
DEF 26, 39 – 52 (2003) Decisions in
Economics and
Finance
c© Springer-Verlag 2003

Single factor models with Markovian spot interest
rate: an analytical treatment

Carlo Mari

Dipartimento di Scienze, Universit`a di Chieti
e-mail:mari@sci.unich.it

Received: 7 February 2001 / Accepted: 8 June 2002
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1. Introduction

Non-Markov spot interest rate dynamics are allowed within the framework
of the Heath–Jarrow–Morton (HJM) (1990, 1992) methodology, and they
represent a technical difficulty to performing calculations. In the recent fi-
nancial literature some authors addressed the problem by finding constraints
on the volatility structure of zero-coupon bond returns in order to avoid this
phenomenon. Carverhill (1994), in a multifactor HJM model with deter-
ministic volatility structure, derives a necessary and sufficient condition to
imply a Markovian spot rate process. This condition generalizes the result
obtained by Hull and White (1990, 1993) in the case of single factor models.

If the volatility structure of zero coupon bond returns is allowed to be
stochastic via possible dependence on the spot rate, Jeffrey (1995) derives,
in a single factor HJM context, a constraint on the volatility structure of
the forward rate to assure Markov spot rate dynamics. From this point of
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view, the extended Cox–Ingersoll–Ross (CIR) (1985 a,b) model proposed by
Hull and White (1990) can be viewed as a particular case in which Jeffrey’s
condition is satisfied.

The purpose of this paper is to provide analytical solutions of the bond
pricing problem in the class of single factor HJM models with Markovian
spot rate and stochastic volatility satisfying Jeffrey’s constraint.

Let us state the problem. We denote by

P(r(t), t, T ) = exp

(
−

∫ T

t

f (r(t), t, u)du

)
, (1)

the price at timet of a pure discount bond maturing at timeT , byf (r(t), t, T )

the forward rate curve, and byr(t) = f (r(t), t, t) the spot rate. Under the
risk-neutral measure, the stochastic dynamics of the term structure can be
cast in the form

dP

P
(r(t), t, T ) = r(t)dt − σp(r(t), t, T )dw(t),

P (r(0),0, T ) = P ∗(0, T ),

(2)

whereP ∗(0, T ) is the initial term structure accounting for market data and
σp(r(t), t, T ) is the volatility structure; herew(t) is a standard unidimen-
sional Brownian motion.

It is staightforward to derive the dynamics of the forward rate. In fact,
we can use Equation (1) and Itˆo’ s Lemma to obtain

df (r(t), t, T ) = σ(r(t), t, T )σp(r(t), t, T )dt + σ(r(t), t, T )dw(t),

where

σ(r(t), t, T ) = ∂σp(r(t), t, T )

∂T
.

The following assumptions are made:

(i) P(r(t), t, T ), or equivalentlyf (r(t), t, T ), are smooth functions of
their arguments, andP ∗(0, T ) is a smooth function of maturityT 1;

(ii) the volatility structure of the forward rateσ(r(t), t; T ) satisfies Jeffrey’s
condition

σ(r(t), t, T ) = σ(r(t), t)ξ(t, T ),

where
σ 2(r, t) = h(t) + k(t)r

1 The term smooth is used here to mean that the discount functionP(r, t, T ), or equiv-
alently the forward ratef (r, t, T ), andP ∗(0, T ) are continuous and differentiable with
respect to all their arguments as many times as necessary.
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is the diffusion coefficient of the spot rate dynamics, andh(t), k(t) are
arbitrary functions of time, and

ξ(t, T ) = 2A(T )(C ′(t) − A(t))

k(t)

( ∫ T

t

A(u)du + C(t)

)2 ,

with

A(t) = 1

2

(
C ′(t) ±

√
C ′2(t) − 2k(t)C2(t)

)
,

andC(t) an arbitrary function of time such thatC ′(t)2 ≥ 2k(t)C2(t).

Under the above assumptions, it has been shown (e.g., Jeffrey (1995)) that
this model is consistent with any initial term structure and that the spot rate
follows a Markov process in which both the drift and the diffusion coefficient
are affine functions of the spot rate,

dr(t) = [
a(t) − b(t)r(t)

]
dt + √

h(t) + k(t)r(t)dw(t), (3)

where

b(t) = ∂ξ(t, T )

∂t
|T=t ,

anda(t) is a function of time accounting for the initial term structure of
interest rates2.

Within this context, a stochastic model of the term structure can be con-
structed specifying the initial discount functionP ∗(0, T ), and three arbitrary
functions of time,h, k, C, to account for the volatility structure. Most of the
single factor models of the term structure proposed in the literature belong
to this class. Gaussian models can be recovered in the limitk(t) = 0; the
extended Cox–Ingersoll–Ross model can be obtained if we chooseh(t) = 0,
k(t) = k andC(t) = edt , wherek andd are constant (e.g., Mari (1999)).
Starting from these considerations, we extend the analysis in two main di-
rections.

First, we provide solutions to the Cauchy problem (2) when Jeffrey’s
condition on the volatility of the forward rate is satisfied, thus deriving a bond
pricing formula (see Theorem 1) which can be very useful for applications.
It will be explicitly shown that such a formula depends on the solution of
an associated Volterra integral equation of the first kind.

Exact solutions of theVolterra equation are not straightforward, but well-
established numerical methods are available. In the paper, and this is the
second result of our analysis, we provide the solution of theVolterra equation

2 a(t) can be determined in a very involved way as a solution of aVolterra integral equation
of the first kind (Jeffrey (1995)).
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by using a perturbation technique within the class of term structure models
characterized bygeneralized CIR volatility structure (see Section 4).

As a consequence of the bond pricing formula, the dynamics of the spot
interest rate can be easily obtained (see Corollary 1). In particular it will
be shown thata(t) is completely described by the initial term structure and
by the solution of the Volterra equation3. The analytical expression of the
dynamics of the spot rate simplifies the valuation of interest rate contingent
claims in the sense that, under the Markovian assumption, we can use a
partial differential equation representation of asset prices.

The remainder of the paper is organized as follows. In Section 2, the
functional form of the term structure is derived and discussed. Section 3
presents some meaningful examples of term structure models in which exact
solutions of the Volterra equation can be found. In Section 4, we derive the
perturbative solution of the Volterra equation in the case of generalized
CIR volatility structure. An appendix, containing the detailed proofs of the
propositions stated in the text, concludes the paper.

2. The term structure functional form

The purpose of this section is to provide a closed form characterization of
bond prices in the class of term structure models described in the introduc-
tion. We provide the solution of the following problem:

dP

P
(r(t), t, T ) = r(t)dt − σp(r(t), t, T )dw(t),

P (r(0),0, T ) = P ∗(0, T ),

(4)

where the volatility structure of zero coupon bond returnsσp(r(t), t, T )

satisfies the following condition (*) (which can be easily obtained from
Jeffrey’s condition).

Condition (*).

σp(r(t), t, T ) =
∫ T

t

σ (r(t), t, u)du = σ(r(t), t)B(t, T ),

where

B(t, T ) = 2
C ′(t) − A(t)

k(t)

[
1

C(t)
− 1∫ T

t
A(u)du + C(t)

]
,

3 The functional form of the Volterra equation looks more appealing and very different
from that proposed in Jeffrey’s paper. It will be shown in the paper that this fact increases
the mathematical tractability of the model.
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and

σ 2(r, t) = h(t) + k(t)r.

The solution of problem (4) can be cast in the form

P(r(t), t, T ) = A(t, T )e−r(t)B(t,T ), (5)

where the unknown functionA(t, T ) must be consistent with the initial term
structureP ∗(0, T ), and must satisfy the following differential equation4

d ln A(t, T )

dt
= a(t)B(t, T ) − 1

2
h(t)B2(t, T ),

where

a(t) = −∂2 ln A(t, T )

∂T 2 |T=t
,

with the boundary conditionA(T , T ) = 1 (see Appendix).
We provide the solution of the above differential equation subject to all

the quoted constraints, thus deriving a bond pricing formula which can be
very useful for applications.

Theorem 1. If the volatility structure of zero-coupon bond returns satisfies
Condition (*), then the solution of the Cauchy problem (4) is given by

P(r(t), t, T ) = P ∗(0, T )

P ∗(0, t)
exp

[
f ∗(0, t)B(t, T ) −

∫ t

0
H(u)B(u, T )du

− 1

2

∫ t

0
σ 2(f ∗(0, u), u)B2(u, T )du

]
e−r(t)B(t,T ), (6)

where H(t) is the solution of the following Volterra integral equation of the
first kind

∫ t

0
H(u)B(u, t)du = G(t), (7)

with

G(t) = −1

2

∫ t

0
σ 2(f ∗(0, u), u)B2(u, t)du, (8)

and f ∗(0, T ) is the initial forward rate curve.

4 It is well-known that the functional form (5) characterizes the discount function in the
so-called affine term structure models (e.g., Duffie–Kan (1996)).
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Proof. See Appendix.

This functional form of the bond pricing formula looks quite interesting.
First, it is very similar to the expression found by Jamshidian (1990) in
the Gaussian case. Second, it explicitly shows the consistency with any
observable term structure and with the boundary conditionP(r(T ), T ; T ) =
1 (to verify the first statement it suffices to putt = 0 in Equation (6); the
second can be obtained puttingt = T in (6) and using Equations (7) and (8)).
Third, it depends on the solution of an associated Volterra integral equation
of the first kind. Since the initial term structure affects the right-hand side of
Equation (7), exact solutions cannot be easily found. In some cases however
theVolterra equation can be solved exactly. We will prove in the next section
that in Gaussian models (i.e., in the limitk(t) = 0, but for arbitraryh(t)
andC(t)), the Volterra equation is independent of the initial term structure,
and the exact solution can be easily found. The exact solution can be also
calculated in the case of the celebrated CIR model.

Furthermore, as a consequence of Theorem 1, the dynamics of the spot
rate is explicitly derived.

Corollary 1. The dynamics of the spot rate is described by

dr(t) = [
a(t) − b(t)r(t)

]
dt + √

h(t) + k(t)r(t)dw(t),

where

a(t) = ∂f ∗(0, t)
∂t

+ b(t)f ∗(0, t) − H(t), (9)

b(t) = −∂2B(t, T )

∂T 2
|T=t .

Proof. See Appendix.

The dynamics of the spot rate confirms the well-known fact that, in order
to make the model consistent with any initial term structure, the drift coeffi-
cient cannot be time independent. This result generalizes those obtained by
Hull–White (1990) in the case of the extended Vasicek model and the ex-
tended CIR model. To fit in with any observable term structure, the drift term
cannot be arbitrary, but it must depend on the initial term structure as spec-
ified in (9). Furthermore, sinceH(t) depends in general on the initial term
structure,a(t) is very strongly related to market data. In the class of Gaus-
sian models, in whichH(t) does not depend on the initial data, nevertheless
a(t) depends onf ∗(0, t) via the first two terms in (9). The remaining terms
in the spot rate dynamics depend on the volatility structure of the model.
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3. Examples

3.1. Gaussian models

Gaussian models are term structure models in which the volatility structures
of zero coupon bond returns are deterministic and the spot interest rate
follows a Markov process. Hull and White (1990) showed that a necessary
and sufficient condition for a Gaussian model is,

σp(t, T ) = σ(t)B(t, T ),

with

B(t, T ) = y(T ) − y(t)

y ′(t)
, (10)

for an arbitrary functiony(t) (we seth(t) = σ 2(t)) 5. In such models the
solution of the Volterra equation (7) can be easily obtained.

As has been pointed out in the previous section, the Volterra equation
does not depend on the initial term structure becausek = 0, and therefore
σ 2(f ∗(0, t), t) = σ 2(t). The solution can be found by differentiating twice
both sides of Equation (7) with respect to timet .

After the first differentiation we get
∫ t

0

H(u)

y ′(u)
du = −

∫ t

0

σ 2(u)

y ′2(u)
[
y(t) − y(u)

]
du,

and after the second we obtain the solution

H(t) = −y ′2(t)
∫ t

0

σ 2(u)

y ′2(u)
du. (11)

If we substitute (11) into (6), after some algebraic manipulations, we find
that

P(r(t), t, T ) = P ∗(0, T )

P ∗(0, t)
exp

[
f ∗(0, t)B(t, T )

− 1

2
B2(t, T )

∫ t

0
σ 2(u)

(
∂B(u, t)

∂t

)2

du

]
e−r(t)B(t,T ).

(12)

We note that the functional form (12) coincides with that found by Jamshid-
ian (1991) by using a different approach.

5 Equation (10) can be derived as a particular case of Jeffrey’s constraint in the limit
k(t) = 0. It is easy to show that in such a casey(t) = − 1

C(t)
.



46 C. Mari

3.2. Generalizing the CIR volatility structure

We say that the model is characterized by ageneralized CIR volatility struc-
ture if

σ 2(r(t), t) = h + kr(t), (13)

C(t) = edt d2 ≥ 2k, (14)

whereh, k, andd are assumed constant. The definition is motivated by
the fact that, if we substitute (14) in condition (*), we obtain, as in the CIR
model,

B(t, T ) = ed(T−t) − 1

φ
[
ed(T−t) − 1

] + d
,

where

φ = 1

2

[
d +

√
d2 − 2k

]
.

Under the generalized CIR volatility assumption, the dynamics of the spot
rate is given by

dr(t) = [
a(t) − (2φ − d)r(t)

]
dt + √

h + kr(t)dw(t),

where

a(t) = ∂f ∗(0, t)
∂t

+ (2φ − d)f ∗(0, t) − H(t).

The parameter of mean reversion, 2φ−d, is constant and coincides with
the CIR mean reversion parameter; the deterministic terma(t) accounts for
the (arbitrary) initial term structure.

In the CIR model,h = 0, and the initial discount function is given by

f ∗(0, T ) = νφ

[
dedT

φ(edT − 1) + d
− 1

]
+ r(0)

[
dedT/2

φ(edT − 1) + d

]2

,

whereν is a third parameter. In this case the Volterra equation can be solved
exactly and the solution reads

H(t) = ∂f ∗(0, t)
∂t

+ (2φ − d)f ∗(0, t) − νφ(d − φ).

The Gaussian limit of the model specified by Equations (13) and (14) is
also interesting. In fact, if we putk = 0 andh = σ 2, the volatility structure
of zero-coupon bond returns becomes

σp(t, T ) = σBV (t, T ),
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where

BV (t, T ) = 1

d

[
1 − e−d(T−t)

]
. (15)

It is easy to verify thatσp(t, T ) coincides with the volatility structure of
the Vasicek model (1977). In such a case the exact solution of the Volterra
equation can be found and reads

H(t) = σ 2

2d

(
e−2dt − 1

)
. (16)

If the initial term structure is chosen according to

f ∗(0, T ) = θ(1 − e−dT ) + σ 2

2d2
(e−dT − e−2dT ) + r(0)e−dT ,

whereθ is a third parameter, then the Vasicek model is recovered.

4. The perturbative solution of the Volterra equation

Under the generalized CIR volatility assumption, and with arbitrary initial
term structures, we will prove that the Volterra equation can be solved by
using perturbation methods.

Since the Vasicek volatility structure can be viewed as the limiting case
(k = 0) of the generalized CIR volatility structure, the extended Vasicek
model can be considered as the zeroth-order approximation of the general
model defined by Equations (13) and (14). From this point of view, the
perturbative solution of the Volterra equation can be used to build higher
order corrections in the casek �= 0.

We assume therefore thatH(t) can be expanded in a power series in the
parameterk around the valuek = 0 as follows:

H(t) = H0(t) + H1(t)k + H2(t)k
2 + · · · =

∑
j

Hj (t)k
j , (17)

whereH0 coincides with the solution of the Volterra equation in the Vasicek
model and is given in (16).

The expansion ofB(t, T ) can be easily derived to obtain

B(t, T ) = BV (t, T ) + B2
V (t, T )

2d
k

+ B2
V (t, T ) + dB3

V (t, T )

4d3
k2 + · · · ,

(18)

whereBV is given in (15).
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Substituting Equations (17) and (18) into (7), and equating the coefficients
order by order in the expansion, we get∫ t

0
Hj(u)BV (u, t)du = Gj(t), j = 0,1,2, . . . , (19)

where

G0(t) = −h

2

∫ t

0
B2

V (u, t)du,

and

G1(t) = − 1

2d

∫ t

0

[
H0(u) + df ∗(0, u) + hBV (u, t)

]
B2

V (u, t)du.

Equations (19) are characterized by the same analytical structure. At any
order in the perturbative expansion, the right-hand sideGj(t) is a known
function, depending on the solutionsHi(t), i = 0,1,2, . . . , j − 1, of the
previous equations. Although Equations (19) are Volterra integral equations
of the first kind, the solutions can be calculated exactly by differentiating
both sides of (19) twice with respect tot . SinceBV (t, t) = 0, after the first
differentiation we get∫ t

0
eduHj(u)du = edtG′

j (t), j = 0,1,2, . . . ,

and after the second we obtain the solution

Hj(t) = dG′
j (t) + G′′

j (t), j = 0,1,2, . . . .

After some algebraic manipulations, we get

H1(u) = −e−2dt

d

∫ t

0
e2du

[
H0(u) + df ∗(0, u) + 3hBV (u, t)

]
du.

Up to the first order ink, the solution of the Volterra equation, under the
generalized CIR volatility assumption, is given therefore by

H(t) = H0(t) − hk

d3

[
1

4
−

(
5

4
− dt

2

)
e−2dt + e−3dt

]

− ke−2dt
∫ t

0
e2duf ∗(0, u)du.

The above solution is still valid in the caseh = 0, i.e., in the case of the
extended CIR model, and reads

H(t) = −ke−2dt
∫ t

0
e2duf ∗(0, u)du.
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5. Conclusions

To summarize, in the class of single factor HJM models with Markovian spot
interest rate, we have provided an analytical treatment for the solutions of the
term structure of interest rates. The dynamics of the spot rate has also been
derived. Both these expressions depend on the solution of a well-defined
Volterra integral equation of the first kind. In some cases (see, for example,
Gaussian models or the CIR model), the exact solution is available; otherwise
numerical methods have to be used. In the case of the generalized CIR
volatility structure, the solution can be found at any order in the perturbative
expansion, as proposed in the paper.

The possibility of obtaining the functional form of the dynamics of the
spot rate (i.e., in a perturbative way in the cases in which theVolterra integral
equation cannot be solved exactly), greatly simplifies the problem of valuing
interest rate contingent claims. In fact, under the Markovian property, we
can use a partial differential equation representation of asset prices.

Appendix. Proofs of Theorem 1 and Corollary 1

By proving Theorem 1, we also obtain a proof of Corollary 1. To prove
Theorem 1 we need to recall some well-known results in the Heath–Jarrow–
Morton context. In particular, the spot rate dynamics in the risk-neutral
measure can be written as (cf. Heath–Jarrow–Morton (1992))

dr(t) = ∂f (t, T )

∂T
|T=t dt + σ(r(t), t)dw(t).

By Itô’ s lemma, the solution of the Cauchy problem (4) can be cast in the
following affine form:

P(r(t), t, T ) = A(t, T )e−r(t)B(t,T ),

whereA(t, T ) andB(t, T ) satisfy the coupled equations

∂ ln A(t, T )

∂t
= a(t)B(t, T ) − 1

2
h(t)B2(t, T ), (20)

∂B(t, T )

∂t
= b(t)B(t, T ) + 1

2
k(t)B2(t, T ) − 1, (21)

with

a(t) = −∂2 ln A(t, T )

∂T 2 |T=t
, (22)

b(t) = −∂2B(t, T )

∂T 2 |T=t
, (23)
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and subject to the boundary conditionsA(T , T ) = 1 andB(T , T ) = 0. The
proof is almost straightforward; it suffices to note that

∂f (t, T )

∂T
|T=t = −∂2 ln A(t, T )

∂T 2 |T=t
+ r(t)

∂2B(t, T )

∂T 2 |T=t
.

Since the drift of the spot rate dynamics is an affine function of the spot rate,
Equations (22) and (23) follow from (3).

It is easy to verify thatB(t, T ) as given in the text,

B(t, T ) = 2
C ′(t) − A(t)

k(t)

[
1

C(t)
− 1∫ T

t
A(u)du + C(t)

]
,

is the solution of Equation (21) satisfying all the quoted constraints.
In this appendix we solve Equation (20) by looking for a solution,

A(t, T ), that must be consistent with the initial term structureP ∗(0, T ), and
must satisfy the boundary conditionA(T , T ) = 1. To do this, we choose
A(t, T ) in the following functional form

A(t, T ) = P ∗(0, T )

P ∗(0, t)
exp

[
f ∗(0, t)B(t, T ) −

∫ T

t

dv

∫ t

0
H(u, v)du

]
,

(24)

where the unknown functionH(· , ·) will be determined below. It is easy
to verify that A(t, T ) given in (24) satisfies the conditionsA(0, T ) =
P ∗(0, T )exp(r(0)B(0, T )) andA(T , T ) = 1.

We substitute (24) into (22) and (20) to find, respectively,

a(t) = ∂f ∗(0, t)
∂t

+ b(t)f ∗(0, t) +
∫ t

0

∂H(u, t)

∂t
du, (25)

and

a(t)B(t, T ) = ∂f ∗(0, t)
∂t

B(t, T ) + b(t)B(t, T )f ∗(0, t)

+ 1

2
σ 2(f ∗(0, t), t)B2(t, T ) +

∫ t

0
H(u, t)du

−
∫ T

t

H(t, v)dv,

(26)

where

σ 2(f ∗(0, t), t) = h(t) + k(t)f ∗(0, t).

Our first result is then obtained by puttingT = t in (26) to get∫ t

0
H(u, t)du = 0. (27)
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By differentiating both sides of (27) with respect tot , we obtain

H(t) = −
∫ t

0

∂H(u, t)

∂t
du, (28)

where we have putH(t, t) = H(t). To prove Corollary 1 it suffices to
substitute Equation (28) into (25).

To prove Theorem 1, first substitute (25) into (26) and then use Equa-
tion (27) to get∫ T

t

H(t, v)dv = H(t)B(t, T ) + 1

2
σ 2(f ∗(0, t), t)B2(t, T ). (29)

The functional form of the term strucure (6) is then recovered on substituting
(29) into (24), and using the relation∫ T

t

dv

∫ t

0
H(u, v)du =

∫ t

0
du

∫ T

u

H(u, v)dv,

which can be proved by interchanging the order of integration and using
(27).

Finally, we must show thatH(t) satisfies the Volterra integral equation
of the first kind ∫ t

0
H(u)B(u, t)du = G(t),

where

G(t) = −1

2

∫ t

0
σ 2(f ∗(0, u), u)B2(u, t)du.

To prove this last result it suffices to integrate both sides of Equation (29)
with respect to timet on the interval[0, T ], interchange the order of inte-
gration, and then use Equation (27).
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