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1 Introduction

In the framework of Item Response Theory (IRT), great attention has been
recently paid to the multidimensional formulation of IRT models, which ac-
counts for distinct underlying latent traits, involved in producing the manifest
responses to the selected items. IRT can be applied in a way that is analo-
gous to exploratory and confirmatory factor analysis for continuous variables
(Reckase, 1997). In an exploratory perspective, few works have been proposed
in literature and this is probably due to the fact that the rotational invariance
of the final solution has to be considered. As seen in classical exploratory
factor analysis framework (West, 2003), the introduction of sparsity in the
model allows to eliminate the rotation indeterminacy. In this paper, following
a Bayesian approach to MIRT models, the sparsity is induced by introducing
prior probability distributions that favour shrinkage for the coefficients of the
discrimination parameter matrix. Specifically, we address the sparse MIRT
problem by introducing the sparsity-inducing prior suggested in the Stochas-
tic Search Variable Selection (SSVS) approach for regression models (George
and McCulloch, 1993).

2 Bayesian framework for the sparse multidimensional normal
ogive model

We assume that there are M correlated constructs measured by K observed cat-
egorical items. The multidimensional normal ogive model (Béguin and Glas,
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2001) is given by

P(Xik = c|θθθi,αααk,γγγk) = Φ
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where Xik is the observed response of person i (i = 1, . . . ,N) to item k (k =
1, . . . ,K); c denotes the category of the ordered response scale (c = 1, ...,C)
and Φ is the cumulative distribution function for the standard normal distri-
bution. The probability of responding a certain category c, to a given item k,
depends on the M-dimensional vector θθθi of the unobserved latent scores for
subject i, on the M-dimensional vector αααk of item discrimination parameters
and on the (C−1)-dimensional vector γγγk of category thresholds.

In an exploratory framework, the multidimensional normal ogive model
requires identification restrictions given the over-parameterisation. For loca-
tion and scale indeterminacy, we consider the constraint ∑

K
k=1 γk,c = 0 for a

given category c and assume that each latent component has unit variance. To
address the rotational indeterminacy, we require the discrimination parameter
matrix to be sparse lower triangular and of full rank.
With regards to the prior specification, on the person side of the model, we as-
sume that all person parameters θθθi are independent and identically distributed
samples from a multivariate normal distribution, that is θθθi∼NM(µµµθ,ΣΣΣθ) (Béguin
and Glas, 2001). The prior for the mean µµµθ is normal with mean µµµ0 = 000 and
covariance matrix σ2

µI where σ2
µ = 100. The prior for the inverse covariance

matrix ΣΣΣθ is a Wishart with scale matrix 0.1I and degree of freedom M+1.
On the item side, a uniform prior is assigned to the ordered thresholds γk,c ∼
uni f orm, c = 1, . . . ,C− 1, γk,1 ≤ ·· · ≤ γk,C−1, ∀k. For the discrimination pa-
rameters, we assume that each free αk,m arises from one of two normal mixture
components, depending on a latent variable ζk,m

αk,m|ζk,m ∼ (1−ζk,m)N(0,τ2)+ζk,mN(0,c2
τ

2) (2)

where τ is positive but small, such that αk,m is close to zero when ζk,m = 0;
c is large enough to allow reasonable deviations from zero when ζk,m = 1. In
addition, the prior probability that factor m has a nonzero effect is P(ζk,m =
1) = 1−P(ζk,m = 0) = pk. To obtain the normal mixture prior for αααk, George
and McCulloch (1993) define a multivariate normal prior

αααk|ζζζk ∼NM(000,DDDζk RRRDDDζk)

where αααk =(αk,1, . . . ,αk,M)′, ζζζk =(ζk,1, . . . ,ζk,M)′ and DDDζk = diag(dk,1τ, . . . ,dk,Mτ)
with dk,m = 1 if ζk,m = 0 and dk,m = c if ζk,m = 1. As prior correlation we as-
sume the identity matrix R = IM.



In order to draw samples for the posterior distribution of the parameters, it
is convenient to use data augmentation technique. For each observed polyto-
mous item, we assume that a continuous variable Zk underlies the observed
ordinal measure Xk and that there is a linear relationships between item and
person parameters and the underlying variable such that Zi,k = ααα′kθθθi+ei,k, with
ei,k ∼ N(0,1). The relation between the observed item k and the underlying
variable is given by the threshold model

Xi,k = c iff γk,c < Zi,k < γk,c+1. (3)

The full conditional of most parameters can be specified in closed form
which allows for a Gibbs sampler although a Metropolis-Hastings step is re-
quired to sample the threshold parameters.

3 Simulation study and Application

In this section, we evaluate the performance of the proposed method both on
simulated and on a real world dataset.
For the simulation study, we consider different level of sparsity and both uncor-
related and correlated latent variables. We set the hyperparameters in Equation
(2) as τ = 1 and c = 0.01. In order to assess the performances of the proposed
method, we compare the structure of the simulated discrimination parameter
matrices with the ones retrieved by the algorithm. The results, displayed in
Table 1, show that the normal mixture prior for αααk is able to infer the sparse
underlying structure. In particular, we notice that the algorithm correctly iden-
tifies the number of zero elements and their locations when it is assumed that
each item measures only one latent construct (level of sparsity 75%). Overall,
the procedure is promising, although there is the hint that the proportion of
zeroes tends to be overestimated, especially for low levels of sparsity.

Uncorrelated θθθ Correlated θθθ

Original Retrieved Correctly Retrieved Correctly
sparsity sparsity identified zero sparsity identified zero

level level elements level elements
0.75 0.75 1.00 0.75 1.00
0.69 0.67 0.98 0.73 0.96
0.58 0.62 0.96 0.71 0.87

Table 1. Simulation results: proportions of zero entries and of correctly identified zero
elements



In the application, we consider data∗ analysed in Martin et al.(2003) and col-
lected through the Humor Styles Questionnaire (HSQ) which assesses four
dimensions relating to individual differences in uses of humor to enhance: the
self (Self-enhancing); one’s relationships with others (Affiliative); the self at
the expense of others (Aggressive); relationships at the expense of self (Self-
defeating). Consequently, in our analysis we consider a 4 dimensional solution
with correlated factors. In figure 1 we provide a comparison of: the structure
hypothesised in Martin et al.(2003) for the 32 items of the HSQ scale; the
sparse structure retrieved considering the significant discrimination parameters
(credible interval with probability 90%) estimated with our proposed method;
the oblimin solution, with cut-off point set to .10, for the polythomic multidi-
mensional IRT model estimated with the MIRT package (Chalmers, 2012).

Figure 1. Sparse structures of the discrimination parameter matrix for the HSQ scale.

We demonstrated clearly that the sparse loadings are obtained in an optimal
way and are easily interpretable. Moreover, the new sparse solution agrees
with the classic ones.
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BÉGUIN, A.A., & GLAS, C.A.W. 2001. MCMC estimation and some model-
fit analysis of multidimensional IRT models. Psychometrika, 66(4), 541–
561.

∗Data are available at <http://personality-testing.info/_rawdata/>

<http://personality-testing.info/_rawdata/>


CHALMERS, R. P. 2012. mirt: A Multidimensional Item Response Theory
Package for the R Environment. Journal of Statistical Software, 48(6),
1–29.

GEORGE, E. I., & MCCULLOCH, R. E. 1993. Variable Selection Via Gibbs
Sampling. Journal of the American Statistical Association, 88(423), 881–
889.

MARTIN, R. A., PUHLIK-DORIS, P., LARSEN, G., GRAY, J., & WEIR, K.
2003. Individual differences in uses of humor and their relation to psy-
chological well-being: Development of the Humor Styles Questionnaire.
Journal of Research in Personality, 37(1), 48–75.

RECKASE, M. D. 1997. The Past and Future of Multidimensional Item Re-
sponse Theory. Appl. Psych. Meas., 21(1), 25–36.

WEST, M. 2003. Bayesian Factor Regression Models in the ”Large p, Small
n” Paradigm. Bayesian Statistics, 723–732.


	Introduction
	Bayesian framework for the sparse multidimensional normal ogive model
	Simulation study and Application
	References

