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Abstract

Many molecular modifications such as senile plaques and neurofibrillary tangles are

known to be associated with Alzheimer’s disease and other neurodegenerative diseases.

In this connection, metal dyshomeostasis has aroused great interest and considerable

support in recent years as relevant pathological cofactors of neurodegeneration. It has

been largely demonstrated both in vivo and in vitro that aberrant metal ion metabolism

can lead to the development and/or worsening of several neurological disorders. In this

chapter, we will focus recent biophysical findings on b-amyloid structural modifications

triggered by metal ions and we will provide insights into the biological consequences of

these phenomena.
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Abbreviations

AD Alzheimer’s disease

Ab b-amyloid

BBB Blood–brain barrier

ESI-MS Electrospray ionisation mass spectrometry

b-APP b-amyloid precursor protein

t t (tau) protein

Introduction

Biological systems rely on a huge number of protein

interactions as they undergo a wide diversity of physiologi-

cal functions. This is the case, for instance, for the ionotropic

glutamatergic receptor, where its full function relies on the

correct subunit arrangement for the formation of highly ion-

specific tetrameric structures.

Although the cell quality-control systems provide for the

correct folding of proteins during cell life, proteins miss-

folded can still aggregate, which leads to a series of

pathologies known as the “conformational diseases” includ-
ing Parkinson’s disease, Huntington’s disease, prion disease,

amyotrophic lateral sclerosis and Alzheimer’s disease (AD)

[1]. In particular AD is characterised by the miss-folding,

aggregation and deposition of two proteins: tau (t), a

microtuble-associated protein, and b-amyloid (Ab), a pro-

teolytic cleavage by-product of the Ab precursor protein

(b-APP) [2].
Over the last two decades, a large amount of data has

been reported in the literature relating to Ab production and

aggregation, and to its interactions with other sub-cellular

elements. Despite this, the trigger(s) that sets off Ab produc-

tion and accumulation is not entirely understood, as well as

its interactions with the t protein.
In this review, we provide an insight into the roles of

metal ions in Ab aggregation and into some of the biological

and pathological aspects of this phenomenon.
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From b-amyloid to senile plaques

Ab is a 39–43 amino-acid peptide and it is the main constit-

uent of senile plaques. In patients with AD, the most com-

mon forms of Ab have 40 or 42 amino acid residues, with the

latter as the most amyloidogenic and prone to aggregation

[3]. As mentioned earlier, Ab derives from b-APP, which is

itself a 695–770 amino-acid-residue transmembrane protein

that has a physiological role that still remains largely

unknown; the involvement of b-APP in metal homeostasis

and cell trafficking and signalling has been proposed [4].

The metabolism of b-APP involves three enzymes: the

a-, b- and g-secretases. Only when b-APP is cleaved by the

last two of these Ab is formed. This is the so-called

amyloidogenic pathway [5]. On the contrary, during the

physiological non-amyloidogenic pathway, b-APP is

metabolised by a-secretase and g-secretase, which releases

neither toxic nor pro-aggregation by-products [6]. Once it

has been released, Ab follows a well-known and well-

defined process of aggregation (Fig. 1).

The in vitro aggregation kinetics of the 42-residue Ab
peptide can be summarised as follows (see Fig. 1): (1)

random coiled Ab monomers turn quickly into (2) b-sheet
Ab monomers. This shift leads to the formation of (3)

soluble, low-molecular-weight oligomers, which become

(4) paranuclei (higher ordered structures), and then (5)

protofibrils, and eventually (6) larger fibrils, which represent

the main constituent of senile plaques [7]. Together with

insoluble deposits of the t protein, which are known as

neurofibrillary tangles, senile plaques are the macroscopic

event and hallmark of AD.

However, senile plaques are the downstream event of a

more complex process. Over these last two decades, research

interest has shifted “upstream”, with the report that pre-

fibrillar Ab species, and especially Ab oligomers, are signif-

icantly more toxic than mature Ab fibrils [8]. These findings

are in agreement with clinical observations, where it has

been reported that patients lacking senile plaques can show

AD-like cognitive impairment.

While in vitro Ab aggregation is performed in a highly

controlled environment, the behaviour of Ab in vivo can be

influenced by a large number of variables. Within these,

metal ions have aroused great interest for three main

reasons: (1) patients with AD show pronounced metal

dyshomeostasis in the brain; (2) high metal concentrations

have been found in senile plaques (Table 1) and (3) it is well

established that metals can influence and/or alter the Ab
aggregation pathway [9].

In the following sections, the roles of some of the metal

ions (Al, Fe, Cu and Zn) that can influence the folding

behaviour of Ab will be considered and critically discussed,

along with the AD “metal hypothesis”. Furthermore, a brief

insight into the biological aspects of AD and Ab will be

provided.

Aluminium

Aluminium [Al(III)] is the most abundant element in the

Earth crust, although it remains to be demonstrated that it

is involved in any specific vital biological processes. For this

reason, the discovery of relative high Al(III) concentrations

in senile plaques of post-mortem brains from patients with

Fig. 1 The Ab aggregation process follows a well-defined pathway.

First, the Ab monomers with a random-coil structure acquire a b-sheet
conformation. Then, these monomers aggregate into oligomeric

structures that contain a variable number of Ab peptides (i.e. 2–50).

These oligomers turn into higher ordered structures known as

protofibrils, and then these protofibrils lead to the formation of mature

fibrils that deposit as senile plaques
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AD aroused great interest, with the consequent suggestion of

a possible role for Al(III) in the pathology of AD ([10]; for a

recent review see Ref. [11]).

Along with all of the other electrically charged elements

and molecules, Al(III) cannot be passively transported

through the blood–brain barrier (BBB). Once it has been

absorbed through the digestive system, Al(III) enters the

bloodstream; here, it appears to be linked mainly to citrate

and transferrin. However, when it reaches the brain vessels,

Al(III) can indeed pass across the BBB via a transferrin-

receptor-mediated endocytosis mechanism [12]. Once in the

cerebrospinal fluid, Al(III) can influence the Ab folding

process, although its role in the pathology of AD is still

debated and controversial [13]. Furthermore, it has been

demonstrated that Al(III) can pass through the BBB already

complexed with Ab. In this case, the Ab–Al(III) complex

has more ready access to brain cells than Ab alone [14].

In contrast to Cu(II) and Zn(II) (see below), the Al(III)

complexes that are formed with Ab have been studied to a

lesser extent. Nevertheless, data reported from our and other

laboratories have indicated that Al(III) can maintain Ab in

its oligomeric or pre-fibrillar state and can promote Ab
exposure of hydrophobic clusters [15, 16]. On the contrary,

other studies have supported a role for Al(III) in the coordi-

nation of higher Ab structures, such as fibrils, and in the

promotion of their deposition.

Focusing on the chemical level, the presence of binding

sites for Al(III) on Ab has not been well established yet. Two

different binding mechanism for Al(III) with Ab were pro-

posed several years ago by Fasman [17]), and more recently

by our group [18]. In the former study, it was suggested that

Al(III) can coordinate with four Ab amino acids: Asp, Ser,

Tyr and Glu, probably because of their high –OH-group

content. In our study, we broadened the possible interaction

sites to the 1–16 and 20–35 amino-acid sequences [18].

As more recently reported by Kawahara and Kato-

Negishi[19]), the ability of Al(III) to coordinate Ab and to

modify its folding properties is due to two properties of Al

(III): (1) it has a strong positive charge that is coupled to (2)

a small ionic radius (50 pm), as compared to the other metal

ions discussed here. These features mean that Al(III) can

be considered as an effective protein cross-linker.

Consequently, a role for Al(III) in t folding needs to be

investigated, because of its great number of phosphorylated

sites; indeed, these R-OPO3
2� sites are the targets of choice

for Al(III)-like metals.

ESI-MS (electrospray ionisation mass spectrometry)

data, recently reported by Bolognin et al. [15], showed that

a bare Al(III) ion can bind to a single Ab peptide, although

Chen et al. [16] have hypothesised that two Al(III) ions can

coordinate each Ab peptide. In the latter study, the authors

correctly reported a lack of data concerning the Al(III)

concentration in their stoichiometric experiments, which

thus questioned the results they obtained. This arose because

Al(III) can form hydroxide complexes at neural pH [20];

however, the use of aluminium lactate can help to avoid, or

at least delay, Al(III) hydroxide precipitation [18].

Collectively, even though several biophysical and immu-

nological techniques have been used to demonstrate that Al

(III) can “freeze” Ab in oligomeric and highly hydrophobic

structures [15], two key data appear to be missing: (1) the

structure of the exact Ab–Al oligomeric complex; and (2)

the association constant (Ka) of this complex. In this connec-

tion, Bolognin et al. [15] hypothesised that Al(III) can form

Ab oligomers tout court, while Chen et al. [16] proposed the

formation of Ab–Al annular protofibril structures.
The present lack of studies does not allow us to provide

data concerning the issue of a Ka for this Ab–Al interaction;
however, at the same time, it is possible to state with

confidence that Ka (Ab–Al) is greater than the Ka for

deferoxamine mesylate (Ka ¼ 10�22 M), indeed, this iron/

aluminium chelating agent can reverse the Al(III) influence

on the Ab oligomerisation process [18, 21].

Copper

Copper (Cu(II)) is an essential metal ion involved in several

biological processes and analytically found in senile plaques

at lower levels (400 mM) together with other metal ions, such

as Zn(II) (1 mM) and Fe(III) (1 mM). A potential role for Cu

(II) in AD has aroused interest for two main reasons: the

influence of Cu(II) on Ab conformational changes, and the

reduction of Cu(II) to Cu(I). This latter is particularly rele-

vant for Ab-derived reactive oxygen species (ROS) [22], in

that the Ab–Cu(II) complex exerts its toxicity via ROS

production (see Ref. [23]). The electron that is necessary to

reduce Cu(II) to Cu(I) can be donated by both internal amino

acids of Ab or its external reductant molecules [24, 25].

Focusing on the structural level, a role for Cu(II) in Ab
aggregation has been widely studied, and a large body of

evidence supports the idea that Cu(II) might be involved in

the acceleration of Ab deposition into amorphous aggregates

[15, 26]. State-of-the-art coordination chemistry of Ab/Cu
(II) has shown that there are four putative residues that have

Table 1 Metal ion concentrations detected in the cores of senile

plaques from patients with AD

Metal ion Concentration (mg/g senile plaque)

Al(III) 40a

Cu(II) 30b,c

Fe(III) 53b,c

Zn(II) 87b,c

a[10]
b[50]
c[51]
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been proposed as Cu(II) binding sites on Ab: His6, His13,
His14, Tyr10 [27–29]. Nevertheless, Cu(II) can bind other

residues in the N-terminus of Ab (e.g. Asp1, Glu11) [30, 31].

In agreement with Miller et al. [30, 31], this variability might

be due to the different conditions under which the aggrega-

tion processes have been performed.

Conformational changes due to the Cu(II)/Ab interaction

appear to result in reduced exposure of the Ab–Cu(II) hydro-
phobic clusters, as compared with Ab alone or with its

complexes with other metal ions, such as Zn(II) and Al(III)

(see above) [32]. This event might lead to decreased

interactions between the Ab–Cu(II) complex and the hydro-

phobic cellular phospholipids [33], even though it has been

proposed that in the presence of Cu(II), Ab forms channel-

like structures in cell membranes [34].

Recent findings supported by ESI-MS have reported that

Ab is metallated by a bare Cu(II) ion [15, 16]. This interac-

tion appears to increase Ab random coil content, which leads

to the formation of non-fibrillar amorphous aggregates.

Indeed, it has been shown that an elevated b-sheet content
is required for fibril formation [35], while the random coil

content leads to disordered aggregate deposition.

Recently, different Ab–Cu(II) affinities have been pro-

posed for the Ab1�40 peptide, which depend on the Ab
secondary structure: 0.14 mM�1 for Ab1�40 in a random-

coil structure and 0.05 mM�1 for Ab1�40 in the beta-sheet

stimulated conformation [36]. This scenario is further com-

plicated by the variable molar ratios of Ab and Cu(II) in the

extracellular space. It has been reported that a sub-equimolar

Ab/Cu(II) ratio leads to amorphous and stable aggregates;

vice versa, supra-equimolar ratios can lead to the formation

of more toxic oligomeric structures [24, 25]. This hypothesis

was recently confirmed by Pedersen et al. [37], where the

discovery of distinct Cu(II)-concentration-dependent Ab-
aggregation pathways supports a key role for metal homeo-

stasis in the folding of Ab and, consequently, for its toxicity.

Together with our recent findings [15, 32], these data

support the idea that Ab–Cu(II) complex exerts its toxicity

via ROS production.

Iron

As for Al(III), iron (Fe(III)) has also been studied to a lesser

extent than some other metals, despite its key role in several

biological functions (e.g. as a cofactor or an O2 carrier, among

other functions) and its redox properties. Here, we focus our

attention on Fe(III) instead of the reduced Fe(II) form.

Data in the literature support the idea that Fe(III) can lead

to the formation of a heterogeneous population of amorphous

aggregates, thus shifting from oligomers to larger, high-

molecular-weight structures. ESI-MS analyses has shown

that Ab can bind two Fe(III) ions [15, 16]. These Fe(III)

ions appear to be coordinated via His13, His14 and Tyr10,

as suggested by Alı̀-Torres et al. [38]. The same study also

supported the idea that Ab forms more stable complexes

when it binds to Fe(III) rather than to Fe(II). It has been

reported recently that Fe(III) increases the Ab random coil

content [39], which promotes the deposition of amorphous

aggregates, as described for Cu(II). This conformational

change is associated with decreased exposure of hydropho-

bic clusters [15, 16], which reduces the possible interactions

between the Ab–Fe(III) complexes and the lipid bilayers of

the cell [33]. Again, as with Cu(II), Fe(III) interactions with

Ab can catalyse the generation of hydrogen peroxide (H2O2);

consequently, a lack of detoxifying enzymes or an accumu-

lation of Ab–Fe species (both Fe(II) or Fe(III)) can trigger

ROS formation via the Fenton reaction [9].

Very little is known about the Ab affinity for Fe(III), as

the lack of studies does not provide much data relating to this

complex. Despite this, as for Ab–Al(III), it is possible to

assume that the Ab affinity for Fe(III) is lower than that of

the Fe(III)-chelating agents (e.g. deferoxamine mesylate);

indeed, these compounds can revert the Ab–Fe(III) aggrega-
tion process [21].

Collectively, the data reported here support the concept

that Ab–Fe(III) exerts its toxicity through two independent

mechanisms. One mechanism involves ROS production, and

the other involves the changes in Ab conformation. This

latter appears to be less convincing for two reasons: (1) Fe

(III) only delays Ab deposition in large amorphous

aggregates, as the Ab–Fe(III) oligomers are limited in time

and tend to deposit into senile plaques; (2) data that support

this hypothesis appear poor [39], because they do not dis-

criminate between toxicity due to ROS production or to

conformational changes in Ab; moreover, the Ab concentra-

tion used was largely higher than that of other studies

reported in the literature (10 mM vs. 0.5 mM).

Zinc

The role of zinc (Zn(II)) in the pathophysiology of the central

nervous system has been widely debated, and its invol-

vement in neurodegenerative disorders appears to be well

established. Its deregulation also appears to have an impor-

tant role in AD [40]. At the same time, Zn(II) has key roles in

synaptic functions, neurotransmission and cell signalling. Zn

(II) in cells is usually maintained at low basal concentrations

through three mechanisms: (1) Zn(II) transporters; (2) Zn

importing proteins and (3) the buffering action of the

metallothioneins. In addition to the metallothioneins, Zn(II)

is stored at high concentrations (~1 mM) in presynaptic

vesicles and co-released with glutamate during neurotrans-

mission [41]. Once in the synaptic cleft, Zn(II) can bind to

Ab, promoting its conformational modifications.
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Due to the importance of Zn(II) in cell physiology, its

ability to modify the Ab structure and the Ab aggregation

pathway has been largely characterised. As for the other

metal ions, to assess Ab–Zn(II) stoichiometry, ESI-MS has

been carried out. The data reported in the literature support

the idea that a single Zn(II) ion binds to Ab [15, 16].

According to many nuclear magnetic resonance studies

([42, 43]; reviewed in Ref. [44]), the bare Zn(II) ion binds

the N-terminal region of Ab, which probably involves the

same Cu(II)-binding residues, His6, His13 and His14, even

though four other potential binding sites have been pro-

posed: Asp1, Glu3, Asp7 and Glu11 [30, 31].

The morphology of Ab–Zn(II) aggregates has been

investigated by different groups, with the use of several

biophysical and immunological techniques. The results

reported appear comparable and have become largely

accepted. Atomic forcemicroscopy and transmission electron

microscopy, together with dot-blotting, have shown that Zn

(II) promotes Ab deposition into amorphous aggregates that

can coexist with heterogeneous oligomers [15, 16, 30, 31].

Despite the similarities between Ab–Cu(II) and Ab–Zn
(II) (which can be attributed to their comparable ionic radii:

74 pm for Zn(II), and 73 pm for Cu(II)), Zn(II) is more

effective in the promotion of Ab exposure of the hydropho-

bic clusters [15, 16, 32]. This supports the idea that the Zn

(II) binding sites are different from the Cu(II) ones (see

above).

The apparent dissociation constants of Zn(II) from Ab
were reviewed by Faller and Hureau [44], where they

hypothesised that the Ab–Zn(II) Kd lies in the range of

1 mM–20 mM. This variability is mainly due to the different

conditions that are used to assess Kd values (e.g. buffer,

metal-ion concentration, protein concentration, metal/pro-

tein stoichiometry).

Brief insights into the biological aspects

A plethora of Abmechanisms of toxicity have been reported

over the last decade, although only a fraction of these have

addressed AD metal dyshomeostasis or the roles of these

metal ions in Abmiss-folding. The most studied mechanism

through which Ab-metal complexes exert their toxicity is the

production of ROS. Ab produces H2O2 in the presence of

biological reducing agents [45]. Ab ROS generation is pro-

moted by the presence of the transition metals, such as Cu

(II) and Fe(III), which can lead to the formation of free

radical species through the Fenton reaction (for a detailed

review, see Ref. [22]). The metal ions that are not involved

in redox reactions (i.e. the aforementioned Al and Zn)

appear to be involved indirectly in ROS production. As

recently demonstrated by Duce et al. [46], Ab–Zn can inhibit
iron-export ferroxidase activity; this results in Fe(II)

accumulation, which then leads to oxidative stress in cortical

neurons. Also, Al(III) has a pro-oxidative role, as it

promotes Fe(II)-induced lipid peroxidation [47]. Unfortu-

nately, data concerning the role of Ab–Al(III) in lipid per-

oxidation is missing; the shedding of light on this issue

would be of great interest.

As well as ROS production, we have recently

demonstrated a second way through which Ab-metal

complexes exert their toxic effects. In comparing Ab-metal

aggregation data with the effects of Ab-metal complexes on

membrane models and in toxicity essays, we found a strict

correlation between Ab-metal exposure of hydrophobic

clusters and membrane damage. This effect, together with

other data in the literature that we have reported here, might

explain why our Ab–Al(III) complex was the most effective

in the reduction of cell viability in our cellular model.

Indeed, Ab–Al(III) has three characteristics that justify its

toxicity under our experimental conditions: (1) it is the most

effective Ab-metal complex for the retaining of its oligo-

meric structure; (2) it is the most effective Ab-metal com-

plex for the exposure of hydrophobic clusters and (3) it can

induce lipid peroxidation, as mentioned earlier. The other

Ab-metal complexes express no more than two of these

features.

In addition to these two main mechanisms, others have

been reported in the literature, and in particular, Ab
interactions with synaptic receptors, such as the

metabotropic glutamate receptors and NMDA receptors. In

these cases, direct binding of Ab to the receptor might not

occur. It appears more likely that Ab can indirectly modulate

synaptic receptors through its membrane association [48];

this hypothesis confirms the need for highly hydrophobic Ab
oligomers that can penetrate into lipid bilayers.

This scenario is further complicated by the difficulty of

isolating well characterised and homogeneous Ab or Ab-
metal aggregates. Furthermore, data reported in literature

show large differences in data obtained with synthetic or

with naturally occurring Ab oligomers. Indeed, the latter

require much lower concentrations to exert comparable

toxic effects on cellular models [49], highlighting possible

structural, as well as biochemical (e.g. glycosylation),

differences between these in vitro and in vivo Ab
aggregates.

Conclusions

As generally reported in the literature and briefly

summarised here, it is clear that metal ions have hetero-

geneous influences on Ab miss-folding and deposition

(Fig. 2). This variability modifies the pathways through

which Ab and its metal complexes exert their toxicity:

from ROS production, to cell membrane damage [52].

The ability to change the impact of metal ions in Ab
aggregation pathway appears a possible and promising

Metal ions and beta amyloid: conformational modifications and biological aspects 81



therapeutic challenge. However, metal ions that are

involved in therapeutic strategies (e.g. chelation therapy)

should be approached with caution. First of all, focusing

on a single metal ion can lead to generation of a cascade

of events that will involve the homeostasis of other life-

essential metal ions, as seen by the so-called domino

effect [9]. Accordingly, a new therapeutic approach has

focused on molecules that can compensate for cellular

metal-ion dysregulation, potentially by sequestering

essential ions from senile plaques and “ferrying” these

into the cell without compromising the homeostasis of

other metal ions.

Moreover, a process to revert this Ab-metal aggrega-

tion might cause more harm than good. This has been

reported for toxic species of Ab in solution that can be

deposited in stable high-molecular-weight metal

aggregates.

Despite these promising therapeutic strategies, multi-

factorial pathologies like AD should not be addressed by

focusing on a single feature (e.g. Ab accumulation, metal

dyshomeostasis) without further considerations of others

(e.g. t-hyperphosphorylation, APOE4, synaptic failure,

ROS production). Thus, approaching the treatment of

patients with AD in this way might be reductionist and

could ultimately be ineffective.
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