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ABSTRACT

The Noachis-Sabaea region in the southern highlands preserves some of the oldest Martian
crust. It records deformation by both endogenic and exogenic processes. This deformation
includes giant impacts and their impact stresses, which could have resulted in both the
reactivation and modification of pre-impact tectonic structures, in addition to impact-
generated tectonic structures. There are also widespread extensional and compressional
tectonic structures, which were formed due to endogenic processes. We have produced the
first detailed morphostructural map of the Noachis-Sabaea region, which details the
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characteristics and spatial arrangements of structures in the region, forms the basis for
making inferences about Noachian-Hesperian crustal activity, and provides information for
further studies regarding the reconstruction of the evolutional history of the region.

1. Introduction

Mars is, after Earth, the planet most studied from global
to local scales. Mars has been mapped globally earlier by
Scott and Carr (1978) at a scale of 1:25,000,000 using 1
—2 km/pixel to more recently by Tanaka, Robbins, For-
tezzo, Skinner, and Hare (2014) at a 1:20,000,000 scale,
using high-resolution data up to 6 m/pixel. The majority
of morphostructural studies have been focused on Thar-
sis and its components. Both flexural-loading stresses
(e.g. Anguita et al., 2001; Banerdt, Golombek, & Tanaka,
1992; Carr, 1981; Davis, Tanaka, & Golombek, 1995;
Meége & Masson, 1996) and magmatic-driven uplift
and subsidence (Anderson et al., 2001; Dohm et al.,
2001; Lowry & Zhong, 2003) may explain the type,
location, orientation, and strain of most tectonic features
inand around Tharsis. Less attention has been paid to the
more ancient terrains of the southern highlands in part
due to the limited coverage of high-resolution data and
their highly degraded appearance. In the southern high-
lands, highly cratered and degraded early Noachian crust
is preserved. On Earth, both dense basaltic oceanic crust
and lighter felsic continental crust have formed through
time, resulting in bimodal topography, with the conti-
nental crust generally being older and felsic in large
part due to granite accumulating at subduction zones
associated with the formation of orogenic complexes.
In other cases, there is no plate tectonics to influence

crustal formation and composition, such as the Moon
where the crust is generally composed of anorthosite-
enriched highlands and basaltic lunar maria. In Mars,
its bimodal topography raises question about the crustal
modification through internal driven processes. With
this in mind, the primary aim of our study is to help
address this question through geological mapping inves-
tigation of the tectonic structures that occur in ancient
terrains of Mars dating back more than 4.0 Ga. Here,
we discuss the results of our mapping investigation
(Main Map) which focuses on such ancient terrain of
Mars with distinct systems of tectonic structures that
includes the eastern part of Noachis Terra, the southern
part of Terra Sabaea, and the northwest part of the giant
Hellas impact structure, referred to here as the Noachis-
Sabaea region (Figure 1).

The Hellas basin and surroundings, which include
the Noachis-Sabaea region, have been studied with
varying foci, including: crater degradation (Mangold,
Adeli, Conway, Ansan, & Langlais, 2012), crater mor-
phology (Ohman, Aittola, Kostama, & Raitala, 2005),
magmatic activity such as at Tyrrhenus and Hadria-
cus Montes (Crown & Greeley, 1993; Head, Kre-
slavsky, & Pratt, 2002), anomalous features
(including magnetic and gravity signatures, and
elemental enrichment) in Arabia Terra (Dohm
et al, 2007), valleys/channels and sedimentary
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Figure 1. MOLA colourised elevation map. Study area (Noachis-Sabaea region) is shown in the dotted black rectangle. Also the
locations are shown of Figures 2-8 (solid circle with corresponding number).

processes (Buczkowski et al., 2010; Davis, Balme,
Grindrod, Williams, & Gupta, 2016), and the possible
presence of episodic methane releases (Mumma et al.,
2009). However, there is no detailed geological map-
ping investigation of the Noachis-Sabaea region with
a particular focus on the ancient tectonic structures
and their formational histories, except for some
specific investigations such as radial dike structures
and some ridges near Hellas (Head et al., 2002;
Wilson & Head, 2002). An investigation of the paleo-
tectonic history of Mars, based on Viking data, indi-
cated several centres of tectonism in the eastern
hemisphere (Anderson et al., 2008).

Extensional (grabens, rifts, troughs) and compres-
sional structures (wrinkle ridges (WR), lobate scarps)
are common on Mars (e.g. Anguita et al., 1997; Sleep,
1994; Watters, 1993). While the responsible stresses
are sometimes mentioned to be related to mega impacts
such as Hellas, Isidis, and Argyre (Frey & Schultz, 1988;
Wilhelms & Squyres, 1984; Yin, 2012), endogenic pro-
cesses have played a key role in the paleotectonic evol-
ution of Mars. Endogenic activity may have included
mobile lithospheric activity including some form of
plate tectonic activity involving both extension and sub-
duction (Baker, Maruyama, & Dohm, 2007; Sleep,
1994). An ancient phase of plate tectonics has also
been proposed to explain magnetic anomalies among
other features in the southern highlands (Connerney
et al, 1999, 2005; Dohm et al., 2002, 2016; Fairén,
Ruiz, & Anguita, 2002; Fairén & Dohm, 2004).

In order to study the ancient Martian crustal base-
ment in the southern highlands and its recorded
tectonic history, including both impact and endogenic-
induced structures, our primary objective was to produce
a detailed map delineating the spatial arrangement of the
various morphostructural types. In this work, we present
our geological map of the Noachis-Sabaea region that
includes discussion of the morphostructural elements
and their classification, as well as interpretation of their
origins including associated stress regimes.

2. Geological setting

The Noachis-Sabaea region (Figure 1) preserves some
of the oldest highland terrains of Mars (Leonard &
Tanaka, 2001; Tanaka & Leonard, 1995). The study
region is bordered by the Hellas basin to the southeast,
the Isidis basin to the northeast, Arabia Terra and
dichotomy boundary to the north, the Argyre basin
to the south-west (Greeley & Guest, 1987; Scott &
Carr, 1978), and Meridiani Planum to the northwest.
Impact cratering has erased some of the small-scale
structures. The observed modern-day surface also
records volcanic, fluvial, aeolian, mass wasting. The
distribution of fluvial channels is more concentrated
in the northern and central parts of the study area.
Rogers, Bandfield, and Christensen (2007) character-
ised most of the study area to be relatively low in feldspar
content, low in Ca-pyroxene content, and relatively high
in olivine content (they refer to as ‘group 3’) based on the
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analysis of Thermal Emission Spectrometer (TES) data,
which they interpret to be a typical Noachian highland
unit (i.e. heavily influenced and reshaped by giant
impacts). The mega impacts not only influenced the ear-
lier endogenic structures but also have produced rela-
tively thick ejecta and basin-concentric grabens
(Peterson, 1977; Rogers & Nazarian, 2013) due to
impact-related stress relaxation (Melosh, 1976; Melosh
& McKinnon, 1978). Spectroscopic analyses of parts of
the Noachis-Sabaea region using the Compact Recon-
naissance Imaging Spectrometer for Mars (CRISM)
data have revealed spectral features interpreted to be
flood basalts of Noachian age (Rogers & Nazarian,
2013) and feldspathic rocks including possible granite
to the northwest of the Hellas basin (Wray et al., 2013).
The northeastern to central part of the study region is
dominated by flood basalts from the Syrtis Major volca-
nic province, deformed mainly by WR. WR occur both
within and outside impact crater basins and have a
more or less consistent NNW-SSE orientation.

Local occurrences of sedimentary rocks have been
reported for the outer margin of the Hellas basin
(Ansan et al., 2011; Salese et al., 2016). WR in the Noa-
chis-Sabaea region are found on the floor of Noachian-
Hesperian units. Some of these materials could be flood
basalts, consistent with global Martian flood volcanism
proposed to have occurred during the Hesperian
Period (Carr & Head, 2010). Wrinkle ridge (Watters,
1993) formation and sedimentary processes of inter
crater plains (Salese et al., 2016), along with magma-
tism and associated outflow channel activity (Fairén
et al., 2003; Komatsu, Dohm, & Hare, 2004, and refer-
ences therein), are key processes in the Hesperian.

Linear ridges are interpreted to result from a high
effusion rate of volcanism (Head, Wilson, Dickson, &
Neukum, 2006). These ridges are often observed to
transect Hesperian units. The origin of these linear
ridges are interpreted to be igneous dikes, caused by
the propagation of magma-filled fractures in the
crust; the magma eventually solidifies and becomes
exposed at the Martian surface as a long ridge due to
differential erosion of the more competent solidified
magma and more friable surrounding sediments.

In and nearby our study region, Amazonian geology
may include sedimentary deposits and dust, as inter-
preted for the Hellas basin (Ormé & Komatsu, 2003),
as well as glacial features (e.g. glacial scouring, fluted
moraine, cryoturbation patterns, and iceberg plow
marks) and dunes along the floors of impact craters.

3. Data and geological mapping process
3.1. Data

Mars Express High Resolution Stereoscopic Camera
(HRSC) nadir images (Jaumann et al., 2007; Neukum
& Jaumann, 2004), with a resolution of ~12.5 m/
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pixel, enabled geological mapping from a morphologic
point of view. We mainly used HRSC (Levels 4 and 3)
images as a base in which to map the tectonic features
in the Noachis-Sabaea region. Based on Mars Orbiter
Laser Altimeter (MOLA) data, geometrically corrected
Level 3 HRSC images cover almost entire Martian sur-
face, whereas, the new Digital Terrain Model (DTMs)
and ortho-images are Level-4 data products of the
HRSC. Level 4 HRSC images cover 12% of the surface.
The Context (CTX) camera images (average image res-
olution of 6 m/pixel) (Malin et al., 2007) provided
detailed observations of features such as tectonic struc-
tures. We used CTX images and Thermal Emission
Imaging System (THEMIS) daytime (Ruff & Christen-
sen, 2002) IR mosaic images; in particular, CTX was
used to fill in the areas void of HRSC data. Mapping
was performed combining image data along with alti-
metry data at different scales like Mars Orbiter Laser
Altimeter (MOLA) (Smith et al., 1999) at ~463 m/
pixel, and where available, Digital Elevation Models
(DEM) made from HRSC stereo images at ~12.5—
50 m/pixel.

4. Mapping method and morphostructural
analysis

We have produced a morphostructural map of the
Noachis-Sabaea region at a scale of 1:5,000,000 follow-
ing the USGS guideline for planetary mapping
(Tanaka, Skinner, & Hare, 2009). The same coordinate
system (GCS_Mars_2000_Sphere) used in producing
the new global geological map by Tanaka et al
(2014) was used in the production of our map. Kilo-
meter-long structures and impact craters were ident-
ified and mapped using THEMIS-IR daytime and
nighttime images. The structures were then investi-
gated in detail using HRSC images and CTX images.
MOLA DEMs along with HRSC DTMs were useful
for identifying structures through their derived profile
sections.

Orientation-analysis to measure the distribution of
the WR over the Noachis-Sabaea region was per-
formed. This was done by fitting a best fitted-straight
line following the trend of the wrinkle ridge and
measuring the trend of the straight line. Rose diagram
was used to analyse the trend.

Extensional features are formed when the maximum
principle stress (01) is vertical, the minimum principle
stress (03) is perpendicular, and the intermediate stress
axis (02) follows the strike of the extensional feature
(Anderson, 1951). In this case, both 62 and 03 are hori-
zontal. In case of a compressional feature, the maxi-
mum principle stress (ol) is horizontal and
perpendicular to the strike of the compressional fea-
ture, 03 is vertical and 02 is horizontal and parallel to
the structure (Anderson, 1951).
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5. Description of the main elements of the
morphostructural map

Extensional structures in the Noachis-Sabaea region
are mapped and interpreted as half grabens bounded
by basin-concentric normal faults produced by the
Hellas and Isidis impacts. However, we also identified
and mapped a series of faults (mapped as Set-2 and
Set-3 grabens discussed below) that are neither con-
centric to nor radial about any of the giant impact
basins such as Hellas, including those (Set-2) that
have similar orientations of two parallel structures
mapped and interpreted by Connerney et al. (2005)
to indicate plate tectonics. These may have thus
involved ancient endogenic-driven activity including
a mobile lithosphere. Each structure type is described
below.

5.1. Grabens

Grabens are distributed throughout our study region
with varying widths up to 100 km. The grabens have
different orientations implying varying stresses and
modes of origin through time. These grabens have
been classified on the basis of their orientations, mor-
phology, and cross-cutting and stratigraphic relations
among rock materials and structures including impact
craters, namely sets 1, 2, and 3 (Ruj, Komatsu, Dohm,
Miyamoto, & Salese, 2015, 2016).

5.1.1. Set-1 grabens

Set-1 grabens are concentric to the Hellas basin and
concentrated along and in close proximity to
the west-northwestern margin. They generally have

1300 v\

100 \
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700
A 10 20 30 40 50 A

Distance (km)

Elevation (m)

Figure 2. (a) HRSC images show the set-1 graben in the wes-
tern flank of the Hellas basin. Transect A-A’ is also shown of cor-
responding topographic profile in (b). (b) Topographic profile
of a flat floored set-1 graben shown in (a).

the smallest dimensions of the three mapped graben
sets, with an average width of 35 km and maximum
length reaching 200 km. They are interpreted to
have formed due to the Hellas impact. Our interpret-
ation is consistent with that of Melosh (1976), who
described grabens generated by impact-related stress
relaxation. In addition, Wichman and Schultz
(1989) reported that some of these grabens are Hellas
impact-induced, near-basin concentric canyons circu-
lar to the giant impact basin. These grabens are well
defined with flat floors, and their western walls occur
at higher elevations than their eastern walls (Figure 2

(a,b)).

5.1.2. Set-2 grabens

Set-2 grabens are wider and greater in length than the
Set-1 grabens. The longest graben is around 1200 km
(Figure 3(ab)), attaining a maximum width of
100 km. In the northern part of the longest graben,
WR are observed along its floor possibly indicating
volcanic rock materials. The orientations of these gra-
bens trend to the northeast, antithetic to the Set-1
grabens that are generally concentric about the Hellas
basin.

5.1.3. Set-3 grabens

A series of grabens form a linear trend that continues
for nearly 1500 km. In general, they have a trend of
east—west, but the trends of the individual grabens
vary from east—west to northeast-southwest. Individual
grabens are 40-50 km in width (Figure 4(a,b)). Some of
the grabens are arcuate in shape, and some crosscut the
southwest part of the Huygens crater. WR are not
observed to the south of these Set-3 grabens. This set
of grabens do not follow the outer arc curvature like
as do the Hellas-concentric Set-1 grabens.

5.2. Normal faults

Either side of the normal faults show prominent
elevation wise offset blocks (namely hangingwall
and footwall block). These elevation offsets are
observed through the extracted profile sections and
the traces are mapped in this region. They are distrib-
uted on the northern part of the Set-3 grabens. There
are two identified sets of normal faults in this region.
One set is concentric about the Hellas basin, and the
other concentric about the Isidis impact basin (Figure
5(a)). These faults could be due to crater-forming
impact events, though some could be the result of
activity that resulted in the formation of Set-2
grabens.

5.3. Wrinkle ridges

WR, interpreted to result from compressional stresses
including those associated with the formation of
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Figure 3. (a) Set-2 graben shown on the MOLA colourised
elevation map (graben boundaries indicated by black lines).
(b) Set-2 graben (boundaries indicated by red lines) mapped
on HRSC image mosaic. Also shown is transect B-B’ of corre-
sponding topographic profile in (c). (c) Topographic profile
across a graben shown in (b), displaying a typical extensional
graben floor.

thrust faults and folds (Banerdt et al., 1992; Mangold,
Allemand, & Thomas, 1998; Watters, 1993), are
mapped both within (i.e. on the floors) and outside
of the impact craters. Head et al. (2002) proposed
that many WR formed in the upper crust as a result
of global Martian Hesperian volcanic activity. The
mapped WR in our map region have a NNW-SSE
trend (Figure 6(a)), with spacing of 15-40 km. The
trends of the WR are relatively consistent across the
Noachis-Sabaea region. WR are limited in number
to the south of the Set-3 grabens when compared to
other parts of the Noachis-Sabaea map region, includ-
ing along the northern and western margins of the
Hellas basin. This could indicate compositional vari-
ation from north to south, or possible competency
of the bedrock. The WR within the crater floor
(Figure 6(b,c)) are shown differently in the map
because of their unclear relationships to the regional
stress field. Some WR are interpreted to be related
to impact-induced volcanism and cooling within
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Distance (km)

Figure 4. (a) Set-3 graben (graben boundaries indicated by
green lines) and transect D-D’ of corresponding topographic
profile in (b) are shown.

crater floors in an isotropic condition. WR near the
Syrtis Major volcanic province are also distributed
centrically and radially with respect to the volcanic
province.

5.4. Linear ridges/dikes

Parallel linear ridges have been identified and mapped
in the Noachis-Sabaea region area (Figure 7), in some
cases having lengths reaching 750 km (Wilson &
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Figure 5. (a) HRSC image showing normal fault, centred about
the Isidis basin. Also shown is transect E-E’ with corresponding
topographic profile in (b).



Downloaded by [31.27.208.213] at 14:31 05 October 2017

760 (&) T.RUJETAL.

Figure 6. (a) Distribution of WR in the map region with rose diagrams representative of the WRs orientations; each rose diagram
corresponds with a specific rectangular area within the map region. WRs are interpreted to be compressional structures in the
deformed upper crust. WRs are shown outside (b) and inside (c) an impact crater (c).

Head, 2002). These ridges transect impact craters, thus
are interpreted to have been formed during the Late
Noachian or Hesperian.

5.6. Channels

Noachian channels (valley networks) (Buczkowski
et al, 2010; Davis et al, 2016; Hynek, Beach, &
Hoke, 2010) dominate the northern part of the
study area. Channels (Figure 8(a)) are interpreted to
have formed during the Middle-Late Noachian; they
are mostly absent in the southern part of our map
region. These channels range between 5 and 20 km
in width.

5.7. Lobate scarps

Lobate scarps are distributed throughout the study
area. Most of the scarps are lobate in shape and inter-
preted to be formed by compressional stresses (Figure 8
(b)). Watters (1993) reported that lobate scarps are one
sided, lobate and occur in linear or arcuate manner.
The lengths of the scarp chords range up to 200 or
300 km.

5.8. Linear pit chains

These features are associated with impact cratering
(Figure 8(c)). Wyrick, Ferrill, Morris, Colton, and Sims
(2004) interpreted Martian pit chains to be the initial
stage of graben formation. In our map region, we inter-
pret the linear pit chains to be either formed by impact-
driven radial fracturing or linear secondary impact.

Figure 7. Linear ridge in the map region is shown using a HRSC
image. These structures locate to the east of the Huygens
impact basin and are interpreted to be Hesperian igneous
dikes (Head et al., 2006).
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Though, such features on Mars have been interpreted to
mark the initial stage of graben formation (Wyrick et al.,
2004).

5.9. Impact craters

5.9.1. Polygonal craters

Polygonal craters are the markers of basement struc-
tures. As has been identified on Earth, such as in the
case of Meteor Crater (Shoemaker, 1959), impact crater
outlines often follow earlier structural lines of weak-
nesses. Though, Schultz (1976) reported that the geo-
metric shape of polygonal craters was also due to
both erosion and the encroachment by lavas.

Figure 8. (a) Valley network detailed on a HRSC image. Drai-
nage of the main channel trended from east to west during
incision. (b) Lobate scarp (black arrows) is interpreted to be
due to compressional tectonism in the Noachis-Sabaea region.
(c) Linear pit chains (black arrows) are interpreted to have
formed due to an impact-cratering event.
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In the case of the Noachis-Sabaea region, the
mapped polygonal craters are good indicators of pre-
existing basement structures of the Martian crust,
many of which are no longer visible at the surface
due to both degradation and burial at the Martian sur-
face. Polygonal craters in the study region, for example,
were interpreted by Ohman et al. (2005) to indicate
faults and fractures circumferential to the Hellas and
Isidis impact basins. Ohman et al. (2005) classified
polygonal craters into two categories: simple and com-
plex. Simple polygonal structures of craters are inter-
preted to be the result of excavation flow that opens
the crater, affecting the target and following the pre-
existed weakness of the crust. Complex craters are
interpreted to result from the modification of the crus-
tal materials subsequent to the impact event (Eppler,
Ehrlich, Nummedal, & Schultz, 1983). According to
Pike (1977), larger craters tend to be polygonal more
often than smaller craters.

We have mapped the polygonal craters (both simple
and complex) (Figure 9(a)), as well as measured the
orientations (Figure 9(b,c)) of their rims using the tech-
nique described by Ohman et al. (2005) and following
Kopal (1966). Our study includes using existing map
data by Ohman et al. (2005), in addition to the newly
generated map data of this map investigation. We
have mapped and measured more than 500 different
sized polygonal craters in the map region. Our map-
ping investigation around the western part of the Hel-
las gives a better and detailed idea about the
distribution of structural features and their control
on the surface topography.

5.9.2. Classification of craters

We have mapped and classified the impact craters in the
Noachis-Sabaea (Robbins & Hynek, 2012) region into
three different types based on their age, morphology,
and ejecta materials. Following Mangold et al. (2012),
type 1, the oldest and largest ones with no observable
ejecta, type 2, older ones with eroded ejecta and central
peak, and type 3, the fresher ones with preserved ejecta
and central peak. We also distinguished some as ghost
craters (particularly those that can be associated with
type-1 craters) (Figure 10). Of the nearly 3000 impact
craters that we have investigated, 76.78% of craters are
identified as type 1 (combined with ghost craters),
19.88% as type 2, and 3.34% as type 3. More or less simi-
lar percentages of crater distribution have been cited by
Mangold et al. (2012) in the Arabia Terra region, north
of the Noachias-Sabaea region. These classification stat-
istics of craters clearly show an influence of the presence
of the Noachian basement crust.

6. Discussion

This new morphostructural map (Main Map) depicts
the tectonic elements of the Noachis-Sabaea region
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Figure 9. (a) Shown are the distribution of analysed polygonal craters (black dots marking their centres) of specific areas (red out-
lines and corresponding numbers) of the Noachis-Sabaea map region, along with different sets of grabens which are also shown on
the geological map. (b) Polygonal crater (left) and its approximated polygonal boundaries (black lines). (c) Rose diagrams displaying
the trends of the approximated boundaries of polygonal craters of specific areas (red outline) of the map region. The polygonality of
the measured boundaries of the polygonal craters indicates basement structural control based on the apparent correspondence of
the boundaries with the trends of graben sets. For example, two sets of faults indicated by trend appear to be associated with set-3
grabens; these grabens appear to have been influenced the polygonal boundaries in rectangle 5. The boundaries of polygonal cra-
ters in rectangle 1, on the other hand, appear to be influenced by set-2 grabens. At the junction of set-2 and set-3 grabens (rec-
tangle 4), we observe the possible influence of both sets of grabens on the formation of polygonal craters.

using the remotely sensed data. The mapped structures
and their spatial relationships are subject to further
study. Relative age of the structures may help to inform
the evolutional history of the region. Based on our
analysis of the orientations, morphology, relative
ages, and spatial and temporal relationships among
the structures, as well as the rock types identified
through orbital-based spectroscopy, the Noachis-
Sabaea region appears to comprise structural features
similar to those observed in a terrestrial tectonic
zone. Using the Right Dihedral Method (placing a
plane perpendicular to the plane of movement in a
fault; dividing the fault into a set of 4 dihedra or quad-
rants), we have characterised varying directions of
horizontal extension (WNW-ESE for Set-2 grabens,

NNW-SSE for Set-3 grabens), which resulted in the
formation of Set-2 and Set-3 grabens. Compression,
which is ENE-WSW, produced the WR on rock
materials, which have been interpreted to be flood
basalts (Rogers & Nazarian, 2013). The relations of
the stresses and their relative timing of formation
have been described by Ruj, Komatsu, Dohm, Miya-
moto, and Salese (2016). In addition, the orientations
of the Set-2 grabens are parallel to the ‘great faults’
identified in Terra Meridiani by Connerney et al.
(2005) based on the offset of the magnetic field
contours.

The topography (Smith et al., 1999) and the struc-
tures on Mars have been considered to be reshaped
by internal processes, including possible plate
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Figure 10. MOLA shaded relief map showing the distribution of different types of mapped impact craters in part based on the
description by Mangold et al. (2012), which include Type-1 (blue outlines; no visible ejecta, larger in size, absence of central
peak, visible fluvial landform, and estimated age >3.7 Ga), type-2 (red outlines; partially visible ejecta and fluvial landform) craters,
type-3 (black outlines; absence of fluvial landform and preserved ejecta), and ghost (brown outlines; curvilinear features such as
scarps of possible impact origin) craters are marked with brown outlines.

tectonics (Baker et al., 2007; Breuer & Spohn, 2003;
Dohm et al,, 2002, 2015; Fairén & Dohm, 2004; Mar-
uyama, Dohm, & Baker, 2001 and references therein),
surface geological processes, and impact effect of the
craters. Our mappings of the morphostructures of
the Noachis-Sabaea region indicate both impact and
endogenic-derived activity, including an ancient
mobile lithosphere that may have involved some
form of plate tectonics. Further detailed geological
investigation of the Noachis-Sabaea region and
other ancient terrains of the southern highlands
have thus the significant potential to continue to
inform on the early evolution (Hadean-Archean
age-equivalent) of Mars.

Software

All data were geo-referenced and then placed into an
ArcGIS (ArcGIS 10.2) platform for mapping. Figures
were prepared in CorelDRAW X7.

We also used stratigraphic information from the
digital global geological map of Mars (Tanaka et al.,
2014) to compare with the mapped tectonic structures
of this morphostructural mapping investigation.
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