling between
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Table . Parameters of the nondimensional intestine electrophysiological model [, ].

kl = 10 al = 0.06 βl = 0 γl = 8 εl = 0.15 αl = 1 Dli = 0.3 Dl = 0.4
ki = 7 ai = 0.5 βi = 0.5 γi = 8 εi = εi (z) αi = −1 Dil = 0.3 Di = 0.04

[s−1] [ - ] [ - ] [s−1] [ - ] [cm−2] [s−1cm2] [s−1cm2]

the variables is expressed through the four functions

f (ul ) = klul (ul − al ) (1 − ul ) ,
Fl (ul, ui) = αlDli (ul − ui)

g (ui) = kiui (ui − ai) (1 − ui) ,
Fi (ul, ui) = αiDil (ul − ui) .

The two nonlinear functions f (ul ) and g (ui) represent425
the cubic Zel’dovich’s terms that arise in many contests for
excitable tissues [26]. In particular, the β parameter shifts
the bistable equilibrium point of the system from the null-
cline position; Fl (ul, ui) and Fi (ul, ui) complete the cou-
pling of the systems connecting the four equations in sim-430
ilar but opposite manner. Quantities Dl,Di,Dli,Dil are
the constant inter- intralayer diffusivity coefficients and,
in this applications, are fine tuned to mimic a strong cou-
pling within the LM layer but a weaker coupling between
the two layers within the ICC layer, see Table 1. To com-435
plete the model, the ICC layer is characterized by an
excitability parameter εi(z) function of the distance from
pylorus, i.e., the z-axis:

εi (z) = 0.032 + 0.05 exp (−z) . (15)

The intestine wall is made by two fiber-reinforced
material. By referring to the two principal anisotropy440
directions a1 and a2, the active part of the deformation
gradient Fa is taken to assume the expression

Fa = (
1 + γvol|E|2) I + γ 1

dev(E · a1)2a1 ⊗ a1
+γ 2

dev(E · a2)2a2 ⊗ a2, (16)

where γvol and γdev are coefficient that describe the vol-
umetric and the deviatoric active action, respectively.
According to [9], we assume that the volumetric active445
strain derives from a normalized potential ul defined as

ulnorm = ul + 0.358
1 + 0.358

,

ful = 50 · 1
2
atan

[
300 log

(
0.1 − ulnorm

0.5

)]
,

γvol = 0.37
1.116

1 + 0.0025 ful
+ 0.045. (17)

The functional parameters in (17) have been fine tuned to
describe the intestine peristalsis activity [27]; see Table 2.
This voltage describes an active strain that persists for
a certain lapse of time after the electric potential wave450
crossing, in order to model the duration of the muscle
contraction.

5.2. Anisotropic viscoelasticity

In the present application, we consider an expression
of the viscoelastic Helmholtz strain energy density that 455
accounts for anisotropy [6]:

A = Ae(F e, a1, a2)+ Av (Fv )+ Aa(F,E, a1, a2). (18)

In particular, the elastic part Ae of the strain energy den-
sity has the form

Ae = 1
2
KJe2 + μ1

(
Ie1 − 3

)
+ μ2

(
Ie2 − 3

)
+

∑
n=1,2

kn
kn2

exp kn2
[(

Ie4n − 1
)2

− 1
]
, (19)

where K, μ1, μ2, k1, k12, k2, k22 are material parame-
ters, Je is the determinant of F e, Ie1, I

e
2, I

e
41, I

e
42 are the 460

first, second, and fourth invariants of the modified elastic
Cauchy-Green deformation tensor Ce = Je−2/3Ce. Time-
dependency is accounted for by defining a Newtonian
viscosity dual dissipation potential of Neo-Hookean type
[35] 465

ψ∗ = J
[
1
2
ζ tr(Dv )2 + η Dv · Dv

]
,

with J = det F and ζ and η volumetric and deviatoric vis-
cosity parameters, respectively. Finally, the expression of
the active part of the strain energy density is taken of the
form [6]

Aa = −1
2
Jε0EF−1 · [I + χ(C, a1, a2)] F−TE, (20)

with 470

χ(C, a1, a2) = (
χiso + χC

iso(I1 − 3)
)
I

+
∑
n=1,2

(
χfiber + χC

fiber(I4n − 1)
)
an ⊗ an,

(21)

Table . Anisotropicmaterialmodel parameters used in the exam-
ples of applications of the viscous active electromechanicalmodel
fine tuned upon porcine experimental data [].

K μ1 μ2 k4 k42 k6 k62 ζ η

[kPa] [kPa] [kPa] [kPa] [ - ] [kPa] [ - ] [ kPa s ] [ kPa s ]
.       . .

χiso χfiber χC
iso χC

fiber γ 1
dev γ 2

dev
[ - ] [ - ] [ - ] [ - ] [ - ] [ - ]
    −. −.
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Figure . Equi-biaxial loading test. Comparison between uniax-
ial experimental data [] (Exp) and passive constitutive mate-
rial model (Mod) formulation (see Table ). Test are performed in
the direction of the longitudinal (Long) and circumferential (Circ)
fibers. S and E are the normal components in the direction of
the fibers of the Second Piola-Kirchooff stress and Green-Lagrange
strain tensors, respectively.

where χiso, χfiber, χC
iso, χC

fiber are material parameters and
I1, I41, I42 the first and fourth (in directions a1 and a2,
respectively) invariants the total Cauchy-Green deforma-
tion tensorC.

Passive material parameters were fine tuned upon475
porcine intestine biaxial testing documented in [44]. The
calibration against the experimental results has been per-
formed on the passive material model considering sep-
arately uniaxial loading in two different fiber directions.
Thus, the coefficients μ1, k4, k42 have been calibrated480
for the longitudinal direction and the coefficients μ2, k6,
k62 for the circumferential one, keeping the bulk mod-
ulus K constant. Uniaxial stress strain curves obtained
during the identification of the parameters are shown in
Figure 4. The values of the calibrated parameters, listed in485

Table 2, are in the range of magnitude of soft biomaterial
parameters.

5.3. Customized colon geometrymodeling

We refer to a three-dimensional solid model of
human colon geometry reconstructed from 3D vir- 490
tual colonoscopy images. We consider a 26 mm long
anatomical section, with an average diameter of 23
mm, extracted from the central region of descend-
ing colon conduct. In order to reduce the complexity
of the computational model, we did not model the 495
internal soft layers and disregard the surrounding
soft tissues that offer a compliant confinement to the
intestine.

The computational mesh consists of 9,891 nodes and
38,646 tetrahedral finite elements; see Figure 5(a). At each 500
integration point of the geometrical model we describe
longitudinal and circumferential smooth muscle fibers,
see Figure 5(b)–(c). The two ending cross-section of the
computational mesh are constrained not to move in the
direction of the longitudinal axis. The external and inter- 505
nal surfaces are traction free.

The active strain wave is computed according to the
physiological model previously described, as originated
by the sequence of two electric potential waves. The total
duration of the process is 12 s, corresponding to two slow 510
activation waves. We conducted two dynamic analyses,
the first considering an inviscid behavior, the second one
by accounting for viscosity of the material.

5.4. Numerical analysis

Figure 6 shows the propagation of the electric signal on 515
the model assumed to be rigid. Autooscillatory propagat-
ing phenomena can be observed in the longitudinal direc-
tion. Due to the nonsymmetric geometry of the model,

B/w in print, colour online

Figure . (a) Geometrical model and finite element discretization; (b) distribution of the longitudinal SMC (drawn / of total fibers);
(c) distribution of the circumferential SMC (drawn / of total fibers).
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B/w in print, colour online

Figure . Purely electric peristaltic wave propagation. Consecutive frames with 
t = 4s. The color map refers to the nondimensional
voltage membrane ul . The peristaltic wave propagates from left to right.

the electric wave propagation is not characterized by
concentric circular, regularly spaced, signals but by520
distorted and interrupted waves, as occurs in real condi-
tions [45]. The effect of the electric activity is the contrac-
tion of the model in the circumferential direction along
sections moving form one end to the other end of the
model, reproducing the peristalticmotion of the intestine.525

Numerical simulations show how the crossing of the
electric wave causes the circumferential contraction of
the segment of intestine, leading to a strong reduction of

the intestine lumen. The contraction is followed by the
expansion of the lumen, that regains the original size, 530
after the completion of the wave cycle. In the case of
the viscous behavior, the contraction and the expansion
phase are delayed in time, thus the peristaltic motion
is slowed down, and the stress level is also reduced. A
comparison between the results of the numerical analyses 535
for the purely elastic and the viscoelastic material mod-
els is shown in Figure 7. The images show the longitu-
dinal stress distribution at the same time. In the case of

B/w in print, colour online

Figure . Numerical calculations. Stress distribution [MPa] at time of the maximum contraction. (a) Electroactive response. (b) Viscoelec-
troactive response.
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the active elastic material, the longitudinal stress varies
in the range [−0.714, 1.04] MPa; while in the case of the540
active viscoelastic material, it varies in the range [−0.625,
0.879] MPa.

6. Conclusions

This work presented a general theoretical framework
for viscous electroactive soft materials considering the545
classical additive decomposition of the Helmholtz free
energy density in elastic, viscous, and active parts. We
accompanied the additive splitting of the energy with a
multiplicative decomposition of the deformation gradient
tensor in elastic, viscous, and active part, in view of for-550
mulating a specific multiphysics coupling for soft viscous
active media. The viscous behavior has been included
through an ideal standard solid equivalent considering
Newtonian viscosity. The general model, formulated in
finite kinematics, has been specialized in view of a numer-555
ical application, consisting in the simulation of the elec-
tromechanical behavior of intestine walls.

In particular, in this work we analyzed the peristal-
sis of a limited portion of the human intestine, using
material parameters fine tuned upon experimental biax-560
ial data acquired from the recent literature [44]. In our
simulations, the passive behavior accounts for the pres-
ence of smooth muscle fibers oriented both in longitudi-
nal and circumferential directions. The resulting model
is a realistic three-dimensional structure characterized by565
a nontrivial anisotropic response. The electrophysiology
characterizing the active part has been adapted from the
excitation-contraction coupling usually adopted in car-
diac electromechanics [9].

Using a customized three-dimensional geometry570
model of human colon, processed by means of a semi-
automatic segmentation of MRI images and subsequent
refinement of the numerical domain, we conducted three
different quasistatic evolutive analyses: (i) purely electric,
(ii) electromechanical, and (iii) viscoelectromechanical.575
Simulations showed that viscosity is of relevance in the
description of the intestine peristalsis, since the level of
the stress is overall reduced and the contraction induced
by the electric signal is released after much longer times.

The specific constitutive coupling laws adopted in the580
general theoretical framework, together with a fine tuning
of the active and passive material parameters, allowed us
to reproduce with good accuracy the peristaltic motion
of the intestine wall with and without viscous effects. In
particular, we reproduced the electrical activation tim-585
ing of the tissue based on slow wave evidences [23]. The
induced deformation, then, reproduced the typical intes-
tine wall deformation of more than 30% of its resting
length [46].

In currently going-on work, we are improving the 590
theoretical model by modeling the intestine electrophys-
iological function with a more realistic description of
the typical complex nonlinear dynamics [47] and by
considering microstructural arrangement of the tissue
constituents [20]. Furthermore, we want to consider the 595
nonlinear feedback due environmental coupling, e.g., and
the presence of temperature gradients [27, 29]. Internal
soft layers, i.e., mucosa, submucosa and villi, will be
included in a future structural model of the intestine
wall, with the aim of characterizing the full multiscale 600
architecture of the system. Damage approaches [48] and
collagen fiber recruitment [49] will be also taken into
account in a multiphysics and multiscale generalization
of the model. Validation of the extended model based
on recent in vivo noninvasive measurement techniques 605
[24] and on mechanical responses of single cells by using
intracellular magnetic nanorods [50] will be the object
of future studies. Finally, high performance computing
schemes will be explored for efficient model applications
and reliable modeling predictions [51]. 610
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Appendix A

We refer to the constitutive updates in the incremental810
form [35, 39]where the deformation process is considered
at discrete times tn, and denotes the free energy density at
time tn

An = A(F e
n, Fn,En, Fv

n).

An incremental variational update at the time tn+1
can be formulated by introducing the incremental work 815
of deformation function fn which includes the dual
dissipation potential contribution

fn(F e
n+1, Fn+1,En+1, F v

n+1)

= An+1 +
t ψ∗ (Dn+1,En+1)− An, (A.1)

where

Dn+1 = 1
2
log

(
Fv−T
n Cv

n+1Fv−1
n

)

t

is the discrete formof the incremental logarithmic viscous
strain, andCv = FvTFv is the viscous rightCauchy-Green 820
deformation tensor. By replacing (10) in (A.1), we obtain:

fn(F e
n+1, Fn+1,En+1, Fv

n+1)

= Ae(F e
n+1)+ Av (Fv

n+1,En+1)+ Aa(Fn+1,En+1)

+
t ψ∗ (Dn+1,En+1)− An.

The updated viscous deformation Fv
n+1 follows from the

minimum principle [35, 39]:

Wn(F e
n+1, Fn+1,En+1)

= min
Fv

n+1
fn(F e

n+1, Fn+1,En+1, Fv
n+1). (A.2)

It follows that the Euler-Lagrange equations for the prob-
lem (A.2) define the configurational equilibrium equa- 825
tions:

∂ fn(F e
n+1, Fn+1,En+1, Fv

n+1)

∂Fv
n+1

= −Y e
n+1 −Y v

n+1 −Y a
n+1 −Y d

n+1 = 0,

×Y d
n+1 = −
t ∂ψ

∗
n

∂Fv
n+1

. (A.3)

Eq. (A.3) can be solved, e.g., by a Newton-Raphson itera-
tion. The requisite linearization of (A.3) is:

∂ fn
∂Fv

n+1
+ ∂2 fn
∂Fv

n+1 ∂Fv
n+1


Fv
n+1 ≈ 0. (A.4)

Thus, the relation to be used at iteration K + 1 is

Fv
K+1 = Fv

K −
[(

∂2 fn
∂Fv

n+1 ∂Fv
n+1

)−1
]
K

(
∂ fn
∂Fv

)
K
.

The explicit expression of the Hessian of fn will not be 830
in general available, therefore the inversion of the Hes-
sianmust be done numerically once the components have
been computed.
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