
RIGIDITY OF OELJEKLAUS-TOMA MANIFOLDS

DANIELE ANGELLA, MAURIZIO PARTON, AND VICTOR VULETESCU

Abstract. We prove that Oeljeklaus-Toma manifolds are rigid, and that any line bundle on Oeljeklaus-
Toma manifolds of simple type is flat.

Introduction

Oeljeklaus-Toma manifolds are complex non-Kähler manifolds. They have been introduced in [OT05]
as counterexamples to a conjecture by Vaisman. Because of their construction using number fields
techniques, many of their properties are encoded in the algebraic structure [OT05, Vul14, Dub14], and
their class is well-behaved under such properties [Ver11, Ver13]. They generalize Inoue-Bombieri surfaces
in class VII [Ino74, Tri82], and they are in fact solvmanifolds [Kas13].

For example, Oeljeklaus and Toma proved in [OT05, Proposition 2.5], among other results, that the

line bundles K⊗kX varying k 6= 0 are flat. In this note, we use tools both from the number theoretic
construction and from analytic geometry to prove more in general that:

Theorem 2.3. Any line bundle on an Oeljeklaus-Toma manifold of simple type is flat.

Here, by saying that the Oeljeklaus-Toma manifold X(K,U) associated to the algebraic number field
K and to the admissible group U is of simple type, we understand that there exists no proper intermediate
field extension Q ⊂ K ′ ⊂ K with U ⊆ O∗,+K′ , that is, there exists no holomorphic foliation of X(K,U)
with a leaf isomorphic to X(K ′, U) [OT05, Remark 1.7].

With similar techniques, we get a vanishing result:

Theorem 3.1. On Oeljeklaus-Toma manifolds X(K,U), for any non-trivial representation ρ : U → C∗,
we have H1(X;Lρ) = 0.

As a corollary, we get rigidity, in the sense of the theory of deformations of complex structures of
Kodaira-Spencer-Nirenberg-Kuranishi. Note that for the Inoue surface SM , this is proven by Inoue in
[Ino74, Proposition 2].

Corollary 3.2. Oeljeklaus-Toma manifolds are rigid.
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2 DANIELE ANGELLA, MAURIZIO PARTON, AND VICTOR VULETESCU

1. Oeljeklaus-Toma manifolds

Oeljeklaus-Toma manifolds [OT05] provide a beautiful family of examples of compact complex
non-Kähler manifolds, generalizing Inoue-Bombieri surfaces [Ino74]. In this section, we briefly recall
Oeljeklaus-Toma manifolds definition and main properties from [OT05]. See [OVu13] and [PV12, Sec-
tion 6 of arXiv version] for more details and algebraic number theory background.

Let K be an algebraic number field, namely, a finite extension of Q. Then K ' Q[X]/(f) as Q-
algebras, where f ∈ Z[X] is a monic irreducible polynomial of degree n = [K : Q]. By mapping X
mod (f) to a root of f , the field K admits n = s+2t embeddings in C, more precisely, s real embeddings
σ1, . . . , σs : K → R, and 2t complex embeddings σs+1, . . . , σs+t, σs+t+1 = σs+1, . . . , σs+2t = σs+t : K →
C. Note that, for any choice of natural numbers s and t, there is an algebraic number field with s real
embeddings and 2t complex embeddings, [OT05, Remark 1.1].

Denote by OK the ring of algebraic integers of K, namely, elements of K satisfying monic polynomial
equations with integer coefficients. Note that, as a Z-module, OK is free of rank n. Denote by O∗K the
multiplicative group of units of OK , namely, invertible elements in OK . By the Dirichlet’s unit theorem,
O∗K is a finitely generated Abelian group of rank s+ t− 1. Denote by O∗,+K the subgroup of finite index
of O∗K whose elements are totally positive units, namely, units being positive in any real embedding:
u ∈ O∗K such that σj(u) > 0 for any j ∈ {1, . . . , s}.

Let H := {z ∈ C : Im z > 0} denote the upper half-plane. On Hs×Ct, consider the following actions:

T : OK 	 Hs × Ct ,
Ta(w1, . . . , ws, zs+1, . . . , zs+t) := (w1 + σ1(a), . . . , zs+t + σs+t(a)) ,

(1.1)

and

R : O∗,+K 	 Hs × Ct ,
Ru(w1, . . . , ws, zs+1, . . . , zs+t) := (w1 · σ1(u), . . . , zs+t · σs+t(u)) .

(1.2)

For any subgroup U ⊂ O∗,+K , one has the fixed-point-free action OK o U 	 Hs × Ct. One can always
choose an admissible subgroup [OT05, page 162], namely, a subgroup such that the above action is also
properly discontinuous and cocompact. In particular, the rank of admissible subgroups is s. Conversely,
when either s = 1 or t = 1, every subgroup U of O∗,+K of rank s is admissible.

One defines the Oeljeklaus-Toma manifold associated to the algebraic number field K and to the
admissible subgroup U of O∗,+K as

X(K,U) := Hs × Ct
/
OK o U

In particular, forK algebraic number field with s = 1 real embeddings and 2t = 2 complex embeddings,
choosing U = O∗,+K we obtain that X(K,U) is an Inoue-Bombieri surface of type SM [Ino74].

The Oeljeklaus-Toma manifold X(K,U) is called of simple type when there exists no proper inter-

mediate field extension Q ⊂ K ′ ⊂ K with U ⊆ O∗,+K′ , that is, there exists no holomorphic foliation of
X(K,U) with a leaf isomorphic to X(K ′, U) [OT05, Remark 1.7].

Oeljeklaus-Toma manifolds are non-Kähler solvmanifolds [Kas13, §6], with Kodaira dimension κ(X) =
−∞ [OT05, Proposition 2.5]. Their first Betti number is b1 = s, and their second Betti number in the
case of simple type is b2 =

(
s
2

)
[OT05, Proposition 2.3]. Their group of holomorphic automorphisms

is discrete [OT05, Corollary 2.7]. The vector bundles Ω1
X , ΘX , K⊗kX varying k 6= 0 are flat and admit

no non-trivial global holomorphic sections [OT05, Proposition 2.5]. Other invariants are computed in
[OT05, Proposition 2.5] and [TT15]. Oeljeklaus-Toma manifolds do not contain either any compact
complex curve [Ver11, Theorem 3.9], or any compact complex surface except Inoue surfaces [Ver13,
Theorem 3.5]. When t = 1, they admit a locally conformally Kähler structure [OT05, page 169], with

locally conformally Kähler rank either b1
2 or b1 [PV12, Theorem 5.4]. This is the Tricerri metric [Tri82]

in case s = 1 and t = 1.
In the case t ≥ 2, no locally conformally Kähler metrics are known to exist, so far. The fact that such

Oeljeklaus-Toma manifolds carry no locally conformally Kähler metric was proven for s = 1 already in
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the original paper [OT05, Proposition 2.9], later extended to the case s < t by [Vul14, Theorem 3.1],
and eventually widely extended to almost all cases by [Dub14, Theorem 2]. Most likely, in the case
t ≥ 2, no Oeljeklaus-Toma manifold carries a locally conformally Kähler metric. However, note that
Oeljeklaus-Toma manifolds admit no Vaisman metrics [Kas13, Corollary 6.2].

2. Flatness of line bundles on Oeljeklaus-Toma manifolds

Let X = X(K,U) be the Oeljeklaus-Toma manifold associated to the algebraic number field K and

to the admissible subgroup U ⊆ O∗,+K . Let s be the number of real embeddings of K and 2t the number
of complex embeddings of K. Recall that, given a group G acting on a manifold M , we denote by
H∗inv(G)(M) the cohomology of the complex of invariant differential forms (∧∗ (M))G. Moreover, we will

denote by OM the sheaf of holomorphic functions on a complex manifold M — not to be confused with
the ring OK of algebraic integers of K.

For a better understanding of the cohomology of X, we start from its very definition, in the form of
the following diagram of fibre-bundles:

X̃ := Hs × Ct
OK

**
π1(X)=OKoU

��

Xa := Hs × Ct
/
OK

Utt
X := Hs × Ct

/
OK o U

(2.1)

Naively, since X factors through Xa, we would like to relate the cohomology of X with the cohomology
of Xa and X̃. This is the reason for the following result, describing H1(Xa;OXa) in terms of invariant
forms on Hs × Ct. It will be part of the proof of Theorem 2.3, but we state it in a standalone form
because it is useful for itself.

Proposition 2.1. Let X = X(K,U) be an Oeljeklaus-Toma manifold associated to the algebraic number
field K, with the notation as above. Consider the action OK 	 Hs ×Ct given by translations a 7→ Tσ(a).

Extend it to the action OK ⊗Z R 	 Hs × Ct by R-linearity. Then

H1(Xa;OXa) ' H1
inv(OK⊗ZR)(H

s;OHs)⊕ C
〈
dz̄1, . . . , dz̄t

〉
where H1

inv denotes the cohomology of invariant forms, and (z1, . . . , zt) are the coordinates on Ct.

Proof. We need the following general fact about cohomology of invariant differential forms, which we
extend to a more general context with respect to [FOT08, Theorem 1.28].

Lemma 2.2 (see, e.g. [FOT08]). Let X be a complex manifold. Let G be a Lie group acting holomor-
phically on X, and let H be a closed Lie subgroup of G. Suppose that G/H is a compact Lie group. Then

the inclusion (∧•,•X)G ↪→ (∧•,•X)H induces isomorphisms in de Rham and Dolbeault cohomologies.

Proof of Lemma. For the sake of completeness, we recall the idea of the proof. Let dµ be a bi-invariant
volume form on G/H with unitary volume [FOT08, Proposition 1.29]. Define the average operator

µ : (∧•,•X)H → (∧•,•X)G , µ(α) :=

∫
G/H

r∗αdµ(r)

Clearly, d ◦ µ = µ ◦ d, and also ∂ ◦ µ = µ ◦ ∂, since the action is holomorphic. Therefore it induces a
morphism in de Rham and Dolbeault cohomologies. The statement follows as in [FOT08, Theorem 1.28]
by reducing to a contractible neighbourhood of the unit. �

Consider now the action OK 	 Hs × Ct given by translations a 7→ Tσ(a), and extend it to the

action OK ⊗Z R 	 Hs × Ct by R-linearity. It induces the compact Lie group holomorphic action
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Rs+2t/Zs+2t ' OK ⊗Z R/OK 	 Xa. Hence we can apply the Dolbeault Theorem and Lemma 2.2 with
X := Xa, G := OK ⊗Z R/OK 	 Xa, H := {1} to obtain

H1(Xa;OXa) ' H0,1(Xa) ' H0,1
inv(OK⊗ZR/OK)(X

a) (2.2)

Looking at forms on the covering, we get

H0,1
inv(OK⊗ZR/OK)(X

a) = H1
((
∧0,•Xa

)OK⊗ZR/OK , ∂
)

= H1

((
∧0,•X̃

)OK⊗ZR
, ∂

)
(2.3)

We are thus concerned with OK ⊗Z R-invariant forms on X̃ = Hs × Ct. A crucial remark here is that,
since the first s embeddings of K are real, OK⊗ZR spans Rs×Ct ⊂ Hs×Ct. Thus, any OK⊗ZR-invariant
form on Hs×Ct has coefficients depending only on (Imw1, . . . , Imws), where (w1, . . . , ws, z1, . . . , zt) are
the coordinates on Hs × Ct:

H1

((
∧0,•X̃

)OK⊗ZR
, ∂

)
= H1

(
C∞((ImH)s;C)⊗ ∧0,•

〈
dw̄1, . . . , dw̄s, dz̄1, . . . , dz̄t

〉
, ∂

)
. (2.4)

Take [ω] a 1-class in the cohomology of this complex:

ω =

s∑
h=1

ahdw̄
h +

t∑
k=1

bkdz̄
k ,

where a1, . . . , as, b1, . . . , bt are OK ⊗Z R-invariant functions over Hs × Ct, namely, they depend only on
(Imw1, . . . , Imws). From ∂ω = 0 and (2.4) we get

0 =
∂ah
∂z̄k
− ∂bk
∂w̄h

= − ∂bk
∂w̄h

, for h ∈ {1, . . . , s}, k ∈ {1, . . . , t} ,

whence it follows that bk is a holomorphic function in (w1, . . . , ws) depending only on (Imw1, . . . , Imws),
hence constant. We have proved that

H1

(
C∞((ImH)s;C)⊗ ∧0,•

〈
dw̄1, . . . , dw̄s, dz̄1, . . . , dz̄t

〉
, ∂

)
(2.5)

= H1

(
C∞((ImH)s;C)⊗ ∧0,•

〈
dw̄1, . . . , dw̄s

〉
, ∂

)
⊕ C

〈
dz̄1, . . . , dz̄t

〉
.

The statement follows by noting that

H1

(
C∞((ImH)s;C)⊗ ∧0,•

〈
dw̄1, . . . , dw̄s

〉
, ∂

)
= H1

inv((OK⊗ZR)(H
s;OHs) , (2.6)

and by assembling equivalences (2.2), (2.3), (2.4), (2.5), (2.6). �

Theorem 2.3. Any line bundle on an Oeljeklaus-Toma manifold of simple type is flat.

Proof. Recall that (equivalence classes of) line bundles on X are given by H1(X;O∗X), and that the
flat ones are given by the image of the map n : H1(X;C∗X) → H1(X;O∗X) induced by CX ↪→ OX . The
statement is then equivalent to prove that the map

n : H1(X;C∗X)→ H1(X;O∗X)

is an isomorphism.
The map n appears naturally from the following morphism of short exact sequences of sheaves:

0 // ZX // OX // O∗X // 0

0 // ZX // CX //
?�

OO

C∗X //
?�

OO

0
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and the corresponding induced morphism of long exact sequences in cohomology:

H1(X;ZX) // H1(X;OX) // H1(X;O∗X) // H2(X;ZX) // H2(X;OX)

H1(X;ZX) // H1(X;CX) //

m

OO

H1(X;C∗X) //

n

OO

H2(X;ZX) // H2(X;CX) .

q

OO
(2.7)

By the Five Lemma, it suffices to prove that, in diagram (2.7), m is an isomorphism and q is injective.
To this aim, consider the following exact sequence of sheaves:

0 // CX // OX // dOX // 0

and the induced exact sequence in cohomology:

H0(X; dOX) // H1(X;CX)
m // H1(X;OX) .

Note that H0(X; dOX) = 0, since H0(X; Ω1
X) = 0 by [OT05, Proposition 2.5]. Therefore m is injec-

tive. Using the fact that dimCH
1(X;CX) = s [OT05, Proposition 2.3], we have reduced the proof of

Theorem 2.3 to the following two claims:

Claim H1. dimCH
1(X;OX) = s.

Claim H2. The map q : H2(X;CX)→ H2(X;OX) is injective.

In order to describe the cohomology of X and prove the above claims, we use again diagram (2.1): we
would like to relate the cohomology of X with the U -invariant cohomology of Xa. In what follows, we
use group cohomology and the Lyndon-Hochschild-Serre spectral sequence to accomplish this task.

In general, whenever one has a map π : X̃ → X = X̃/G, for a free and properly discontinuous action

of a group G on X̃, and a sheaf F on X, there is an induced map

Hp(G,H0(X̃;π∗F))→ Hp(X;F) , (2.8)

where the first is the group cohomology of G with coefficients in the G-module H0(X̃;π∗F), see for

instance [Mum74, Appendix at page 22]. If, moreover, π∗F is acyclic over X̃, then the map (2.8) is an
isomorphism.

Using the previous argument on the OK o U and the OK maps in diagram (2.1), with F = OX and

F = OXa respectively, and noting that OX̃ is acyclic over X̃ = Hs × Ct, we obtain the isomorphisms

Hp(OK o U ;H0(X̃;OX̃)) ' Hp(X;OX) and Hp(OK ;H0(X̃,OX̃)) ' Hp(Xa;OXa) .

Hereafter, for the sake of notation, we denote by R the OK o U -module H0(X̃;OX̃). The previous
isomorphisms are then written as

Hp(OK o U ;R) ' Hp(X;OX) and Hp(OK ;R) ' Hp(Xa;OXa) . (2.9)

The extension OK ↪→ OK o U � U gives the associated Lyndon-Hochschild-Serre spectral sequence

Ep,q2 = Hp(U ;Hq(OK ;R))⇒ Hp+q(OK o U ;R) ,

and the cohomology five-term exact sequence yields

0

uu
H1(U ;H0(OK ;R)) // H1(OK o U ;R)

rr
H1(OK ;R)U // H2(U ;H0(OK ;R)) // H2(OK o U ;R) .
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From (2.9), we getH0(OK ;R) ' H0(Xa;OXa) = C, see [OT05, Lemma 2.4], whenceH1(U ;H0(OK ;R)) =

Crk(U) = Cs. Applying again (2.9), the cohomology five-term exact sequence becomes

0 // Cs // H1(X;OX) // H1(Xa;OXa)U

ss
H2(U ;CU ) // H2(X;OX) .

(2.10)

Claim H1 follows then from the following.

Claim H1α. The map H1(X;OX)→ H1(Xa;OXa)U in diagram (2.10) is the zero map.

Proof of Claim H1α. We have to show that any class in H1(X;OX) yields a zero class in H1(Xa;OXa)U .
By Proposition 2.1, we have

H1(Xa;OXa)U '
(
H1

inv(OK⊗ZR)(H
s;OHs)⊕ C

〈
dz̄1, . . . , dz̄t

〉)U
' H1

inv(OK⊗ZR)(H
s;OHs)U ,

where the last equivalence is due to the fact that U acts by multiplication, thus C
〈
dz̄1, . . . , dz̄t

〉U
= 0.

Since X is compact we can apply Hodge theory, and choose an harmonic representative for any
cohomology class in H1(X;OX). Therefore we are reduced to show that any class in H1(Xa;OXa)U '
H1

inv(OK⊗ZR)(H
s;OHs)U represented by a harmonic representative on X is the zero class. Please note that

the following argument is inspired by [TT15, Lemma 3.1], where explicit computations are performed
for the (0, 1)-Hodge number in the case s = 2 and t = 1.

For convenience, consider holomorphic coordinates {wj := xj +
√
−1yj}j∈{1,...,s} on Hs. For j ∈

{1, . . . , s}, the (1, 0)-form

ϕj :=
1

yj
dwj

is OK o U -invariant, whence globally defined on X. We can extend it to a global OK ⊗Z R-invariant
co-frame {ϕj}j∈{1,...,s,s+1,...,s+t} of (1, 0)-forms on X, see [Kas13, §6]. In fact, notice that this co-frame
is associated to a presentation of X as a solvmanifold with left-invariant complex structure. That is to
say, its associated structure equations are given by constants.

Consider the Hermitian metric g on X such that {ϕj , ϕ̄j}j∈{1,...,s+t} is orthonormal. Let

α =

s+t∑
j=1

αjϕ̄
j

be a harmonic (0, 1)-form onX, with respect to the Hodge Laplacian associated to g, and consider its class
in H1(Xa;OXa)U . Since the complex structure and the metric are compatible with the isomorphisms in
Proposition 2.1, we can argue in the same way that

αj = αj(y1, . . . , ys) for j ∈ {1, . . . , s} ,
αj = 0 for j ∈ {s+ 1, . . . , s+ t} .

(2.11)

We use the following notations:

αk,j := yj · ∂

∂yj
αk , αk,jj := (yj)2 · ∂2

(∂yj)2
αk . (2.12)

We now use the fact that α is harmonic. The condition ∂α = 0 yields the equations

αk,j = αj,k for j, k ∈ {1, . . . , s}, j 6= k .

The condition ∂
∗
α = 0 yields the equation

s∑
j=1

(αj,j + Tj(αj)) = 0 ,
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where Tj is a differential operator of order zero with constant coefficients. From the condition ∂∂
∗
α = 0

we get the equations

L(αk) :=

s∑
j=1

(αk,jj + (1 + Tj)(αk,j)) = 0 for k ∈ {1, . . . , s} .

Note that L is a second order linear elliptic differential operator, compare (2.12). The function αk
being defined on X compact, by the Hopf maximum principle, see e.g. [GT01], we get that αk is constant
on X, for any k ∈ {1, . . . , s}. But constant and U -invariant implies zero, and by using also (2.11), we
get

0 =

 s∑
j=1

αjϕ̄
j

 = [α] ∈ H1(Xa;OXa)U ,

concluding the proof of Claim H1α and hence of Claim H1. �

We now prove the second claim.

Claim H2. The map q : H2(X;CX)→ H2(X;OX) is injective.

Proof of Claim H2. First of all, we argue as we did for diagram (2.10), the only difference being that
this time we forgot the holomorphic structure. Namely, we use F = CX instead of F = OX . Everything
works the same way, thanks to Hj(X̃;CX̃) = 0 for any j ≥ 1. Denoting by S := H0(X̃;CX̃), the
Lyndon-Hochschild-Serre spectral sequence reads

Ep,q2 = Hp(U ;Hq(OK ;S))⇒ Hp+q(π1(X);S) ,

and the associated cohomology five-term exact sequence yields

0 // Cs // H1(X;CX) // H1(Xa;CXa)U

ss
H2(U ;CU ) // H2(X;CX) .

The map CX̃ → OX̃ induces a map R→ S, and hence a morphism of exact sequences

0 // Cs // H1(X;CX)
0 //

��

H1(Xa;CXa)U //

����

H2(U ;CU ) // // H2(X;CX)

q

��
0 // Cs // H1(X;OX)

0
// H1(Xa;OXa)U // H2(U ;CU ) // H2(X;OX)

In fact, as in the proof of Claim H1α, the maps H1(X;CX) → H1(Xa;CXa)U and H1(X;OX) →
H1(Xa;OXa)U are the zero maps. Moreover, by Proposition 2.1, since the coefficients of forms repre-
senting classes in H1(Xa;OXa)U depends only on the imaginary part of variables in Hs, we have that
the map H1(Xa;CXa)U → H1(Xa;OXa)U is surjective. Finally, the map H2(U ;CU ) → H2(X;CX) is

surjective: indeed, the map H2(U ;CU ) → E2,0
∞ is surjective, and E0,2

2 = 0 = E1,1
2 , see [OT05, pages

166–167]. Here we use the hypothesis that X is of simple type.
At the end, the diagram reduces to

0 // H1(Xa;CXa)U //

��

H2(U ;CU ) // H2(X;CX)

q

��

// 0

0 // H1(Xa;OXa)U //

��

H2(U ;CU ) // H2(X;OX)

0
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from which we get that q is injective by diagram chasing. �

Claim H1 and Claim H2 imply Theorem 2.3. Thus, we have proved that any line bundle on an
Oeljeklaus-Toma manifold of simple type is flat. �

Remark 2.4. A well-known result by Ornea and Verbitsky [OVe11] and, in full generality, by Battisti
and Oeljeklaus [BO15], states that Oeljeklaus-Toma manifolds of simple type have no divisors. Under
the additional hypothesis that H1(X) has no torsion, this result is a consequence of Theorem 2.3.

Proof. Take any line bundle on X, which is then flat, and let ρ be the associated representation. Under
the hypothesis, any representation ρ : π1(X) → U induces the identity on OK [Bra15, Proposition 6].
Therefore the pull-back of Lρ to Xa is trivial, and its sections are constants. Therefore Lρ has no trivial
sections on X. �

Remark 2.5. The same argument works without the hypothesis on H1(X) being torsion-free, if Theorem
2.3 is extended to a larger class of generalised OT-manifolds in the sense of [MT15], namely, finite
unramified covers of Oeljeklaus-Toma manifolds.

3. Rigidity of Oeljeklaus-Toma manifolds

In this section we extensively apply techniques similar to the ones used in Section 2, to prove the
following vanishing result.

Theorem 3.1. Let X = X(K,U) be an Oeljeklaus-Toma manifold. Take any non-trivial representation
ρ : U → C∗, and let Lρ be its associated flat line bundle on X. Then H1(X;Lρ) = 0.

Proof. We use group cohomology, with the action of U 3 u given by u 7→ ρ(u) · Ru, where Ru is the
rotation given by equation (1.2). Consider the OK o U and the OK maps in diagram (2.1). Since the

pull-back of Lρ to X̃ is trivial, we get

H1(OK o U ;R) ' H1(X;Lρ) ,

where R = H0(X̃;OX̃) as in Section 2. From the Lyndon-Hochschild-Serre spectral sequence and the
cohomology five-term exact sequence we obtain, as in diagram (2.10), the exact sequence

H1(U ;H0(OK ;R)) // H1(X;Lρ) // H1(OK ;R)U .

We first show that H1(U ;H0(OK ;R)) = 0. Indeed, H0(OK ;R) = C. Moreover, recall that

H1(U ;C) = C/ {ρ(u)z − z : z ∈ C, u ∈ U} .
If ρ is non-trivial, then {ρ(u)z − z : z ∈ C, u ∈ U} is non-trivial, whence H1(U ;H0(OK ;R)) = 0.

We next show that the map H1(X;Lρ)→ H1(OK ;R)U is the zero map, arguing by Hodge theory as
in the proof of Claim H1α at page 6. Fix a Hermitian metric g on X, and a Hermitian metric h on the
line bundle Lρ. Recall that H1(OK ;R) = H1(Xa;OXa) = H1

inv(OK⊗ZR)(H
s;OHs)⊕ C

〈
dz̄1, . . . , dz̄t

〉
.

Since ρ is non-trivial, then it suffices to prove that any class in H1(Xa;OXa) represented by a harmonic
representative on X with values in Lρ with respect to the metric g ⊗ h is the zero class. We interpret
harmonicity as follows. Let ϑ be the closed 1-form determined by ρ as ρ(γ) = exp

∫
γ ϑ. Then the (de

Rham) cohomology of X with values in the complex line bundle Lρ corresponds to the cohomology of the

trivial bundle X×C with respect to the flat connection dϑ := d+ϑ∧-. We split dϑ = ∂ϑ+∂ϑ where ∂ϑ :=
∂−ϑ0,1 ∧ -. Here, ϑ0,1 is the (0, 1)-component of ϑ. The (Dolbeault) cohomology of X with value in the
holomorphic line bundle Lρ corresponds to the cohomology of the trivial bundle with respect to the flat

connection ∂ϑ. Moreover, we can choose metrics compatible with the isomorphisms in Proposition 2.1.
Indeed, up to gauge transformations, ϑ depends just in its class in H1(X;C), which is OK ⊗Z R/OK-

invariant. Then Hodge theory applies with the operator [∂ϑ, ∂
∗
ϑ]. Note indeed that the operator is elliptic,

since the second-order part of it is equal to the second-order part of [∂, ∂
∗
]. We claim that the zeroth-order

part of [∂ϑ, ∂
∗
ϑ] is positive (with respect to the L2-pairing). Indeed, note that ∂

∗
ϑ = − ∗ ∂−ϑ∗. Therefore

the zeroth-order term is given by ϑ0,1∧∗(ϑ0,1∧∗-)+∗(ϑ0,1∧∗(ϑ0,1∧ -)). Note that, on 1-forms γ, it holds
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ϑ0,1 ∧ ∗(ϑ0,1 ∧ ∗γ)

∣∣γ〉 =
∥∥ϑ0,1 ∧ ∗γ∥∥2 ≥ 0, and, similarly,

〈
∗(ϑ0,1 ∧ ∗(ϑ0,1 ∧ γ))

∣∣γ〉 =
∥∥ϑ0,1 ∧ γ∥∥2 ≥ 0. It

follows that the Hopf maximum principle applies, and the argument proceeds as in the proof of Claim
H1α at page 6. �

As a corollary, we get rigidity in the sense of the theory of deformations of complex structures of
Kodaira-Spencer-Nirenberg-Kuranishi. See [Ino74, Proposition 2] for rigidity in the case s = t = 1 of
Inoue-Bombieri surfaces.

Corollary 3.2. Oeljeklaus-Toma manifolds are rigid.

Proof. Note that ΘHs×Ct =
〈

∂
∂w1 , . . . ,

∂
∂ws ,

∂
∂z1

, . . . , ∂
∂zt

〉
, and OK o U 3 (a, u) acts on ∂

∂wh , respectively
∂
∂zk

, as multiplication by σh(u), respectively σs+k(u). Whence the holomorphic tangent bundle of an
Oeljeklaus-Toma manifold splits as

ΘX =
s+t⊕
j=1

Lσj ,

where Lσj are the line bundle associated to the embeddings σj . By Theorem 3.1, we get H1(X; ΘX) = 0,
proving the claim. �

Remark 3.3. For the case t = 1, a stronger result was obtained by Braunling. He proves in [Bra15,

Proposition 1] that, if two Oeljeklaus-Toma manifolds X ′ = X(K ′,O∗,+K′ ) and X ′′ = X(K ′′,O∗,+K′′ ), both
having t = 1, are homotopy equivalent, then they are isomorphic.
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