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Abstract. Chemical modelling studies have been conducted

over north-western Europe in summer conditions, show-

ing that night-time dinitrogen pentoxide (N2O5) heteroge-

neous reactive uptake is important regionally in modulat-

ing particulate nitrate and has a modest influence on ox-

idative chemistry. Results from Weather Research and Fore-

casting model with Chemistry (WRF-Chem) model simula-

tions, run with a detailed volatile organic compound (VOC)

gas-phase chemistry scheme and the Model for Simulat-

ing Aerosol Interactions and Chemistry (MOSAIC) sectional

aerosol scheme, were compared with a series of airborne

gas and particulate measurements made over the UK in

July 2010. Modelled mixing ratios of key gas-phase species

were reasonably accurate (correlations with measurements of

0.7–0.9 for NO2 and O3). However modelled loadings of par-

ticulate species were less accurate (correlation with measure-

ments for particulate sulfate and ammonium were between

0.0 and 0.6). Sulfate mass loadings were particularly low

(modelled means of 0.5–0.7 µgkg−1
air , compared with mea-

surements of 1.0–1.5 µgkg−1
air ). Two flights from the cam-

paign were used as test cases – one with low relative hu-

midity (RH) (60–70 %), the other with high RH (80–90 %).

N2O5 heterogeneous chemistry was found to not be impor-

tant in the low-RH test case; but in the high-RH test case it

had a strong effect and significantly improved the agreement

between modelled and measured NO3 and N2O5. When the

model failed to capture atmospheric RH correctly, the mod-

elled NO3 and N2O5 mixing ratios for these flights differed

significantly from the measurements. This demonstrates that,

for regional modelling which involves heterogeneous pro-

cesses, it is essential to capture the ambient temperature and

water vapour profiles.

The night-time NO3 oxidation of VOCs across the whole

region was found to be 100–300 times slower than the day-

time OH oxidation of these compounds. The difference in

contribution was less for alkenes (× 80) and comparable for

dimethylsulfide (DMS). However the suppression of NO3

mixing ratios across the domain by N2O5 heterogeneous

chemistry has only a very slight, negative, influence on this

oxidative capacity. The influence on regional particulate ni-

trate mass loadings is stronger. Night-time N2O5 heteroge-

neous chemistry maintains the production of particulate ni-

trate within polluted regions: when this process is taken into

consideration, the daytime peak (for the 95th percentile) of

PM10 nitrate mass loadings remains around 5.6 µgkg−1
air , but

the night-time minimum increases from 3.5 to 4.6 µgkg−1
air .
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The sustaining of higher particulate mass loadings through

the night by this process improves model skill at matching

measured aerosol nitrate diurnal cycles and will negatively

impact on regional air quality, requiring this process to be

included in regional models.

1 Introduction

The hydroxyl radical (OH) dominates the oxidative control

of the composition of the troposphere, primarily through its

established role as a daytime oxidant. However, night-time

chemistry, driven primarily by the nitrate radical (NO3), has

been increasingly recognised over the last decade as also be-

ing atmospherically important (cf. Brown and Stutz, 2012).

NO3 plays a key role in controlling the atmospheric bur-

den of non-methane volatile organic compounds (NMVOCs)

(cf. Atkinson and Arey, 2003), sulfur-containing compounds

such as dimethylsulfide (DMS) (Winer et al., 1984; Platt and

Le Bras, 1997), and the aerosol burden, through indirect pro-

duction of aerosol nitrate (NO−3 ) (Heikes and Thompson,

1983; Li et al., 1993) and creation of less volatile oxidised or-

ganic compounds which can condense and add to secondary

organic aerosol (SOA) mass (cf. Hoyle et al., 2011).

In polluted environments, the formation of NO3 is rapid,

but its sinks are abundant, and so its turnover is very fast.

The primary source of NO3 in the troposphere is through the

reaction

O3+NO2→ NO3+O2, (R1)

During the daytime, NO3 is quickly photolysed back to

NOx, with a lifetime of around 5 s (Atkinson, 2000). It also

readily reacts with NO to form NO2 (Asaf et al., 2010):

NO3+NO→ 2NO2. (R2)

However, at night photolysis is insignificant and concen-

trations of NO are small away from local sources, as it is

no longer produced from photolysis of NO2 and is quickly

titrated by O3. This allows concentrations of NO3 to build up,

particularly higher up in the lower troposphere where there is

more O3 and there are significant levels of NO2 (Allan et al.,

2000). Night-time concentrations of NO3 are typically a few

tens of parts per trillion by volume, although peak levels of

over 800 pptv have been reported (Asaf et al., 2010). NO3,

once produced, further reacts with NO2 to produce dinitro-

gen pentoxide (N2O5), which can act as as a reactive reser-

voir species for NO3:

NO3+NO2

M

 N2O5. (R3)

This is readily reversible, as N2O5 is thermally unstable

and NO3 and N2O5 quickly establish an equilibrium:

[N2O5] =Keq[NO2][NO3], (1)

where Keq is a temperature-dependent equilibrium constant

(Chang et al., 2011). With cooler temperatures, as found at

high altitudes and at night, and/or in polluted regions with

higher levels of NO2, [N2O5] may be much greater than

[NO3] (Osthoff et al., 2007).

NO3 is directly lost via gas-phase reactions with DMS and

NMVOCs. The reaction with DMS proceeds through the ab-

straction of a hydrogen atom, forming nitric acid and the

CH3SCH2 radical (Butkovskaya and LeBras, 1994):

NO3+CH3SCH3→ HNO3+CH3SCH2. (R4)

CH3SCH2 reacts with O2 to form the CH3SCH2O2 per-

oxy radical, which reacts further to form CH3S and

formaldehyde. Although Reaction (R4) is the rate-limiting

step in this chain, it still occurs fast enough (1.1×

10−12 cm3 molecule−1 s−1 at 298 K; Atkinson et al., 2004)

for it to be important in the marine sulfur cycle (CH3S re-

acts further to eventually form either SO2 or H2SO4; cf.

von Glasow and Crutzen, 2004). Reactions of NO3 with

saturated hydrocarbons proceed via hydrogen abstraction,

forming nitric acid and an alkyl radical; however these are

relatively slow (with rate constants typically smaller than

3×10−16 cm3 molecule−1 s−1; cf. Atkinson and Arey, 2003)

and so unimportant compared with OH-driven reactions. Re-

actions of NO3 with alkenes proceed via addition to the car-

bon double bond and are faster, particularly for larger (C> 3)

biogenic alkenes (such as isoprene and the various terpenes),

making these reactions more important for hydrocarbon bud-

gets (cf. Brown and Stutz, 2012). For example, isoprene re-

acts with NO3 at the rate 7× 10−13 cm3 molecule−1 s−1:

NO3+CH2=C(CH3)CH=CH2 (R5)

→ CH2(ONO2)C(CH3)CH=CH2.

The resultant nitroxyalkyl radicals can then thermally

decompose, but most react quickly with O2 to form

nitroxyalkyl-peroxy radicals (RO2), which can go on to re-

act with NO2, NO3, HO2, or other peroxy radicals. The rela-

tive importance of the different reaction channels for RO2 in

the real atmosphere is currently unclear; while RO2+HO2

appears to not be significant, modelling studies are am-

biguous (and laboratory studies too limited) as to which of

RO2+NO3 and RO2+RO2 are more important (cf. Brown

and Stutz, 2012, and references therein).

In addition to the direct losses of NO3, there are several

loss mechanisms for N2O5 in the atmosphere, as described

in more detail by Chang et al. (2011). Gas-phase N2O5 hy-

drolysis,

N2O5 (g)+H2O(g)→ 2HNO3 (g), (R6)

proceeds too slowly to have a significant impact on the con-

centrations of NO3 and N2O5 (Dentener and Crutzen, 1993).

Heterogeneous uptake of N2O5 to aerosol particles or cloud

droplets is a more important loss. As NO3 and N2O5 are in
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chemical equilibrium, this direct loss of N2O5 is an indirect

and sometimes dominant loss mechanisms for NO3. Hetero-

geneous hydrolysis of N2O5 is thought to be the dominant

pathway (Dentener and Crutzen, 1993), occurring through

the reaction

N2O5 (g)+H2O(l)→ 2HNO3 (aq), (R7)

where the HNO3 produced from heterogeneous hydrolysis

contributes to the nitrate aerosol burden in the atmosphere.

N2O5 also readily reacts with halide ions in the con-

densed phase summarised as follows in Bertram and Thorn-

ton (2009):

N2O5 (g)+X−(aq)→ XNO2 (g)+NO−3 (aq), (R8)

where X− is the halide ion (chloride Cl− or bromide Br−).

Where X− is Cl−, this process is a proposed source of nitryl

chloride ClNO2 in the gas phase, although measurements in

the marine boundary layer and continental air show higher

concentrations than would be predicted through this mecha-

nism, suggesting further mechanisms for production or that

our current understanding underestimates the impact of this

process (Thornton et al., 2010).

The rate of the heterogeneous reaction can be reduced to

a simple first-order process:

d[N2O5]

dt

∣∣∣∣
het

=−kN2O5
[N2O5], (2)

where kN2O5
is the mass-transfer coefficient for N2O5:

kN2O5
= 4πRpDg,N2O5

Npf (KnN2O5
,αN2O5

), (3)

where Rp is the mean aerosol particle radius, Dg,N2O5
is

the gas diffusivity of N2O5, Np is the aerosol particle num-

ber, and f (KnN2O5
,γN2O5

) is the transition regime correc-

tion factor, dependent on the Knudsen number (KnN2O5
) and

a mass accommodation coefficient characterising the interfa-

cial mass transport limitation (αN2O5
). The uptake of N2O5

is dependent on its reactivity with the compounds in the

aerosol particle, and so we can replace αN2O5
with its reac-

tion probability γN2O5
instead. γN2O5

is strongly dependent

on aerosol composition and water content, being greatest on

aqueous solutions of ammonium sulfate or sodium sulfate

(for which γN2O5
approaches 0.03) and lowest on solid par-

ticles, or organic or nitrate-containing solutions (which can

reduce γN2O5
by a factor of 10 or more; see Chang et al.,

2011, and references therein).

There have been several parameterisations developed for

N2O5 chemistry over recent years (e.g. Davis et al., 2008;

Bertram and Thornton, 2009). The parameterisation of

Bertram and Thornton (2009) accommodates both (R7) and

(R8) into a single expression for γN2O5
:

γN2O5
= Ak′2f

1−
1(

k3[H2O(l)]

k2b[NO−3 ]

)
+ 1+

(
k4[Cl−]

k2b[NO−3 ]

)
 , (4)

where A= 3.2×10−8s is an empirical pre-factor, the deriva-

tion of which is described in full detail by Bertram and

Thornton (2009). k′2f is defined as

k′2f = β −βe
(−δ[H2O(l)]), (5)

with the experimentally determined β = 1.15× 106 s−1 and

δ = 1.3×10−1 M−1. Under this formulation k′2f = 0 when a

particle is completely dry ([H2O(l)] = 0). This gives γN2O5
=

0, and so no N2O5 uptake will occur on dry particles.

1.1 Study aims

The Role Of Night-time chemistry in controlling the Oxi-

dising Capacity Of the atmosphere (RONOCO) project was

established as a national collaboration of six British uni-

versities aiming to better understand night-time NO3 radi-

cal chemistry, compare its oxidation capacity with that of

the daytime OH radical and investigate the impacts of NO3

chemistry on a regional and global scale. The project con-

sisted of several flight campaigns, carried out over the pe-

riod of July 2010–January 2011. The July 2010 flights are

used for this study, as these had the most complete set of

measurements required for analysis of the importance of

N2O5 heterogeneous chemistry. RONOCO flights were un-

dertaken using the modified Natural Environment Research

Council–UK Meteorological Office’s British Aerospace 146-

301 (BAe 146-301) Facility for Airborne Atmospheric Mea-

surements (FAAM) (Fehsenfeld et al., 2006), which operated

out of East Midlands Airport (52◦49′52′′ N, 01◦19′41′′W),

with most flights covering the eastern and southern regions

of the UK (see Morgan et al., 2014, for more details). Mea-

surements from these flights have been compared against

predictions using the regional Weather Research and Fore-

casting model with Chemistry (WRF-Chem) model (Grell

et al., 2005). This has been modified to include a more de-

tailed treatment of atmospheric oxidative chemistry, includ-

ing night-time NO3 chemistry, its reactions with VOCs, and

interactions with aerosol particles via N2O5 heterogeneous

chemistry (Archer-Nicholls et al., 2014). By comparing the

performance of this new version of WRF-Chem with mea-

surement data from the RONOCO flights, this study aims to

evaluate current understanding of processes affecting NO3

and its impact on night-time chemistry throughout north-

western Europe.

2 Method

2.1 Instrumentation

The instruments used for this study are summarised in

Table 1.

The BBCEAS (broadband cavity enhanced absorption

spectrometer) measures NO3, N2O5, H2O, and NO2 concen-

trations to a high level of accuracy (with a detection limit

www.atmos-chem-phys.net/15/1385/2015/ Atmos. Chem. Phys., 15, 1385–1409, 2015
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Table 1. Summary of measurements used in this study. Acronyms used are as follows: cToF-AMS (compact Time-of-Flight Aerosol Mass

Spectrometer), BBCEAS (broadband cavity enhanced absorption spectrometer), CIMS (chemical ionisation mass spectrometer), and TD-LIF

(thermal dissociation laser-induced fluorescence).

Measurement Instrument Accuracy or Uncertainty

Sub-Micron (0.05–0.8 µm particle diameter) cToF-AMS 30 % (see Bahreini et al., 2009)

Aerosol Composition

N2O5 BBCEAS 15 % (Kennedy et al., 2011)

NO3 BBCEAS 11 % (Kennedy et al., 2011)

HNO3 CIMS 10 % (Le Breton et al., 2013)

NO2 TD-LIF 10 % (Di Carlo et al., 2013)

O3 Ozone Analyser 3 ppb for mixing ratios below 100 ppb

of 1.1 pptv for NO3), making this campaign the first time si-

multaneous airborne measurements of NO3, N2O5, and NO2

have been taken outside of the USA (Kennedy et al., 2011).

Aerosol chemical composition was measured by an Aero-

dyne compact Time-of-Flight Aerosol Mass Spectrometer

(AMS) (Drewnick et al., 2005; Canagaratna et al., 2007).

Specific details relating to the measurements specific to

RONOCO can be found in Morgan et al. (2014). The AMS

measures non-refractory aerosol species, including organic

matter, sulfate, ammonium, nitrate, and non-sea-salt chlo-

ride. Aerosol particles measured by the AMS are assumed

to be dry as a result of ram heating of the sampled air flow

into the aircraft and the increase in temperature as the sample

passes from the cooler ambient environment into the warmer

aircraft cabin.

The thermal dissociation laser-induced fluorescence (TD-

LIF) instrument was installed on the FAAM BAe 146

research aircraft to measure NO2 directly, exciting these

molecules with a laser at 532 nm and detecting their fluo-

rescence photons. The TD-LIF measures also total peroxy

nitrates (
∑

PNs,
∑

RONO2), total alkyl nitrates (
∑

ANs,∑
RO2NO2), and NOy after thermal dissociation of these

species at different temperature (200, 400, and 550 ◦C, re-

spectively) into NO2 (Di Carlo et al., 2013). To detect simul-

taneously NO2,
∑

PNs,
∑

ANs, and NOy, the TD-LIF in-

cludes four distinct cells one for each of them. The time reso-

lution of the measurements is 10 Hz. The system is equipped

with a calibration system to perform in-flight calibration by

injecting a known amount of NO2 to all cells. More details

on the TD-LIF can be found in Di Carlo et al. (2013).

The chemical ionisation mass spectrometer (CIMS) has

previously been described by Nowak et al (2007) and Le Bre-

ton et al. (2012). Its implementation specifically for HNO3

measurements on board the FAAM BAe 146 research aircraft

has previously been described by Le Breton et al. (2013). The

air sample is drawn into a 3/8 in. outer-diameter PFA inlet

heated to 40 ◦C with a flow of 5.8 SLM. The species of in-

terest are then ionised in the ion molecule region, which is

maintained at 19 Torr by a dry scroll pump (UL-DISL 100,

ULVAC Industrial). The methyl iodide ionisation scheme is

employed here, forming an acid-iodine adduct with HNO3,

allowing detection at 190 a.m.u. (Slusher et al., 2004). The

resulting ions then pass through a pinhole to an initial oc-

topole, acting as a collisional dissociation chamber. A second

octopole collimates the ions, which are then mass-selected by

a quadrupole with pre- and post-filters. A continuous dyn-

ode electron multiplier is utilised for detection. In-flight cal-

ibrations are performed regularly using a HNO3 KIN-TEK

permeation tube to account for variability in the instrument

sensitivity.

2.2 WRF-chem model

WRF-Chem is a fully coupled, “online” regional model with

integrated meteorological, gas-phase chemistry, and aerosol

components (Grell et al., 2005). It is built on the Advanced

Research WRF (ARW) core, which handles the meteorology,

physics, and transport processes. Gas-phase chemistry and

aerosol schemes are integrated over the same time step as

the transport processes, allowing for full coupling between

the schemes and making studies investigating feedbacks be-

tween the chemistry and meteorology possible. The short

chemistry time step also makes the model ideal for studying

short-lived species with high levels of spatial heterogeneity.

A number of modifications have been made to WRF-Chem

to make it suitable for the RONOCO studies. These include

the addition of a reduced version of the Common Represen-

tative Intermediates Mechanism (CRIv2-R5) (Jenkin et al.,

2008; Watson et al., 2008; Utembe et al., 2009) for gaseous

oxidation of VOCs, and the inclusion of the inorganic N2O5

heterogeneous chemistry scheme proposed by Bertram and

Thornton (2009). These developments are covered in more

detail in Archer-Nicholls et al. (2014).

Additional modification of the N2O5 heterogeneous

scheme has been made to account for the suppression of the

uptake of N2O5 by an unreactive organic shell around a re-

active inorganic core, following the formulation of Riemer

et al. (2009). They use a resistor scheme to calculate the re-

action probability for the particle:

1

γi
=

1

γi,core

+
1

γi,coat

, (6)
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Figure 1. The composition dependence of γN2O5
for a 1 µm diam-

eter particle, using the inorganic parameterisation of Bertram and

Thornton (2009) combined with the organic coating parameterisa-

tion of Riemer et al. (2009). For a range of H2O : NO−
3

mole ratios,

the γN2O5
for totally inorganic particles with a mole content of chlo-

ride ions of 0, 1, and 10% is represented by the solid blue, green, and

red lines, respectively. The suppression of γN2O5
for these different

inorganic particle compositions by an organic shell comprising 1,

10, and 30% of the total particle mass is indicated by the dashed,

dash-dotted, and dotted lines, respectively.

where γi,core is the reaction probability of the inorganic core

(calculated using Eq. 4), and γi,coat is the pseudo-reaction

probability of the organic shell, calculated following the for-

mulation of Anttila et al. (2006):

γi,coat =
4RTHorgDorgRc,i

cN2O5
liRp,i

, (7)

where R is the universal gas constant, T is temperature,Horg

is the Henry’s law constant for N2O5 in the organic coating,

Dorg is the diffusion coefficient for N2O5 in the organic coat-

ing, and cN2O5
is the average velocity of N2O5(g) in the gas

phase. Following Anttila et al. (2006) Rp,i, Rc,i, and li are the

radius of the particle, radius of the core, and thickness of the

coating, respectively.

Horg and Dorg depend on the physicochemical properties

of the compounds comprising the organic coating. Riemer

et al. (2009) used values consistent with the analysis pre-

sented by Anttila et al. (2006) for these parameters for their

modelling work, and their example will be followed below.

The product HorgDorg is set to 0.03HaqDaq, where Haq is

the Henry’s law constant of N2O5 for the aqueous phase

(Haq = 5000 Matm−1) and Daq is the diffusion coefficient

of N2O5 in the aqueous phase (Daq = 1× 10−9 m2 s−1).

The composition dependence of γN2O5
using this com-

bined formulation is illustrated, for a 1 µm diameter parti-

cle, in Fig. 1. The wholly inorganic, 10% (by molar content)

chloride ion scenario (solid red line) gives a rough indication

of the upper uptake limit, while the 30% (by mass) organic

matter (OM) particle composition scenarios (all dotted lines)

give a rough indication of the lower uptake limit.

2.3 Model configuration

This study uses a single domain, with 15 km horizontal grid

spacing and a size of 134 (E–W) by 146 (N–S) grid points, by

41 vertical model levels, covering the UK and much of NW

Europe (cf. Fig. 3a). Meteorological boundary conditions

were taken from ECMWF (European Centre for Medium-

Range Forecasts) ERA-Interim reanalysis data (Dee et al.,

2011). Gas-phase chemical boundary conditions were taken

from the global Model for Ozone and Related Chemical

Tracers (MOZART-4) (Emmons et al., 2010), while the

global Monitoring Atmospheric Composition and Climate

(MACC) model (Stein et al., 2012; Inness et al., 2013)

was used for aerosol boundary conditions. Anthropogenic

emissions are taken from the UK National Atmospheric

Emissions Inventory (NAEI) (http://naei.defra.gov.uk) and

the TNO emissions inventories (Denier van der Gon et al.,

2010). Biogenic emissions were calculated online using the

Model of Emissions of Gases and Aerosols from Nature

(MEGAN) V2.04 (Guenther et al., 2006; Sakulyanontvit-

taya et al., 2008). DMS emissions from the sea surface are

calculated assuming a constant oceanic DMS concentration

of 2 nML−1 (representing low-level background activity, as

estimated from the database of Kettle et al., 1999). Do-

main configuration and inputs are described in more detail

in Archer-Nicholls et al. (2014). The configuration of WRF

physical parameterisations used for this study is given in

Table 2. The gas-phase chemistry scheme used is CRIv2-

R5 (as described above); we use the Model for Simulat-

ing Aerosol Interactions and Chemistry (MOSAIC) module

to represent aerosol chemistry (Zaveri et al., 2008), config-

ured with eight size bins and coupled to the aqueous-phase

chemistry. Sea-spray emissions are treated using the modi-

fied scheme described in Archer-Nicholls et al. (2014), based

on Gong et al. (1997) and Fuentes et al. (2011), using the de-

fault low-biogenic-activity scenario.

Four scenarios have been run to investigate the importance

of N2O5 heterogeneous chemistry, the details of which are

given in Table 3. Each scenario was run from 00:00 UTC on

10 July 2010 to 12:00 UTC on 30 July 2010. This covers the

RONOCO summer flight campaign, with 5 days of spin-up

for the chemistry. The size of the model domain was such that

the boundary conditions provided sufficient guidance (with-

out explicit nudging within the domain) for divergence from

the ECMWF reanalysis data to not be significant. The only

restart of the meteorological fields, implemented because of

divergence from the ECMWF reanalysis data at this date, was

at 00:00 UTC on 21 July 2010 (chemical and aerosol tracers

were carried through continuously).

3 Results and discussion

There were eight flights during the RONOCO summer cam-

paign (numbered B534–B542, without B540, which was

www.atmos-chem-phys.net/15/1385/2015/ Atmos. Chem. Phys., 15, 1385–1409, 2015
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Table 2. Physical parameterisations used in the WRF-Chem model.

Process WRF-Chem option Reference

Microphysics Lin et al. scheme Lin et al. (1983); Abdul-Razzak and Ghan (2002)

Cumulus parameterisation Grell 3-D ensemble scheme

Surface layer Eta Monin–Obukhov (Janjic) scheme Janjic (1990, 1994)

Land-surface model Unified Noah land-surface model Ek et al. (2003)

Land-use data set USGS

Planetary boundary layer Mellor–Yamada–Janjic (MJY) TKE scheme Mellor and Yamada (1974); Janjic (1990, 1994)

Longwave radiation RRTMG scheme Mlawer et al. (1997)

Shortwave radiation Goddard scheme Chou and Suarez (1994)

A B

C D

Figure 2. B535 and B541 flight paths (a and c, respectively) and

vertical profiles (b and d, respectively).

aborted early). For three of these flights (B534, B536, and

B537) the modelled specific (and relative) humidities along

the flight path diverge too much from the measurements for

the data to be useful in studying the importance of hetero-

geneous chemical processes (these discrepancies persisted

even when the meteorological variables were re-initialised

within 48–24 h of the start of the flight). The meteorological

match between the model and measurements along the air-

craft flight path are reasonable for the remaining flights, al-

though it should be noted that previous studies of WRF sim-

ulations in the region of NW Europe have identified system-

atic biases in the model meteorological fields (García-Díez

et al., 2013; Krogæter and Reuder, 2014). These biases will

be discussed in Sect. 3.1, and their potential impacts on the

chemistry simulations will be discussed in the relevant sec-

tions below.

The analysis in this paper will concentrate on two flights:

B535 (on 17 and 18 July), which flew over the North Sea

(off the east coast of England) (Fig. 2a), and B541 (on 29

July), which predominately flew over the English Channel

(off the south-east coast of England) (Fig. 2c). These are the

flights with the most complete data sets (CIMS HNO3 data

are not available for B539, while BBCEAS N2O5 data are

not useable in the latter half of B542) and for which WRF-

Chem best captures the core atmospheric chemical properties

(modelled NO2 mixing ratios during the first half of flight

B538 are significantly lower than the measured NO2 mixing

ratios, a discrepancy which exists in all model scenarios and

would complicate the analysis of the impacts of N2O5 hetero-

geneous chemistry). Flight B535 was designed to measure

the pollution plumes from cities on the east coast of north-

ern England, advected across the North Sea by a westerly

zonal flow. Flight B541 was designed to measure the overall

pollution from emissions across the whole of the UK which

accumulated in the air masses advected across the English

Channel in a northerly mean flow. Both flights principally

consisted of level flights at around 500 m altitude (960 hPa

pressure level) over open water (due to night-time air traffic

restrictions), with occasional climbs to investigate elevated

pollution layers (see Morgan et al., 2014, for more details on

experimental procedures).

In the first section the meteorological conditions during the

periods of the two test flights are examined (a more general

overview of the meteorological conditions during the cam-

paign is presented in Morgan et al., 2014); while the second

section gives an overview of the chemistry over the UK re-

gion during the two flights. These are followed by a statistical

comparison of the measured and modelled chemical species

along the flight paths. The section on the impacts of N2O5

heterogeneous chemistry starts with an examination of the

implications for NO3 and N2O5 mixing ratios, and the de-

pendence of this process on local meteorological conditions,

followed by an examination of the influence on particulate ni-

trate mass loadings and gas-phase HNO3 mixing ratios. The

final section investigates the regional impacts of these pro-

cesses – looking at the mass loadings of aerosol nitrate and

impacts on gas-phase oxidative capacity of the atmosphere.
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Figure 3. Meteorological fields for flights B535 (a, c, and e) and B541 (b, d, and f). (a) and (b) show the simulated radar-derived rainfall

rates (and wind fields at 960 hPa) from the model, at 00:00 UTC on 18 July and 00:00 UTC on 29 July, respectively. (c) and (d) compare

measured (blue lines) and modelled (multi-coloured lines) air temperature along the flight paths of B535 and B541, respectively. Modelled

data are extracted from hourly output files – see main text for details. (e) and (f) compare measured and modelled relative humidity along the

flight paths of B535 and B541, respectively.

One-minute-averaged measurement data are used for the

following analysis. Throughout all model runs, WRF-Chem

data are output hourly (on the hour) for the whole domain.

The aircraft GPS latitude and longitude at the midpoint of

each 1 min measurement period were used to find the model

grid column in which it is located, and the model data were

interpolated to the aircraft pressure level within that column.

From each of the hourly model outputs, data were extracted

along the flight path for 45 min before and after the model

output time, providing up to 90 data points per output file,

with a 30 min overlap in model data in-between each hour

(offering some indication of the temporal variation within the

model). In the flight-path analysis plots the model data for

each hour is plotted as a separate coloured line (the model

time indicated in the legend text).

3.1 Meteorology

On 17 July the presence of low-pressure systems in the Bay

of Biscay and to the north of Scotland led to strong, near-

zonal, air flow over the UK. Bands of frontal rain passed over

the UK on the 17th and 18th – flight B535 was conducted

during a dry period between these events. Figure 3a shows

the modelled radar-derived rain rate, and wind vectors in-

terpolated to the 960 hPa pressure level, at 00:00 UTC on

18 July. The B535 flight region is dry, matching Nimrod

www.atmos-chem-phys.net/15/1385/2015/ Atmos. Chem. Phys., 15, 1385–1409, 2015
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radar-derived rainfall rates (see Supplement). The match be-

tween the model and measurements is not perfect: the frontal

system which lies over Ireland and western Scotland in the

model is shown to actually lie further south (lying over

Wales) in the measurements. Along the flight path, however,

the modelled meteorological variables show quite similar be-

haviour to the measured meteorology. The modelled temper-

ature fields follow the measured values, although they are

generally 1–2 K lower (Fig. 3c). Specific humidity values are

very similar between model and measurements, though the

model shows larger variety along the flat and level sections

of the flight (see Supplement). The low temperature impacts

on the relative humidity (RH), and this is a little higher (by

5–10 %) than the measurements; however they both lie be-

tween 50 and 70 % in the first section of the flight, and 60 and

80 % in the second section of the flight (Fig. 3e). Wind speed

and direction are very similar, around 5–10 ms−1 and mainly

westerlies (see Supplement). The greatest discrepancy be-

tween model and measurements occurs during the mid-flight

climb (shortly after 23:00 UTC, Fig. 2b): the potential tem-

perature increases, and specific humidity decreases, much

further at 850 hPa in the model than in the measurements and

shows more similarity to the values at 800–750 hPa than at

960 hPa, indicating that the modelled boundary layer is too

shallow.

During the period leading up to flight B541 there was less

rainfall over the UK than before flight B535. A low-pressure

system over Scandinavia, combined with high pressure over

the Bay of Biscay, led to a north-westerly air flow along

the length of the UK on 28 July (Fig. 3b). During the pe-

riod of flight B541 most of the UK was dry – only a few

scattered showers exist over the English Channel (see Sup-

plement and Fig. 3b). During the flight, agreement between

the modelled and measured meteorological variables is lower

than during flight B535. Modelled temperature is, again, 1–

2 K lower than the measurements (Fig. 3d). During this flight,

at low altitudes, the modelled specific humidity is slightly

higher than measured (see Supplement), and the combina-

tion of this bias with the low bias in air temperature leads to

consistently higher modelled relative humidities (80–100 %)

compared with the measurements (70–90 %) (Fig. 3f) during

much of the flight. Model and measurement wind directions

are very similar: both are north-westerlies along the major-

ity of the flat and level flight sections. Modelled wind speeds

are consistently lower in these sections, around 6–8 ms−1,

compared with measured wind speeds of around 10 ms−1,

although the modelled wind speeds at higher altitudes (above

750 hPa) are significantly higher than the measurements (see

Supplement).

The differences between modelled and measured meteo-

rological variables along the aircraft flight path in this study

are typical of those observed in previous WRF studies over

NW Europe. García-Díez et al. (2013) ran meteorological

simulations across the whole of Europe using WRF 3.1.1,

with similar physical parameterisations to the setup used in

A B

Figure 4. Two-dimensional histogram illustrating the

NMVOC : NOx chemical space across the model domain (at

960 hPa pressure level) during the periods of flights B535 (a) and

B541 (b). Data frequency is normalised to the total number of

grid cells sampled. Model data extracted along the flight tracks are

represented by black stars.

this paper (specifically using the Noah land-surface model,

and Mellor–Yamada–Janjic (MJY) planetary boundary layer

(PBL) scheme). They found systematic cold biases (with

a mean of −0.8 K at 925 hPa) and higher specific humidities

(with a mean of +0.0005 kgkg−1 at 925 hPa) across Europe

in the model, during the summer months, compared to atmo-

spheric soundings. They concluded that PBL schemes within

WRF generally underestimate entrainment between the PBL

and free troposphere (FT). This finding is re-enforced by the

study of Krogæter and Reuder (2014), who investigated the

performance of PBL schemes in WRF 3.2.1 over the North

Sea by comparing model results with measurements taken

from the FINO1 platform during 2006 (located at 54.01◦ N,

6.59◦ E, about 45 km north of the German coast). They found

that all PBL schemes over-predicted the frequency of sta-

ble and neutral conditions during the summer months, while

under-predicting the frequency of unstable conditions. The

MJY scheme was one of the better-performing PBL schemes;

however it still generally predicted lower PBL heights than

those determined from the measurements, and it forecast fre-

quencies of unstable or very unstable conditions of only 0.25

during July (compared with measured frequencies of 0.45).

The implications of these meteorological biases in the model

on the chemistry fields will be discussed below.

3.2 Regional chemistry over the UK

An aim of the RONOCO campaign was to sample the chem-

ical space of NW Europe as representatively as possible. To

illustrate the model chemical space, two-dimensional his-

tograms of NMVOC : NOx space during the periods of flights

B535 and B541 are shown in Fig. 4. Data are taken from

the whole domain (less 10 grid cells around the edge of the

domain), interpolated to 960 hPa pressure level. The density

maps for both flight periods are, roughly, bimodal (more so

for the B541 period, but this holds true for the B535 pe-

riod too): a mode below 100 pptv of NOx represents clean

conditions, principally observed in the north-western part of

Atmos. Chem. Phys., 15, 1385–1409, 2015 www.atmos-chem-phys.net/15/1385/2015/
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the domain (over the Atlantic Ocean); a second mode, which

peaks around 1000 ppt of NOx, but extends up to 10 000 ppt

of NOx, represents the regional pollution haze which lies

over the majority of continental NW Europe (and extends

over the North Sea and UK). Model data along the paths

of both flights (between 950 and 970 hPa) are represented

by black stars. Both flights are focussed on the polluted re-

gions of the domain (as per the aims of campaign), with NOx

mixing ratios generally between 1000–10 000 pptv, although

during B535 there is more heterogeneity, as the aircraft sam-

pled cleaner air over the North Sea.

The differences between the flights are observable in the

spatial distribution, and temporal evolution, of NO2, NO3

and N2O5, shown in Figs. 5 and 6 for flights B535 and B541,

respectively. The left-most six panels in each show the hor-

izontal distribution (from the “het on” model scenario) for

these species at the times of 23:00 and 00:00 UTC through

the night of the 17–18 July (interpolated to the 970 hPa pres-

sure level) for flight B535, and at the times of 00:00 and

01:00 UTC through the night of the 28–29 July (interpolated

to the 960 hPa pressure level) for flight B541. The flight track

is shown as a thick black line, superimposed with measure-

ment data for ±30 min around the model output time, and

for±10 hPa around the plotted pressure level. The right-most

three panels show the vertical distributions of these species

along the flight path, composed of data from each of the

hourly output files (extracted along the flight path ±30 min

either side of the hour), giving an indication of both the verti-

cal spatial and temporal variations in the model fields. Again

the flight path is plotted as a thick black line, with the mea-

surement data (where available) superimposed on this line.

Similar plots for the “no Cl pathway”, “organic suppression”,

and “het off” scenarios are included in the Supplement.

Flight B535 sampled plumes of pollution carried out over

the North Sea, from UK sources, by the prevailing wester-

lies. The largest plumes of NO2 predicted by the model are

at 51.5 and 54◦ N, reaching peaks mixing ratios of 3–4 ppbv

and 5–6 ppbv, respectively (cf. Fig. 5a and b). These peak

mixing ratios are lower than the maximum measured NO2

mixing ratios (which reach 8–9 ppbv); however the model

is managing to get the location of the plumes reasonably

correct. The vertical distributions NO2 along the flight path

(Fig. 5c) show quite a strong vertical gradient within these

plumes. For the first, southerly, plume (which the aircraft

flew through around 22:30 UTC, performing a deep vertical

profile over London Southend Airport), the modelled mixing

ratios are significantly higher than the measured values. For

the second, northerly, plume (which the aircraft flies through

three times: around 23:40, 23:50, and 00:25 UTC) the model

shows a strong vertical gradient in NO2 close to the coast

(reaching over 10 ppbv below 980 hPa around 00:30 UTC);

further from the coast, however (around 23:40 UTC), the

model mixing ratios are much lower, even at ground level

(only reaching 6–7 ppbv). It is probable that the 15 km reso-

lution grid used for this study is too coarse to properly repre-

sent this narrow plume.

Through the night the NO3 mixing ratios steadily increase,

from peaks of 20–30 pptv at 22:00 UTC (Fig. 5f) up to peaks

of 70–100 pptv at 01:00 UTC (see Supplement). NO3 con-

centrations over 10 pptv extend, in places, above 850 hPa

(principally in the early part of the flight, below 52◦ N); later

in the flight, in the more-northerly sections, the vertical ex-

tent of NO3 is lower. NO3 mixing ratios are greatest between

990 and 970 hPa, at 00:00 UTC the model predicts peak NO3

mixing ratios of 50–70 pptv at these altitudes (Fig. 5e). The

measured NO3 mixing ratios are of a similar magnitude to

the model predictions, but reach lower peak values of only

30–50 pptv (cf. Fig. 5d–f). This is to be expected, since the

aircraft is flying slightly above the pressure levels at which

predicted peak NO3 mixing ratios occur, as well as earlier

than the period of highest NO3 mixing ratios (which occur

after 01:00 UTC).

N2O5 mixing ratios increase through the night in a similar

manner to the NO3 mixing ratios (cf. Fig. 5g and h), reach-

ing peak values of 500–700 pptv. The distribution of N2O5

strongly follows the distribution of NO2 (more so than NO3)

because the formation of N2O5 is second order dependent

on [NO2]. In the northern plume, N2O5 mixing ratios are

greatest further from the coast (around 23:40 and 23:50 UTC,

compared with 00:25 UTC; Fig. 5i); this is because the NO3

mixing ratios close to the coast are low (cf. Fig. 5f), so N2O5

also cannot form.

During the period of flight B541 NO2 is, in the model,

principally concentrated over the English Channel and north-

ern France, reaching peaks of 8–9 ppbv in plumes rising over

northern France, and is generally around 1–3 ppbv in the re-

gion of the flight (Fig. 6a and b). NO2 mixing ratios are gen-

erally higher at ground level, below the aircraft, during this

flight than during B535 (Fig. 6c); principally this is due to the

English Channel having more concentrated shipping lanes

than the North Sea. The vertical distribution of the plumes

of NO2 is shallower than during B535, generally not ex-

tending much higher than 900 hPa. NO3 distributions exhibit

a non-linear relationship with NO2: the highest mixing ra-

tios (up to 20–50 pptv) occur where NO2 mixing ratios are

around 1–2 ppbv but drop off rapidly to 3–5 pptv where NO2

(roughly) drops below 0.5 ppbv or increases above 7 ppbv

(Fig. 6d and e). This relationship is driven by the necessity

of having NO2 to produce NO3, but then at too-high con-

centrations the reaction of NO2 with NO3 titrates it away to

form N2O5 (the distribution of which follows that of NO2;

Fig. 6g and h). NO3 is also predominately concentrated be-

low 900 hPa, but in places there are plumes around 820–

850 hPa (Fig. 6f). N2O5 plumes are principally constrained

below 900 hPa, with mixing ratios peak at only 300–500 pptv

during this flight (Fig. 6i).
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1394 D. Lowe et al.: Regional N2O5 chemistry
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Figure 5. Comparison of NO2 (a–c), NO3, (d–f), and N2O5 (g–i) measurements with regional model fields (from the “het on” scenario)

for the B535 flight. (a) and (b), (d) and (e), and (g) and (h) show model fields interpolated to 970 hPa at the times indicated in each panel,

compared with measurements which are made within±30 min of that time, and within±10 hPa of the interpolated model pressure level. (c),

(f), and (i) show the vertical distribution of the model fields along the flight path (extracted ±30 min either side of each output time), with

measurement data along the flight path. See the main text for full description.

3.3 Statistical measurement–model comparison

Model data have been extracted along the flight path in the

manner described at the start of Sect. 3. For statistical anal-

ysis of the results, the same model data extraction technique

has been used (but only for±30 min each side of the hour, to

avoid duplications in the model–measurement comparison),

selecting only the data above the 980 hPa pressure level (giv-

ing 241 and 265 potential data points for flights B535 and

B541, respectively), using data points where measurement

data exist and are above the quoted instrument detection lim-

its. While doing this could lead to a bias in the statistical

analysis, it is a necessary step in processing the data, and

for most species fewer than 10–20 data points have been dis-

carded due to this cut-off. The fewest data points used for the

analysis below are 154 and 153, for NO3 and N2O5, respec-

tively, during flight B535, due to gaps in the measurement

data set rather than from eliminating data below the instru-

ment detection limits.

The mean values and standard deviations for the measure-

ment and model data are calculated, along with the correla-

tion coefficient (CORR) and root-mean-square (rms) differ-

ence between the measurements and each model scenario.

The mean values are plotted in side panels to the left of the

time-series plots of the measurement, and het-on model sce-

nario, data. The rest of the statistical diagnostics are plot-

ted using Taylor diagrams (Taylor, 2001) in the right-hand

side panels. Measurement data are shown by a red circle;

the het-on, no-Cl-pathway, and het-off model scenarios are

represented by a black circle, cross, and diamond, respec-

Atmos. Chem. Phys., 15, 1385–1409, 2015 www.atmos-chem-phys.net/15/1385/2015/
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A NO2: 29th 0000 B NO2: 29th 0100
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Figure 6. Comparison of NO2 (a–c), NO3 (d–f), and N2O5 (g–i) measurements with regional model fields (from the “het on” scenario)

for the B541 flight. (a) and (b), (d) and (e), and (g) and (h) show model fields interpolated to 960 hPa at the times indicated in each panel,

compared with measurements which are made within±30 min of that time, and within±10 hPa of the interpolated model pressure level. (c),

(f), and (i) show the vertical distribution of the model fields along the flight path (extracted ±30 min either side of each output time), with

measurement data along the flight path. See the main text for full description.

tively. The radial distance between each symbol and the ori-

gin is proportional to the standard deviation (SD) of that data

set, while the azimuthal positions give the correlation with

the measurements. The dashed green lines measure distance

from the measurement data point, which is proportional to

the rms difference.

Comparisons of NO3, N2O5, NO2, and O3 mixing ratios

between measurements and the het-on scenario are shown

in the main panels of Fig. 7, for flight B535, and Fig. 8,

for flight B541. During both flights the model matches the

mean NO2 and O3 mixing ratios well, as well as captur-

ing the strong vertical gradient in O3 mixing ratios (giving

correlations of 0.8–0.9 with the measurements). As noted

above however, these statistics are calculated just using data

from above 980 hPa. During the deep vertical profile around

22:30 UTC, modelled O3 mixing ratios drop below 10 ppbv,

and at the start and end of the flight they are almost zero. Dur-

ing the deep vertical profile the 1 min averaged O3 measure-

ments drop no lower than 25 ppbv, and at ground level they

are no lower than 20 ppbv. We treat all NOx emissions as NO

in our model setup; at night-time the rapid reaction of NO

and O3 would lead to the over-destruction that we observe

in the model. However it should be noted that the modelled

mixing ratios of NO2 are also very high close to the ground

(22 ppbv during the deep vertical profile at 22:30 UTC during

flight B535, compared with 1 min averaged measurements of

www.atmos-chem-phys.net/15/1385/2015/ Atmos. Chem. Phys., 15, 1385–1409, 2015
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Figure 7. Flight track measurement–model comparisons for key nitrate species for flight B535. Main plots show 1 min averaged measure-

ments (blue lines) and data from the “het on” model scenario (multi-coloured lines) for NO3, N2O5, NO2, and O3 (a–d, respectively). The

side panels on the left of each plot show the mean values for each diagnostic species along the flight track, while the Taylor diagrams on

the right show the standard deviations of, and correlations between, the individual model scenarios and measurements. In these side plots

the measurement data are represented by the red dot and blue dash-dotted line, while the “het on”, “no Cl pathway”, and “het off” model

scenarios are represented by the black circle, black cross, and black diamond, respectively.

Table 3. Model scenarios.

Scenario Description

het off No N2O5 heterogeneous chemistry.

het on Full inorganic N2O5 heterogeneous chemistry following Bertram and

Thornton (2009).

no Cl pathway Inorganic N2O5 heterogeneous chemistry following Bertram and

Thornton (2009) but without the Cl− reactive pathway. All N2O5 het-

erogeneous chemistry now involves H2O, producing only NO−
3

ions (no

ClNO2 products).

organic suppression Full inorganic N2O5 heterogeneous scheme (following Bertram and

Thornton, 2009), with organic suppression of uptake following Riemer

et al. (2009).

10 ppbv), while we are not able to replicate the magnitude

of NO2 plumes at altitude (cf. the plume around 23:40 UTC,

with measurements of 10 ppbv NO2, and modelled values of

less than 5 ppbv). This suggests that the low entrainment be-

tween the PBL and FT in WRF noted in Sect. 3.1 may be

too strongly limiting the vertical mixing of pollutants within

(and out of) the PBL during the night. Such unrealistic build-

up of high concentrations of pollutants in the night-time ma-

rine PBL (off the north-eastern coast of the USA) within

WRF-Chem has been previously identified, and attributed to

the PBL scheme being too stable, by McKeen et al. (2007).

The spikes in NO2 mixing ratios due to the pollution plumes

during flight B535 (Fig. 5a–c) are roughly co-incident with

troughs in the O3 mixing ratios (Fig. 7c and d). However, be-

cause the plumes in the model are displaced compared to the

measurements, as noted in the previous section, correlation

between the model and measurements is poor (0.3–0.4). Dur-

ing flight B541, which sampled a widespread, well-mixed

layer of pollution, correlation between the model and mea-

surements is a lot higher (0.7), although the model shows

greater variability, due to a few NO2 plumes pushing up

through the flight altitude from the planetary boundary layer

(cf. Fig. 6c).

Atmos. Chem. Phys., 15, 1385–1409, 2015 www.atmos-chem-phys.net/15/1385/2015/
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During flight B535 the mean measured NO3 and N2O5

mixing ratios were 23 and 150 pptv, respectively (dashed

blue lines in Fig. 7a and b). As described above, NO3 mea-

surements show low variability, with a SD of only 7 pptv;

however N2O5 variability is higher, with a SD of 160 pptv.

During flight B541 the NO3 and N2O5 mixing ratios were

generally lower, with means of 11 and 86 pptv, respec-

tively, with low variability too (Fig. 8a and b). The modelled

mean values for NO3 and N2O5, during flight B535, for all

model scenarios are close to, though slightly higher than, the

measurements; however correlation between the model and

measurements is low, around 0.3–0.4 for NO3 and 0.1–0.2

for N2O5 due to the spatial heterogeneity of the pollution

plumes.

During flight B541 there is high correlation between

model and measurements for N2O5 (0.8) (Fig. 8b), as its mix-

ing ratio is principally altitude-dependent during this flight

and so is captured well by the model. Correlation between

model and measurements for NO3 is poor (0.2–0.4) (Fig. 8a);

however the periods during which correlation is poor gener-

ally correspond to large changes in altitude (cf. the periods

immediately after 23:00 and 03:00 UTC) which can cause

baseline drifts in the NO3 measurements. N2O5 measure-

ments are generally less affected by this drift due to (i) the

(generally) larger mixing ratios and because (ii) the N2O5

cavity was thermally maintained at a fixed temperature and

so has been found to resist temperature drift (due to rapid

change in temperature of the incoming sample gas) better.

There are large differences in mean values and standard de-

viation for NO3 and N2O5 predictions by the different model

scenarios during this flight. The causes of these will be dis-

cussed in the next section.

Comparisons of AMS measurements of inorganic aerosol

species with “PM1” aerosol data from the model (the sum

of the smallest four size bins in the model, plus 0.678 of

the fifth size bin), as well as comparisons of CIMS mea-

surements of HNO3 with modelled HNO3 mixing ratios, for

B535 and B541 are presented in Fig. 9. For both flights, AMS

measurements of aerosol sulfate and ammonium suggest the

existence of widespread homogeneous aerosol fields, around

the 950–960 hPa pressure level, with mean mass loadings of

1.3 and 1.2, and 0.5 and 0.9 µgkg−1
air , respectively (Fig. 9e–h).

Throughout the campaign the model underpredicts the PM1

sulfate mass loadings (with means of 0.5–0.7 µgkg−1
air ), and

shows no correlation with the measurements. It is unclear

what the cause is of the under-prediction of sulfate – perhaps

the general underestimation of entrainment between the PBL

and FT in WRF noted in Sect. 3.1 prevents sufficient trans-

port of aerosol out of the PBL, or given the homogeneous

nature of the measurements it is possible that we are missing

broad background aerosol fields from our boundary condi-

tions – further investigation is needed into this.

The low model prediction of sulfate aerosol also lead

to low ammonium aerosol mass loadings (means of 0.2–

0.4 µgkg−1
air ). During B535 PM1 ammonium is more closely

associated with PM1 nitrate aerosol (cf. Fig. 9c and g). Dur-

ing flight B541 this is also true, but PM1 ammonium mass

loadings are also limited by the availability of gas-phase am-

monia. The total system mass loading of potential ammo-

nium (gas-phase NH3 plus PM10 ammonium) along the flight

track in all model scenarios is lower than the AMS measure-

ments of PM1 ammonium (not shown). The lower sulfate-to-

ammonium ratio of the PM1 aerosol in the model leads to the

model chemistry being less ammonia-limited than in reality.

This allows for a higher PM1 chloride content in the model

than was measured (model means of 0.1–0.4, compared with

measurement means of 0.04–0.06 µgkg−1
air ; see Supplement).

Generally this is in the form of sodium chloride, but for par-

ticles below a diameter of around 0.3 µm (MOSAIC size bins

1–3) there is significant ammonium chloride as well, created

by the co-condensation of hydrochloric acid with ammonia.

During flight B535, modelled PM1 nitrate mass loadings,

and gas-phase HNO3 mixing ratios, are much higher than

the measurements. Measured means are 0.17 µgkg−1
air and

130 pptv, compared with modelled means of 0.4–0.7 µgkg−1
air

and 240–300 pptv, respectively (Fig. 9c and a). The consis-

tency of this discrepancy across all the model scenarios indi-

cates that it is caused by daytime nitrate production over the

UK; the simulations show the formation of plumes of HNO3

over northern England during the afternoon, which are then

advected across to the flight region (see Supplement). It is

likely that the meteorological conditions in reality were dif-

ferent enough to the model that either these plumes did not

form or else they were transported to a different part of the

domain and, thus, not sampled by the aircraft.

PM1 nitrate and HNO3 measurements are higher during

B541 (means of 1.7 µgkg−1
air and 270 pptv, respectively). PM1

nitrate shows a lot of variability (SD of 1.3 µgkg−1
air ; Fig. 9d),

consistent with pollution plumes; however HNO3 has much

lower variability than would be expected through the flight

(SD of 50 pptv; Fig. 9b), the causes of which are not clear.

PM1 nitrate model predictions are much lower than the AMS

measurements, with strong dependencies on the chemical

scenario, as discussed below. HNO3 model predictions are

of a similar magnitude to the measurements but exhibit the

same strong variability as modelled and measured PM1 ni-

trate.

3.4 Impact of N2O5 heterogeneous chemistry

In this section the impacts of N2O5 heterogeneous chem-

istry on NO3, N2O5, HNO3, and particulate nitrate are in-

vestigated by comparing the results from the different model

scenarios. The results from the organic-suppression scenario

were similar to those from the het-on scenario, though the

het-on scenario results are generally a better fit to the mea-

surements (see discussion below). The organic mass frac-

tions of the aerosol in the model are significantly lower than

those measured by the AMS instrument, resulting in far-

lower suppression of the N2O5 uptake coefficient than that

www.atmos-chem-phys.net/15/1385/2015/ Atmos. Chem. Phys., 15, 1385–1409, 2015
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Figure 8. Flight track measurement–model comparisons for key nitrate species for flight B541. Main plots show 1 min averaged measure-

ments (blue lines), and data from the “het on” model scenario (multi-coloured lines) for NO3, N2O5, NO2, and O3 (a–d, respectively). The

side panels on the left of each plot show the mean values for each diagnostic species along the flight track, while the Taylor diagrams on the

right shows the standard deviations of, and correlations between, the individual model scenarios and measurements. Symbols representing

the different model scenarios are the same as those used in Fig. 7.

calculated from the measured aerosol compositions (Morgan

et al., 2014). Because of this discrepancy the results of the

organic-suppression scenario have been included in the Sup-

plement, but they are not discussed below.

3.4.1 Impacts on NO3 and N2O5

During flight B535 all model scenarios predict similar NO3

and N2O5 mixing ratios to the measurements. The het-on

and no-Cl-pathway scenarios are closest, at 25–26 pptv for

NO3 and 200 pptv for N2O5. Het-off scenario mean values

are higher, at 30 pptv for NO3 and 250 pptv for N2O5. SD

values for NO3 are high in all scenarios, around 10–12 pptv

(the no-Cl-pathway scenario is lowest), indicating that there

is greater spatial heterogeneity of NO3 in the model than in

the measurements. SD values for N2O5 in the het-on and

no-Cl-pathway scenarios are close to 150 pptv but, again,

higher in the het-off scenario, at around 190 pptv. These dif-

ferences between the het-off and other scenarios show that

N2O5 heterogeneous chemistry is suppressing the build-up

of N2O5 in the plumes (but these are always too diffuse in

the model, leading to higher background mixing ratios of

N2O5 around the plumes). N2O5 heterogeneous chemistry is

also suppressing the regional build-up of NO3. However, be-

cause relative humidity is low during this flight, the suppres-

sive effect of N2O5 heterogeneous chemistry is not particu-

larly strong. During flight B541, model predictions of NO3

and N2O5 for the het-on and no-Cl-pathway scenarios are

very similar to the measurements, with mean values of 9.5–

10 and 69–72 pptv, and SD values around 5 and 60 pptv, re-

spectively. However, predictions of NO3 and N2O5 are much

higher in the het-off scenario, with mean mixing ratios of 27

and 233 pptv, and SD values of 17 and 200 pptv, respectively.

Without the suppressive effect of N2O5 heterogeneous chem-

istry the NO3 and N2O5 mixing ratios also increase through

the night, in a similar manner to their behaviour during flight

B535 (see Supplement).

For both test cases described above the inclusion of N2O5

heterogeneous chemistry improves the model prediction of

NO3 and N2O5 mixing ratios (although there is little to dis-

tinguish between the het-on and no-Cl-pathway scenarios).

The clearest dependence for the effectiveness of N2O5 het-

erogeneous chemistry is on the atmospheric relative humid-

ity. For the majority of flight B535 this is around 60–70 %

(Fig. 3e); while N2O5 heterogeneous chemistry does limit

NO3 and N2O5 mixing ratios, it does not have a very strong

influence (Fig. 7a and b). In contrast, during B541 relative

humidity levels are around 80–90 % (Fig. 3f), and N2O5 het-

erogeneous chemistry has a far stronger effect on NO3 and

N2O5 mixing ratios (Fig. 8a and b). The high aerosol nitrate

mass loadings in the model (compared to measurements) dur-

ing B535 will contribute to the suppression of γN2O5
. How-

ever the nitrate mass loadings are similar to those observed

during B541, when there is little suppression of γN2O5
, and so

it is evident that relative humidity (and so aerosol water con-

tent) is still the most important factor for determining γN2O5

in these cases.
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Figure 9. Flight track measurement–model comparisons and statistics for gas-phase HNO3 and PM1 nitrate, sulfate, and ammonium for

flight B535 (a, c, e, and g, respectively) and flight B541 (b, d, f, and h, respectively). Symbols representing the different model scenarios are

the same as those used in Fig. 7.

Many previous studies into N2O5 heterogeneous chem-

istry have observed low γN2O5
values, with no dependence

on RH. The studies have, however, mostly been at lower RH

values with high organic particulate mass fractions, e.g. Za-

veri et al. (2010a), who concluded that γN2O5
was likely to be

negligibly small (< 0.001) within power plant plumes with

organic aerosol mass fractions around 60–80 %, at an RH of

60–70 %, and Brown et al. (2009), who reported γN2O5
val-

ues below 0.01, with no RH dependence, for organic aerosol

mass fractions of 50–70 % and principally in the RH range

of 35–75 %; similarly, Zaveri et al. (2010b) concluded that

γN2O5
was likely of the order of 0.001 for the organic-rich

aerosol in the Houston urban/industrial plume. Brown et al.

(2006) also report low γN2O5
values (0.001) where the or-

ganic aerosol mass fraction was roughly 50 %, and RH was

44–52 %. Higher γN2O5
values (0.017) are observed where

the organic mass fraction is a lot lower (< 30 %); however

they do not report any RH values for this period of the flight.

The most comparable previous study with this one was car-

ried out by Bertram and Thornton (2009) near Seattle. This

study was at an enhanced RH (74± 13 %) compared to many

of the investigations above, leading to greater hygroscopic

growth of the aerosol, and they reported high γN2O5
values

(0.005–0.03) with a strong positive correlation with RH. This

is similar to the importance of RH observed in flights B535

and B541.

Because of this relationship, when the meteorological con-

ditions are wrong in the model the influence of heteroge-

www.atmos-chem-phys.net/15/1385/2015/ Atmos. Chem. Phys., 15, 1385–1409, 2015
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Figure 10. Flight track measurement–model comparisons and

statistics for NO3 and N2O5 (a and b, respectively), as well as com-

parisons for relative and specific humidity (c and d, respectively) for

flight B534. Symbols representing the different model scenarios are

the same as those used in Fig. 7.

neous processes will be strongly impacted. For example,

relative humidity levels are very high in all model runs

in the region of flight B534 (flown through the night of

the 16–17 July), around 90–100 % RH, compared with in-

flight-measured RH levels of 60–80 % (Fig. 10c). This dif-

ference is driven by the greatly increased specific humid-

ity ratios in the model (0.009 kgkg−1, as opposed to mea-

sured ratios of 0.007 kgkg−1; Fig. 10d). The high RH lev-

els within the model lead to very strong suppression of NO3

and N2O5 mixing ratios in the het-on and no-Cl-pathway sce-

narios (Fig. 10a and b). It is the het-off scenario which best

matches the magnitude and variability of the measurements,

with respective mean values of 30 and 250 pptv (compared

with measured means of 26 and 190 pptv), and SD values

of 13 and 179 pptv (compared with measured SDs of 13 and

200 pptv), respectively.

3.4.2 Impacts on particulate nitrate and gas-phase

HNO3

As noted in Sect. 3.3, model predictions of gas-phase HNO3

and PM1 nitrate do not match measurements particularly

well. During flight B535, model predictions of both are high

(due to daytime production) – N2O5 heterogeneous chem-

istry does cause increases in the modelled PM1 mass load-

ings; however these are small (Fig. 9c). Likewise there is no

systematic response in HNO3 mixing ratios to N2O5 hetero-

geneous chemistry during this flight (Fig. 9a).

During flight B541, N2O5 heterogeneous chemistry is a lot

more efficient, as noted above, and so has a stronger influence

on model-predicted gas-phase HNO3. This leads to increases

from a mean of 50 pptv in the het-off scenario up to means

of 180 and 160 pptv for the het-on and no-Cl-pathway sce-

narios, respectively. Although these means are close to that

of the HNO3 measurements, the model variability is much

greater than the measured variability and is instead more con-

sistent with the PM1 nitrate plumes (Fig. 9b). PM1 nitrate

model predictions are much lower than the AMS measure-

ments in all scenarios. The mean mass loading in the het-off

scenario is 0.8 µgkg−1
air ; N2O5 heterogeneous chemistry in-

creases this, albeit more so for the no-Cl-pathway scenario

(which increases the mean to 1.4 µgkg−1
air and the SD doubles

to 0.9 µgkg−1
air ) than for the het-on scenario (for which the

mean only increases to 0.9 µgkg−1
air ). This suggests that N2O5

heterogeneous chemistry is preferentially occurring on the

coarse-mode sea-salt particles in this model scenario (which

will be explored below). In all model scenarios, however, the

potential PM10 nitrate (HNO3 plus PM10 nitrate) is lower

than the summed CIMS+AMS potential PM1 nitrate (not

shown). This shows that the shortfall in PM1 nitrate mass

within the model, compared with the measurements, cannot

only be due to the differences between the real and modelled

aerosol size and composition distributions. A similar short-

fall to that observed in the modelled potential ammonium

during this flight described in Sect. 3.3.

As an illustration of the regional influence of N2O5 het-

erogeneous chemistry on aerosol nitrate formation, the spa-

tial distributions of PM1 nitrate in the three model scenarios

for flight B541 are shown in Fig. 11. In all scenarios PM1 ni-

trate is highest over the English Channel and across northern

France (at the pressure level 960 hPa); along the flight path

(principally over the English Channel) PM1 nitrate is con-

centrated below 880 hPa. In the het-on (Fig. 11a and b) and

het-off (Fig 11e and f) scenarios the maximum PM1 nitrate

mass loadings are generally between 1 and 2 µgkg−1
air – only

over northern France do the PM1 nitrate mass loadings get

over 2 µgkg−1
air (Fig. 11a). PM1 nitrate mass loadings are gen-

erally higher in the no-Cl-pathway scenario (Fig. 11c and d);

mass loadings greater than 1 µgkg−1
air are more widespread, in

several locations getting up to 2–3 µgkg−1
air . In both the het-

on and no-Cl-pathway scenarios the vertical distribution of

PM1 nitrate is higher than in the het-off scenario. In the no-

Cl-pathway scenario the PM1 nitrate mass loadings are in-

creased (in comparison with the het-off scenario) at all model

levels; however in the het-on scenario the PM1 nitrate mass

loadings are lower at low altitudes (in comparison with both

the no-Cl-pathway and het-off scenarios). In none of the sce-

narios do we have sufficient model PM1 nitrate (compared

with AMS nitrate measurements) within the region of the

flight.

Atmos. Chem. Phys., 15, 1385–1409, 2015 www.atmos-chem-phys.net/15/1385/2015/
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Figure 11. PM1 nitrate mass loadings for the “het on” (a and b), “no Cl pathway” (c and d) and “het off” (e and f) for the B541 flight across

the model domain. The aircraft flight track is indicated in all plots with a thick black line. Measurement data are superimposed upon that line

using the same colour scale as the model data. (a), (c), and (e) are horizontal slices on the 960 hPa pressure level at 01:00 UTC (incorporating

measurement data between 00:30 and 01:30 UTC and 940 and 980 hPa). (b), (d), and (f) are vertical curtain plots along the flight path.

Spatial distributions of PM10 nitrate are similar to those of

PM1 nitrate (see Fig. 12). Mass loadings are highest in the

no-Cl-pathway scenario, with peaks greater than 5 µgkg−1
air

over northern France. Mass loadings in the het-on scenario

are now clearly greater than those in the het-off scenario,

both at higher altitudes and close to the ground surface, in-

dicating that N2O5 heterogeneous chemistry at low altitudes

over the sea is being driven by reactions on large sea-salt

particles. In the no-Cl-pathway scenario there is, in places,

as much PM10 nitrate in the model as in the AMS nitrate

mass loading measurements; however the mass loadings in

the het-on scenario are still low (and there is definitely not

enough in the het-off scenario).

Ground-based measurements of size-resolved inorganic

aerosol compositions across both Europe and the USA show

that condensed-phase sulfate and ammonium are generally

www.atmos-chem-phys.net/15/1385/2015/ Atmos. Chem. Phys., 15, 1385–1409, 2015
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Figure 12. PM10 nitrate mass loadings for the “het on” (a and b), “no Cl pathway” (c and d) and “het off” (e and f) for the B541 flight across

the model domain. The aircraft flight track is indicated in all plots with a thick black line. Measurement data are superimposed upon that line

using the same colour scale as the model data. (a), (c), and (e) are horizontal slices on the 960 hPa pressure level at 01:00 UTC (incorporating

measurement data between 00:30 and 01:30 UTC and 940 and 980 hPa). (b), (d), and (f) are vertical curtain plots along the flight path.

concentrated in the accumulation mode, while condensed-

phase nitrate is more evenly distributed between the accu-

mulation and coarse modes (Wall et al., 1988; John et al.,

1990; Neusüß et al., 2002; Putaud et al., 2004). Close to the

coast, where sea-salt particles predominate the aerosol pop-

ulation, most nitrate is in the coarse mode (cf. Wall et al.,

1988; Putaud et al., 2004); further inland, where other aerosol

emission sources dominate, most nitrate is in the accumu-

lation mode, although still a significant fraction remains in

the coarse mode (cf. John et al., 1990; Neusüß et al., 2002).

In our simulations the fractional content of aerosol nitrate

in the super-micron particles (along the B541 flight path)

is between 0.3 and 0.6 (not shown). While the distribution

of nitrate across the aerosol size range is consistent with

these previous measurement studies, it should be noted that

the under-prediction of sulfate in the model reduces the sur-

Atmos. Chem. Phys., 15, 1385–1409, 2015 www.atmos-chem-phys.net/15/1385/2015/
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Figure 13. Domain-averaged tendencies in total nitrate mass load-

ings. (a) and (b) show the incremental change in the domain mean

total nitrate (aerosol nitrate plus gas-phase HNO3) in µgkg−1
air

h−1

for the “het off” and “het on” scenarios, respectively. (c) shows the

domain mean of the integrated uptake rate of N2O5 (plotted as po-

tential aerosol nitrate mass loading, without consideration of loss to

the ClNO2 pathway).

face area in the accumulation mode, and the coarse-mode

contribution at the flight altitudes to aerosol surface area is

higher in the model (up to 10 %) compared with the mea-

surements (around 1 %) (see Supplement). These differences

in the aerosol distribution could potentially lead to more ni-

A

B

Figure 14. Statistical analysis of variation in aerosol nitrate mass

loadings across the domain on the 990 hPa pressure level for the

“het off” and “het on” scenarios (a and b, respectively). Hourly data

from a 15-day period is used to obtain a campaign-averaged diurnal

cycle (see main text for details). Whiskers indicate the 5th and 95th

percentiles, while the red markers indicate mean mass loading.

trate condensing onto the coarse mode at these high altitudes

in the model than would actually occur in reality.

3.5 Regional influences on nitrate formation and

oxidation budgets

In the previous sections the localised impacts of N2O5 het-

erogeneous chemistry have been investigated. The flights

sampled air which, the model predicts, was representative of

the pollution coming off the UK (Fig. 4). To investigate the

regional impacts of N2O5 heterogeneous chemistry, model

predictions from across the whole domain (minus 10 grid

cells around the edge of the domain, to avoid boundary ef-

fects) are used. This captures the behaviour of both the pol-

lution fields over the UK, mainland Europe, and North Sea,

and the cleaner air over the Atlantic Ocean and the Bay of

Biscay.

The daytime formation of nitrate from the NO2+OH→

HNO3 reaction creates a strong diurnal cycle in the atmo-

spheric nitrate mass loadings. For this reaction the three-

body rate recommended by DeMore et al. (1994) is used,

which gives a reaction rate (at a pressure of 1 atm and a tem-

perature of 285 K) of 1.28×10−11 molecules−1 cm3 s−1. This

diurnal cycle can be observed in the tendencies of the total

(condensed-phase nitrate plus gas-phase HNO3) nitrate mass

loadings in the het-off scenario, the mean values (across the

model domain) of which are plotted for a 4-day period at the

end of the campaign in Fig. 13a. Throughout the middle of

www.atmos-chem-phys.net/15/1385/2015/ Atmos. Chem. Phys., 15, 1385–1409, 2015
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A
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C

Figure 15. Statistical analysis of variation in oxidation rates, across

the domain on the 990 hPa pressure level, for total NMVOCs,

alkenes, and DMS (a–c, respectively). Data are presented for ox-

idation with respect to OH and NO3, at midday (12:00 UTC) and

midnight (00:00 UTC), and for both the “het off” and “het on” sce-

narios, as indicated by the x axis labels. Hourly data from a 15-

day period are used to obtain a campaign-averaged diurnal cycle.

Whiskers indicate the 5th and 95th percentiles, while the red mark-

ers indicate the mean oxidation rate.

the day (roughly between 10:00 and 15:00 UTC) the net ten-

dency is an increase in total nitrate mass loading, strongest

in the lower atmosphere (peaking at ground level and ex-

tending up to 950–940 hPa) at midday (with domain means

reaching 0.25 µgkg−1
air h−1). Over the rest of the day deposi-

tional losses of nitrate dominate, with domain mean tenden-

cies dropping below −0.1 µgkg−1
air h−1 at ground level in the

evening/early night-time (before midnight).

During the het-on scenario daytime nitrate formation still

dominates, although the domain mean tendencies are lower,

only reaching 0.15 µgkg−1
air h−1 (Fig. 13b). Losses in the

evening and early morning are of a similar magnitude to

those in the het-off scenario; however the domain mean ten-

dencies during the middle of the night are now close to zero.

The potential contribution of N2O5 heterogeneous chemistry

to the total nitrate mass loadings is illustrated in Fig. 13c (this

is calculated by taking the integrated uptake rate of N2O5 and

does not take into consideration the production of ClNO2).

This contribution is strongest between 23:00 and 03:00 UTC,

with domain mean values between 0.075 and 0.1 µgkg−1
air h−1

(similar in magnitude to the increase in tendencies between

the het-off and het-on scenarios during these same periods).

This offsetting of depositional losses by N2O5 heteroge-

neous chemistry gives rise to the maintenance of higher ni-

trate aerosol mass loadings during the night. The statistical

variation in PM10 nitrate mass loadings across the model do-

main (at 990 hPa) for the het-off and het-on scenarios are

shown in Fig. 14a and b, respectively. Data from 15 days

through the campaign are used (discarding the first 4 days of

the model run as spin-up, as well as data from the 21 July due

to the discontinuity caused by the meteorological restart) to

obtain a diurnal cycle representative of the whole campaign

period. During the het-off scenario the maximum PM10 ni-

trate mass loadings occur at around 15:00 and 16:00 UTC

(with median and mean mass loadings of 0.8 and 1.6 µgkg−1
air ,

and 95th percentile of 5.6 µgkg−1
air ), and the minimum PM10

nitrate mass loadings occur at around 06:00 UTC (with me-

dian and mean mass loadings of 0.3 and 0.9 µgkg−1
air , and 95th

percentile of 3.5 µgkg−1
air ). In-between these two extremes the

PM10 mass loadings vary in a smooth, roughly sinusoidal,

manner.

During the het-on scenario the maximum PM10 nitrate

mass loadings around 15:00 and 16:00 UTC are very simi-

lar to those in the het-off scenario (although there is a small,

1–3 %, decrease); however the PM10 nitrate mass loadings

at 06:00 UTC have increased dramatically (with median and

mean mass loadings of 0.4 and 1.1 µgkg−1
air , and 95th per-

centile of 4.6 µgkg−1
air ) This is in agreement with the findings

of Riemer et al. (2003), who showed that N2O5 heteroge-

neous reactions had a large impact on regional aerosol nitrate

fields at night. In the early evening the PM10 nitrate mass

loadings decrease in a similar manner in both scenarios –

they only begin to diverge around 22:00 UTC. While the re-

duction in median mass loadings during the night is slowed

during the het-on scenario, the reduction in the 95th per-

centiles is actually reversed between 22:00 and 02:00 UTC,

leading to a secondary peak of 5.0 µgkg−1
air at this time. This

indicates that nitrate formation via the N2O5 heterogeneous

pathway is strongly associated with pollution plumes, in con-

trast to nitrate formation via the NO2+OH pathway, which,

because it is limited by the abundance of OH and does not

directly produce aerosol nitrate (instead producing gas-phase

HNO3 which then condenses onto available non-acidic parti-

cles), is a more diffuse process.

Summertime measurements of nitrate particulate mass

across Europe exhibit a very different diurnal profile to

these model predictions: the measurements show a steady
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increase in nitrate mass loadings through the night, reach-

ing the maximum at about 06:00 UTC (around dawn) fol-

lowed by a sharp drop in nitrate mass loading through the

day, to reach a minimum around 18:00 UTC (around sunset)

(Poulain et al., 2011). The measured nitrate mass loadings

generally show an anti-correlation with temperature and a

correlation with RH, leading to the suggestion that the di-

urnal variation in particulate nitrate is principally driven by

changes in the thermodynamic equilibrium of ammonium

nitrate. As WRF-Chem is known to under-predict tempera-

ture, and over-predict daytime-specific humidities, within the

PBL (García-Díez et al., 2013), it is, unfortunately, unsur-

prising that the diurnal cycle in nitrate mass loadings in the

model is so different. However Poulain et al. (2011) also used

a simplified box model to examine the potential contribution

of N2O5 heterogeneous chemistry to particulate nitrate for-

mation; they showed a clear linear relationship between the

measured and modelled (potential) particulate nitrate mass

loadings, indicating that N2O5 heterogeneous chemistry is

an important route for particulate nitrate formation (in agree-

ment with previous studies; cf. Chang et al., 2011, and refer-

ences therein). The results from this study are in agreement

with these previous studies: N2O5 heterogeneous chemistry

is an important source of particulate nitrate, and it helps to

bring the model diurnal profile closer the measured profiles.

This shows that the inclusion of N2O5 heterogeneous chem-

istry is an important step towards the more realistic simula-

tion of nitrate aerosol mass loadings.

The regional influence of the N2O5 heterogeneous

chemistry on gas-phase chemistry can be investigated

using the instantaneous VOC tendencies (dVOC/dt ,

moleculescm−3 s−1) with respect to oxidation by OH and

NO3. This tendency for OH is calculated as

d[VOC]

dt

∣∣∣∣
OH

=−[OH]

n∑
i=1

(kOH,i[VOC]i), (8)

where kOH,i is the reaction rate of VOCi with OH, and n

is the number of VOC’s which react with OH. An equivalent

equation is used for NO3, and to investigate the instantaneous

DMS tendencies (dDMS/dt) with respect to OH and NO3.

The statistical variation in the tendencies for total

NMVOCs, alkenes, and DMS, across the model domain, are

shown in Fig. 15a–c, respectively. Campaign-averaged statis-

tics are generated using data from the same 15 days as above

– the diurnal cycle and vertical variation in these tendencies

are shown in the Supplement; in Fig. 15 only data for midday

(12:00 UTC) and midnight (00:00 UTC), and at the 990 hPa

pressure level, are plotted.

Daytime reaction with OH dominates the oxidation of

NMVOCs (and, more selectively, just alkenes), with median

and mean tendencies of 2.4× 106 (0.6× 105) and 4.0× 106

(6.0×105) moleculescm−3 s−1, respectively. The OH oxida-

tion of NMVOCs is not particularly homogeneous across the

domain: the 75th percentile is 5 times greater than the 25th

percentile; however for alkenes this process is even more

strongly concentrated in the pollution plumes, the 75th per-

centile being 50 times greater than the 25th percentile.

At night NO3 oxidation is more important than OH oxi-

dation for NMVOCs, with median and mean rates for NO3

4–5 times greater than those for OH. However these rates

are still 100–300 times lower than the daytime OH oxidation

rates and strongly constrained to the pollution plumes. This

is especially marked for the oxidation of alkenes by NO3, for

which the median values are 80 times lower than those for

daytime OH oxidation, while the 95th percentiles are only 8

times lower. N2O5 heterogeneous chemistry suppresses NO3

concentrations and so reduces night-time NO3 oxidation, as

well as nightime OH oxidation (due to the principal source

of night-time OH being NO3 oxidation). The magnitude of

this suppression is small though, generally a factor of 1.5 or

less.

Night-time NO3 oxidation of DMS is more important than

daytime OH oxidation, with median and mean tendencies of

2.8× 104 and 4.5× 104 moleculescm−3 s−1 for NO3, com-

pared with 2.2× 104 and 3.1× 104 moleculescm−3 s−1 for

OH. Suppressing NO3 concentrations via N2O5 heteroge-

neous chemistry reduces the NO3 oxidation rates within pol-

lution plumes (reducing the 95th percentile from 1.6× 105

to 1.4× 105 moleculescm−3 s−1), allowing greater regional

diffusion of DMS, leading to (small) increases in the back-

ground NO3 and OH oxidation rates.

4 Conclusions

As part of the RONOCO project, comparisons have been

made between measurements and a detailed regional model

(WRF-Chem). It has been demonstrated that N2O5 heteroge-

neous chemistry on aqueous aerosol droplets is an important

process for controlling the NO3 and N2O5 mixing ratios over

NW Europe. However the impact of this process is strongly

dependent on the aerosol water content, which is very sen-

sitive to atmospheric relative humidity. Above 70–75 % RH

this process strongly limits build-up of NO3 and N2O5, and

can be very efficient in converting NOx to NOz. At relative

humidities of 60–70 % or lower, N2O5 heterogeneous chem-

istry becomes very inefficient, essentially switching it off.

For regional modelling purposes it is essential to properly

reproduce the atmospheric relative humidity; failure to do

so will lead to erroneous estimates of N2O5 heterogeneous

chemical rates. Similarly, the transport of chemical species

is very dependent on the meteorological fields and param-

eterisations of the model. The biases in temperature, spe-

cific humidity, and PBL stability within WRF (García-Díez

et al., 2013; Krogæter and Reuder, 2014) have negatively im-

pacted on the WRF-Chem results presented here and in pre-

vious studies (McKeen et al., 2007). Correcting these biases

in WRF will significantly improve the model skill of WRF-

Chem.
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The dependence of N2O5 heterogeneous chemistry on

aerosol particle composition is complex. The model skill at

accurately predicting aerosol composition is a lot lower than

its skill in replicating the gas-phase chemistry. More work is

required to remedy this shortfall (particularly with regards to

the under-prediction of ammonium-sulfate aerosol). To help

constrain this model development, it would be useful to have

more widespread measurements of the composition of supra-

micron aerosol particles, as well as gas-phase NH3, as a com-

plement to the AMS measurements.

NO3 is the main oxidant during the night-time, the mean

reaction rate with VOCs being 4–5 times greater than that for

OH. However this is 100–300 times slower than the mean re-

action rate of OH with VOCs during the day, and it is a far

more spatially heterogeneous process, principally confined to

the more polluted regions of the domain. Only for the oxida-

tion of DMS is the contribution of NO3 on a par with that of

OH. By limiting the build-up of NO3, N2O5 heterogeneous

processing does reduce the oxidative capacity of the atmo-

sphere a little. However its impact on the overall oxidative

capacity of the atmosphere is insignificant.

N2O5 heterogeneous chemistry is an important process

with regards to the regional aerosol nitrate budget – by pro-

viding an alternative pathway for converting NOx emissions

to aerosol nitrate, which operates during the periods at which

HNO3 formation by the NO2+OH pathway is smallest.

This substantially contributes to nitrate aerosol mass load-

ings through the night-time and so will increase the negative

impact that NOx emissions have on air quality over NW Eu-

rope. However, the model skill at reproducing the summer

diurnal cycle of nitrate aerosol mass loadings across NW Eu-

rope is poor, due at least in part to the systematic biases in

meteorological fields noted above. Correcting these biases

will enable better modelling of regional particulate matter

distributions and so improve our understanding of the impact

of this on European air quality.

The Supplement related to this article is available online

at doi:10.5194/acp-15-1385-2015-supplement.
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