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Abstract: Platelet activation is the first response to tissue damage and, if unrestrained, may promote
chronic inflammation-related cancer, mainly through the release of soluble factors and vesicles that are
rich in genetic materials and proteins. Platelets also sustain cancer cell invasion and metastasis formation
by fostering the development of the epithelial-mesenchymal transition phenotype, cancer cell survival in
the bloodstream and arrest/extravasation at the endothelium. Furthermore, platelets contribute to tumor
escape from immune elimination. These findings provide the rationale for the use of antithrombotic
agents in the prevention of cancer development and the reduction of metastatic spread and mortality.
Among them, low-dose aspirin has been extensively evaluated in both preclinical and clinical studies.
The lines of evidence have been considered appropriate to recommend the use of low-dose aspirin for
primary prevention of cardiovascular disease and colorectal cancer by the USA. Preventive Services Task
Force. However, two questions are still open: (i) the efficacy of aspirin as an anticancer agent shared
by other antiplatelet agents, such as clopidogrel; (ii) the beneficial effect of aspirin improved at higher
doses or by the co-administration of clopidogrel. This review discusses the latest updates regarding the
mechanisms by which platelets promote cancer and the efficacy of antiplatelet agents.

Keywords: antiplatelet drugs; cancer; platelets; metastasis; epithelial-mesenchymal transition;
immune surveillance

1. Introduction

Antithrombotic agents mainly comprise two classes of drugs that are commonly used in clinical
practice to combat pathologic thrombosis: antiplatelet drugs and anticoagulants. They share the
common action of preventing a clot from forming and growing, but it is accomplished via different
mechanisms [1]. The antiplatelet drugs affect platelet aggregation (clumping), while the anticoagulants
manipulate the blood coagulation process through the reduction of fibrin formation [1]. Antithrombotic
agents are the first choice for the prevention and treatment of cardiovascular (CV) disease [2].
Moreover, the use of anticoagulants and antiplatelet drugs is included in the armamentarium to
combat cancer and/or its clinical consequences [3]. Anticoagulants are used for the prevention of
venous thromboembolic events that are associated with cancer [4]. Preclinical studies have reported
that anticoagulants (unfractionated heparin (UFH), low molecular weight heparins (LMWH), and the
Xa inhibitor fondaparinux) may affect the platelet release of angiogenic proteins through the inhibition
of thrombin-dependent protease-activated receptor1 (PAR1) activation [5]. This mechanism might
play a role in the anticancer effects of UFH and LMWH, independent of their anticoagulant functions,
found in preclinical studies [6]. These findings, together with the efficacy of antiplatelet agents, such as
aspirin (acetylsalicylic acid) at low doses, to reduce death and incidence of cancer [7–11], confirm the
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central role of platelets in tumorigenesis and metastasis development. This review discusses the
latest updates regarding the mechanisms by which platelets promote cancer and the efficacy of
antiplatelet agents.

2. The Roles of Activated Platelets in Cancer

Platelets are anucleate cell fragments that play a pivotal role in hemostasis and thrombosis [12].
However, numerous pieces of evidence show novel functions of platelets, including immune response,
inflammation and metastasis formation, which are mediated by the capacity of platelets to interact
and activate other cells types via a direct contact and/or the release of different soluble mediators,
including lipids (such as, prostaglandin (PG)E2 and thromboxane (TX)A2) and proteins (such as,
stromal cell-derived factor (SDF)-1α, growth and angiogenic factors, cytokines and chemokines),
and extracellular vesicles (EVs), such as exosomes and microparticles (MPs) [13–15]. EVs promote the
intercellular communication by facilitating the exchange of biological materials (including mRNAs
and microRNAs (miRs)) between cells [13].

Platelets are the cells that respond first to tissue damage to restore the normal functions, but,
if uncontrolled, platelet activation supports the development of a chronic inflammatory response that
may translate into cancer development [16]. In this scenario, platelets participate in the activation of
stromal cells that release inflammatory mediators and growth factors (Figure 1A) [16]. Among them, PGE2

production is significantly increased due to the induction of cyclooxygenase (COX)-2 (Figure 1A) [16,17].
Altogether these events translate to the expression of COX-2 in the epithelial compartment associated
with enhanced production of prostanoids, including PGE2 (Figure 1A) [16,17]. The increased biosynthesis
of PGE2 promotes cellular proliferation, migration, invasion, angiogenesis, and immunosuppression
(Figure 1A) [18,19]. Intestinal epithelial cells overexpressing COX-2 are characterized by higher levels of the
anti-apoptotic protein Bcl-2 and by increased resistance to apoptosis [20]. Finally, COX-2-dependent PGE2

induces the transactivation of epidermal growth factor receptor (EGFR) (Figure 1A), a transmembrane
receptor tyrosine kinase of the Erythroblastic Leukemia Viral Oncogene Homolog ErbB family, involved
in the development of colorectal (CRC) [21]. The critical role of COX-2 overexpression in tumorigenesis of
CRC [19,22] is sustained by the results of randomized clinical trials (RCTs), showing that selective COX-2
inhibitors (i.e., celecoxib and rofecoxib, which belong to the family of nonsteroidal anti-inflammatory drugs
(NSAIDs) reduce the risk of sporadic colorectal adenoma recurrence [23–25]. However, the increased risk
of CV events associated with the use of these drugs precludes their use for long-term chemotherapy [26].
The same efficacy was found in RCTs using low-dose aspirin, another NSAID that mainly targets
platelets [27]. Since the drug, when given at low doses, primarily affects the platelets, it was proposed that
platelet activation at the site of tissue damage is the event initiating the cascade of reactions/signaling
that promote cell transformation and tumor growth [27]. Interestingly, it was shown that platelet-derived
products, such as PGE2, the platelet-derived growth factor (PDGF), and the cytokine tumor growth
factor (TGF)-β, contribute to the epithelial–mesenchymal transition (EMT) (Figure 1B) [28–30]. EMT is
a biological process whereby epithelial cells undergo multiple biochemical changes, leading to the
acquisition of a mesenchymal cell phenotype characterized by enhanced migratory capacity, invasiveness,
and increased resistance to apoptosis [31,32]. This phenomenon is added to others mediated by platelets
that promote the development of metastases [33].

Several lines of evidence suggest the role of platelets in metastasis formation via different
biological mechanisms [31].



Cancers 2018, 10, 253 3 of 22
Cancers 2018, 10, x  3 of 21 

 
Figure 1. The intimate crosstalk between platelets and cancer. (A) In the early phases of colorectal 
carcinogenesis, activated platelets release soluble factors (including lipids, i.e., PGE2 and TXA2, and 
proteins, i.e., SDF-1α, growth and angiogenic factors, cytokines, including interleukin-1β) and MVs, 
which may, in turn, activate stromal cells, thus further promoting the release of inflammatory 
mediators and growth factors. Growth, angiogenic factors and cytokines may participate in the 
induction of COX-2 in stromal cells and epithelial cells. Enhanced levels of COX-2-dependent PGE2 
in stromal and then epithelial cells contribute to the development of typical hallmarks of cancer, 
including cancer cell survival, resistance to apoptosis, proliferation, migration, and invasion. 
Moreover, COX-2-dependent PGE2 causes the transactivation of EGFR involved in colorectal cancer 
development. (B) EMT induction in cancer cells is a key mechanism involved in platelet-mediated 
metastasis formation, and is characterized by reduced levels of typical epithelial markers and 
increased expression of many mesenchymal markers; also, mesenchymal-like cancer cells have 
enhanced prothrombotic properties. This leads to the activation of platelets by cancer cells and the 
release of TXA2, which binds to the platelet receptor TP, allowing the amplification of the platelet 
response. PGE2, PDGF, and TGF-β are platelet-derived mediators that mediate the induction of 
EMT, thus leading to tumor invasion and metastasis formation. (C) Platelets promote metastasis by 
providing cancer cells with protection from immune surveillance due to the so-called “platelet 
mimicry” phenomenon, characterized by the transferring of platelet proteins to cancer cells, 
including the MHC-I. The resulting “phenotype of false pretenses” disrupts recognition of tumor 
cell missing self, thereby impairing cytotoxicity and IFN-γ production by NK cells. Also, GARP 
activates latent TGF-β, promoting the suppression of immune response to cancer cells mediated by 
regulatory T cells. Platelet release of TGF-β impairs interferon-γ production and NK cell 
cytotoxicity. Abbreviations: prostaglandin E2, PGE2; thromboxane A2, TXA2; stromal cell-derived 
factor-1α, SDF-1α; microvesicles, MVs; cyclooxygenase-2, COX-2; epidermal growth factor receptor, 
EGFR; epithelial mesenchymal transition, EMT; Platelet-derived growth factor, PDGF; Transforming 
growth factor beta; TGF-β; histocompatibility complex class I, MHC-I; interferon-γ, IFN-γ; natural 
killer, NK; glycoprotein A repetitions predominant, GARP; arachidonic acid, AA; Nonsteroidal anti-
inflammatory drugs, NSAIDs; glycoprotein VI, GPVI; Galectin-3, Gal-3. 

Figure 1. The intimate crosstalk between platelets and cancer. (A) In the early phases of colorectal
carcinogenesis, activated platelets release soluble factors (including lipids, i.e., PGE2 and TXA2,
and proteins, i.e., SDF-1α, growth and angiogenic factors, cytokines, including interleukin-1β) and
MVs, which may, in turn, activate stromal cells, thus further promoting the release of inflammatory
mediators and growth factors. Growth, angiogenic factors and cytokines may participate in the
induction of COX-2 in stromal cells and epithelial cells. Enhanced levels of COX-2-dependent PGE2

in stromal and then epithelial cells contribute to the development of typical hallmarks of cancer,
including cancer cell survival, resistance to apoptosis, proliferation, migration, and invasion. Moreover,
COX-2-dependent PGE2 causes the transactivation of EGFR involved in colorectal cancer development.
(B) EMT induction in cancer cells is a key mechanism involved in platelet-mediated metastasis
formation, and is characterized by reduced levels of typical epithelial markers and increased expression
of many mesenchymal markers; also, mesenchymal-like cancer cells have enhanced prothrombotic
properties. This leads to the activation of platelets by cancer cells and the release of TXA2, which binds
to the platelet receptor TP, allowing the amplification of the platelet response. PGE2, PDGF, and TGF-β
are platelet-derived mediators that mediate the induction of EMT, thus leading to tumor invasion
and metastasis formation. (C) Platelets promote metastasis by providing cancer cells with protection
from immune surveillance due to the so-called “platelet mimicry” phenomenon, characterized by the
transferring of platelet proteins to cancer cells, including the MHC-I. The resulting “phenotype of false
pretenses” disrupts recognition of tumor cell missing self, thereby impairing cytotoxicity and IFN-γ
production by NK cells. Also, GARP activates latent TGF-β, promoting the suppression of immune
response to cancer cells mediated by regulatory T cells. Platelet release of TGF-β impairs interferon-γ
production and NK cell cytotoxicity. Abbreviations: prostaglandin E2, PGE2; thromboxane A2, TXA2;
stromal cell-derived factor-1α, SDF-1α; microvesicles, MVs; cyclooxygenase-2, COX-2; epidermal
growth factor receptor, EGFR; epithelial mesenchymal transition, EMT; Platelet-derived growth
factor, PDGF; Transforming growth factor beta; TGF-β; histocompatibility complex class I, MHC-I;
interferon-γ, IFN-γ; natural killer, NK; glycoprotein A repetitions predominant, GARP; arachidonic
acid, AA; Nonsteroidal anti-inflammatory drugs, NSAIDs; glycoprotein VI, GPVI; Galectin-3, Gal-3.
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Tumor cells can induce platelet aggregation, a phenomenon called tumor cell-induced platelet
aggregation (TCIPA), which represents a recognized event in cancer hematogenous dissemination and
an early step in the metastatic process [34–36]. The determinants of the interaction between platelets
and cancer cells vary depending on tumor type, platelet agonists generated by the tumor cells and
microenvironment. A detailed description of the phenomenon of TCIPA is reported in an excellent
recent review [36]. It has been proposed that targeting direct molecule contact between platelets and
tumor cells may have great potential for new adjuvant antitumor therapies (see Section 3.2 Table 1).

The interaction of platelets with tumor cells reduces the levels of the epithelial marker E-cadherin,
and increases the expression of different mesenchymal markers, such as vimentin, fibronectin, Twist,
and Snail, which are critical events in the EMT process (Figure 1B) [28–30]. These changes lead to enhanced
migratory properties and invasiveness of cancer cells (Figure 1B) [28–30]. Importantly, mesenchymal-like
cancer cells are characterized by enhanced prothrombotic properties, leading to platelet activation and
increased production of TXA2 and PGE2 both in vitro and in vivo (Figure 1B) [29]. The formation of platelet
aggregates surrounding the cancer cells in the bloodstream enhances survival and promotes the adhesion
to endothelial cells, thus facilitating cancer cell extravasation and the metastatic colonization of distant
organs [33]. Moreover, platelets play an immunosuppressive role during tumorigenesis by protecting
cancer cells from natural killer (NK) cell-mediated lysis in the circulation and tumor microenvironment [37].
A central role is played by the platelet release of TGF-β, which impairs interferon-γ production and
NK cell cytotoxicity [38]. Also, platelets express the glycoprotein A repetitions predominant (GARP),
which activates latent TGF-β (Figure 1C) [39]. Platelets induce the “platelet mimicry” of cancer cells,
which involves the acquisition of several platelet receptor markers by tumor cells [40] and allows tumors
to evade attack from NK cells [40,41]. Interestingly, platelets can transfer their major histocompatibility
complex (MHC) class I molecules to tumor cells (Figure 1C) [41]. Furthermore, the formation of cancer
cell–platelet–neutrophil complexes may promote cancer immune escape [42,43].

Platelets release MPs into the plasma, and the number is increased in individuals bearing solid
tumors [44,45]. Purified platelet-derived MPs can transfer some miRs to cells following co-incubation
in vitro, and regulate gene expression [13]. Moreover, profiling of miRs in platelet-derived MPs
has been identified as a diagnostic and prognostic tool of malignancy and implicated in therapy
resistance [46,47]. However, the effect of platelet-derived MPs in tumorigenesis via the transfer
of miRs is still controversial. In fact, Tang et al. showed that in SKOV3 cells (a human ovarian
cancer cell line) the selective uptake of MPs in vitro induced EMT via the transfer of miR-939 [48].
Interestingly, they found that secretory phospholipase A2 type IIA (sPLA2-IIa) mediated the intake of
MPs by SKOV3 cells [48]. Recently, Michael et al. found that platelet-derived MPs infiltrate solid tumors
in humans and mice and transfer platelet-derived RNAs, including miRs (miR-24 was a major species),
to tumor cells in vivo and in vitro, resulting in tumor cell apoptosis [49]. Thus, further exploration is
necessary before the MPs, and miRs delivery will be used as a possible therapeutic approach to fight
cancer and metastasis.

3. Effects of Antiplatelet Agents in Cancer

3.1. Low-Dose Aspirin

Overview analyses of data from over 40 observational studies and the long-term follow-up of
51 RCTs of aspirin, designed to study the prevention of vascular events, have provided the evidence
that the drug may reduce the incidence and risk of mortality for several common cancer types,
such as CRC, other gastrointestinal cancers and breast cancer [50]. Cancer prevention (death and
incidence) by aspirin seems to be unrelated to the dose, and a maximal effect is obtained at low
doses (75–300 mg/day) [51]. This effect is similar to that found in the meta-analysis of RCTs of
antiplatelet therapy for prevention of death, myocardial infarction, and stroke, in high-risk patients [52].
This evidence sustains the hypothesis that the chemopreventive effect of aspirin is mainly related to
its antiplatelet action [27]. The efficacy of low-dose aspirin to prevent death due to CRC is detected
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at long-term follow-up [7,8,11], thus leading to the proposal that aspirin influences early events of
intestinal tumorigenesis through its capacity to affect platelet function and the release of a broad array
of mediators and EVs [27]. Additional post hoc analyses of RCTs with aspirin showed that overall
cancer incidence was reduced from three years, suggesting a potential effect in reducing the progression
of pre-existing cancer and metastasis [10]. Numerous mechanistic studies have been performed in vitro
and in vivo using animal models, and the results show that low-dose aspirin prevents metastasis
development by interrupting the crosstalk between platelets and cancer cells [27,29].

However, the mechanism of action of low-dose aspirin in the prevention of cancer is still under
debate, and a scientific consensus has not been reached yet. The information on the pharmacokinetics
(PK) and pharmacodynamics (PD) of aspirin at low doses supports the critical role of the inhibition of
platelet function on the anti-cancer effects of the drug. In fact, aspirin causes a persistent inhibition
of the biosynthesis of prostanoids through the irreversible inactivation of COX-1 and COX-2 [26,53].
These effects depend on the capacity of the drug to acetylate the cyclooxygenase active site, at Serine-529
and Serine-516 of COX-1 and COX-2, respectively [26,53], even at the low concentrations detected
in the systemic circulation after dosing with 100 mg of aspirin (i.e., approximately 4 µM) [54].
However, aspirin has a half-life of only 20 min and, when given once daily, translates into a preferential
inhibitory effect towards COX-1 in the non-nucleated platelets, characterized by limited de novo protein
synthesis [54]. The irreversible inactivation of platelet COX-1 by low-dose aspirin, which persists
throughout the dosing interval (24 h), leads to a virtually complete inhibition (≥97%) of TXA2 [55].
The other NSAIDs, which reversibly inhibit COX-isozymes, do not have these features: profound and
persistent inhibition of platelet COX-1 between doses [26]. This explains why only low-dose aspirin,
among the NSAIDs, confers CV protection [26].

Although the antiplatelet action of low-dose aspirin may explain its chemopreventive effect,
recent findings have shown that the drug acetylates COX-1 expressed in colorectal mucosa, even if at a
lower extent than in the platelet, leading to incomplete inhibition of PGE2 biosynthesis [56] and the
inhibition of pro-tumorigenic pathways, such as the phosphorylation of S6 (p-S6) [56]. The formation
of p-S6 enhances the affinity of the 40S ribosomal subunit to a subclass of mRNAs, and thus promotes
their efficient translation, and regulates cell growth capacity [57].

Preclinical studies have shown that low-dose aspirin and other antiplatelet agents (including
ticagrelor, an antagonist of the P2Y12 receptor, or DG-041, an antagonist of the PGE2 receptor EP3)
can prevent in vitro platelet-induced EMT and migration of human colon adenocarcinoma cell line
HT29 co-cultured with platelets (Table 1) [29]. Furthermore, the injection of mesenchymal-like HT29
cells, as a consequence of their exposure to platelets in vitro, into the bloodstream of immunodeficient
mice, led to an increased number of lung metastasis nodules as compared to the effect caused by the
injection of untreated HT29 cells. This effect was associated with enhanced systemic biosynthesis of
TXA2, mainly derived from platelets [29]. The administration of low-dose aspirin was able to prevent
the higher incidence of lung metastasis by HT29 cells exposed to platelets in vitro versus that caused
by the injection of untreated HT29 cells. These effects were accompanied by the reduction of platelet
activation [29]. Altogether these findings show that aspirin prevents metastasis by controlling “stem
cell mimicry” of cancer cells and blunting their pro-aggregatory effect on platelets [29].
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Table 1. Effects of antiplatelet agents on tumorigenesis and metastasis formation: in vitro and in vivo studies.

Drug Class Drug Target Agents In Vivo and in Vitro Studies Reported Effects

NSAIDs Platelet COX-1 Low-dose aspirin

In vitro co-culture of platelets and human
colon adenocarcinoma cell line HT29 [29]
HT29-induced hematogenous metastasis

in vivo [29]
In vivo mouse model of chronic hepatitis

B [58]

Prevention of platelet-induced EMT and
migration (disruption of cancer cell

metastatic potential) [29]
Prevention of platelet-induced metastatic

and prothrombotic phenotype [29]
Prevention of immune-mediated liver

injury and fibrosis and HCC development
(in combination with clopidogrel) [58]

Thienopyridines ADP receptor P2Y12 TiclopidineTicagrerol

In vivo model of spontaneous lung
metastasis [59]

In vitro co-culture of platelets and HT29
colon cancer cells [29]

In vitro co-culture of platelets human
breast cancer cell lines (MCF-7,

MDA-MB-468, and MDA-MB-231) [60]
Orthotopic 4T1 breast cancer model [60]

Suppression of metastasis
dissemination [59]

Prevention of platelet-induced EMT and
migration (disruption of cancer cell

metastatic potential) [29]
Prevention of platelet–cancer cell

crosstalk [60]
Reduction of metastasis formation and

number of tumor cell-platelet aggregates
and improvement of survival [60]

PAR-1 antagonists Protease-activated receptor PAR-1 Vorapaxar
In vitro studies with human ovarian
cancer cells (SKOV-3, OVCAR-3 and

CaOV-3) [61]

Reduction of PAR-1 agonist-mediated
effects including cell proliferation [61]

Glycoprotein IIb/IIIa antagonists Glycoprotein (GP) IIb/IIIa AbciximabEpitifabideTirofiban

MCF-7 breast cancer cells [62]
In vitro co-culture of thrombin-activated

platelets and human breast carcinoma
MDA-MB-231 cells [62]

MCF-7 breast cancer cells [62]
In vitro studies with highly invasive

human tongue squamous carcinoma cell
line HSC-3 [63]

Tumorigenesis and metastasis control [62]
Constriction of tumor cell invasive

potential [62]
Tumorigenesis and metastasis control [62]
Inhibition of promigratory effect induced

by Col15 [63]

GPIb inhibitors Platelet GPIb
Anfibatide

anti-GPIbα antibody (h6B4-Fab,
GPG-290, and anti-GPIbα)

In vitro and in vivo murine models of
thrombosis [64] and phase II human

clinical trials [65]
High shear arterial thrombosis model in

baboons [66]
Canine model of artery thrombosis [67]

In vivo metastasis model B16F10
melanoma cells [68]

Inhibition of platelet adhesion,
aggregation and thrombus formation,

without increasing bleeding time [64,65]
Reduction of thrombus formation at an

injured femoral artery site [66]
Prevention of coronary artery

thrombosis [67]
Promotion of melanoma metastasis [68]
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Table 1. Cont.

Drug Class Drug Target Agents In Vivo and in Vitro Studies Reported Effects

P-selectin (CD62P) inhibitors Platelet P-selectin and tumor
P-selectin ligands

Anti-P-selectin antibody (GA-6),
P-selectin Mab,

anti-CD24 (P-selectin ligand)
antibody FL80

Prostate cancer cell line DU145 [69]
Mucin-type ligands bearingsialyl-Lewis X
small-celllung cancers, colon cancer and

neuroblastoma [70,71]
Colon cancer cells MC-38 expressing

sulfatedgalactosylceramide-typeligands [72]
Murine model of gastric cancer [73]

Prevention of platelet binding to prostate
cancer cells [69]

Prevention of P-selectin adhesion of
platelets to cancer cells [70,71]

Prevention of P-selectin-mediated
metastasis progression [72]

Reduction of gastric cancer metastasis [73]

GPVI antagonists Platelet GPVI Revacept In vitro co-culture of platelets and human
colon adenocarcinoma cell line HT29 [30]

Prevention of platelet-induced COX-2
upregulation and EMT [30]

EP3 antagonist PGE2 receptor EP3 DG041 In vitro co-culture of platelets and human
colon adenocarcinoma cell line HT29 [29]

Prevention of platelet-induced EMT and
migration (disruption of cancer cell

metastatic potential) [29]
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3.2. P2Y12 Receptor Antagonists

The role of naturally occurring adenine-based purinergic compounds in platelet function is highly
organized in a coordinated system of membrane receptors and enzymatic chain [74].

Platelets bear two ATP metabotropic, G-protein coupled receptors, namely P2Y1 and P2Y12 and
one ATP ionotropic receptor, P2X1 [74]. Co-stimulation of Gq-coupled P2Y1 receptors (P2Y-R) and
Gi-coupled P2Y12 receptor (P2Y12-R) pathways is required for a full platelet aggregation induced
by ADP [75], and a sustained P2Y12-R activation contributes to thrombus formation. P2X1 receptor
amplifies the aggregation response to a submaximal concentration of the agonist by a mechanism
mainly involving Ca2+ influx [76].

The expression of P2Y12-R once considered restricted to platelets [77], is also shown in other types
of cells including microglia, vascular smooth muscle cells and eosinophils [78–80]. Thus, a role in
inflammation and immune modulation is suggested for this purinergic receptor [81,82].

On the other hand, the expression of P2Y12-R in cancer cells is still poorly studied [83]. P2Y12-R has
been detected in both glioma and astrocytoma cells, where it drives a proliferative response [84,85].
This purinergic receptor has also been reported in human breast cancer cell lines, including MCF-7
and MDA-MB-231, where its expression is increased under stress conditions, such as serum starvation
or cisplatin treatment, thus suggesting a role in chemotherapy resistance [86]. This hypothesis is
supported by the evidence that in mouse mammary carcinoma cells 4T1, 2-MeSAMP, a competitive
P2Y12-R inhibitor, is also able to reduce the cisplatin-mediated increase of hypoxia-inducible factor
1 alpha, a transcription factor involved in the resistance to cytotoxic therapy, and to increase
mechanisms of DNA-damage repair [86].

Currently, only P2Y12-R antagonists are in clinical use as antiplatelet drugs. These agents,
which are the most widely prescribed compounds in CV disease after aspirin, include thienopyridines
(ticlopidine, clopidogrel, prasugrel) inhibiting P2Y12-R through an irreversible mechanism, and another
class of agents, such as ticagrelor, cangrelor, and elinogrel, which act as reversible antagonists [87,88].

In a study performed in an animal model of chronic immune-mediated hepatitis B, which evolved
towards hepatocellular carcinoma, the treatment with low-dose aspirin, clopidogrel, or more significantly
the combined therapy with the two drugs reduced not only the development of the tumor but also the
numbers of deaths [58] (Table 1).

Moreover, in a model of orthotopic ovarian cancer, induced by the injection of the A2780 human
ovarian cancer cells into nude mice, the reversible P2Y12-R inhibitor ticagrelor diminished the growth
of primary tumors when administered by daily gavage [89]. The role of P2Y12-R in this kind of cancer
is strengthened by the evidence that, when ID8-VEGF murine ovarian cancer cells were injected into
the peritoneum of mice with deletion of the P2Y12-R−/− mice, tumor growth was reduced by 93%
with respect to wild-type animals [89].

P2Y12-R seems to play a role also in tumor dissemination. Ticlopidine administered p.o. in a rat
model of spontaneous pulmonary metastasis of Lewis lung carcinoma was reported to suppress the
dissemination process [59]. Moreover, in animal models of spontaneous or experimentally induced
lung metastasis, obtained by injecting Lewis lung carcinoma cells or B16 melanoma cells, respectively,
the P2Y12-R deficiency was reported to be linked to a reduced weight of metastasis [90].

Recently, in vitro studies have shown that the blockage of the platelet P2Y12 receptor by ticagrelor
affects EMT and migration induced by the exposure of HT29 cells to platelets [29] (Table 1). These effects
were associated with the simultaneous inhibition of platelet TXB2 and PGE2. Reduced PGE2 production
in platelet–cancer cell crosstalk may prevent the activation of the PGE2 receptor EP4 on HT29 cells,
which promotes EMT and migration through the induction of Twist1. In fact, Twist1 is involved in
the downregulation of E-cadherin and the upregulation of RAC1 (Ras-related C3 botulinum toxin
substrate 1), a small G-protein of the Rho family [29].

Also, ticagrelor has been shown to impair in vitro the interaction of several human mammary
cancer cell lines, from the poorly metastatic MCF-7 to more aggressive MDA-MB-468, and
MDA-MB-231, with platelets [60] (Table 1). This effect was partially dependent on the ability of
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ticagrelor to reduce the surface expression of platelet P-selectin induced by ADP, thus affecting the
interaction of platelets with P-selectin glycoprotein ligand-1 expressed by the cancer cells [60].

Ticagrelor reduced the lung colony-forming units and improved survival in an orthotopic 4T1
breast cancer model obtained by inoculating 4T1 mammary carcinoma cells into the mammary pad of
female BALB/c mice (Table 1). Interestingly, the drug was also able to diminish, in a significant manner,
the number of tumor cell-platelet aggregates present in the lung at 10, 30, and 60 min following the
intravenous administration of 4T1 cells [60].

Although these findings suggest a role for P2Y12-R in mediating platelet–cancer cell crosstalk
and provide evidence for the use of P2Y12-R antagonists as an additional strategy in chemotherapy,
no results from RCTs aimed at assessing their effect on cancer and metastasis are available. On the
contrary, some concerns about the safety of the antiplatelet therapy targeting P2Y12-R arose from
the results of two large RCTs, the Therapeutic Outcomes by Optimizing Platelet Inhibition with
Prasugrel—Thrombolysis in Myocardial Infarction (TRITON-TIMI) and the Dual Antiplatelet Therapy
(DAPT) trial [91–93]. In the first one, an increase in solid tumors was associated with the use
of prasugrel, whereas in the second trial, higher rates of death, due to both cancer and trauma,
were detected in patients treated with clopidogrel. However, a systematic review and meta-analysis
on cancer event rate and mortality following thienopyridine use showed that there is no increased risk
with the use of P2Y12-R antagonists [94]. These results supported a previous meta-analysis conducted
by the Food and Drug Administration of all the long-term RCTs on dual antiplatelet therapy with
aspirin and clopidogrel given for 12 months or longer, which stated that the P2Y12-R antagonist did
not modify the risk of cancer-related deaths [95].

Further mechanistic studies are necessary to clarify the possible contribution of P2Y12-R blockage
in extraplatelet cells to the anticancer effect of P2Y12-R antagonists. Moreover, it is required to verify
the potential improvement in efficacy by their co-administration with low-dose aspirin.

3.3. Thrombin Receptor Antagonists

Thrombin is a serine protease that exerts a key role in the coagulation cascade by cleaving
fibrinogen to yield fibrin and activating platelets, thus ensuring the formation of an effective blood
plug. Thrombin’s effects on platelets, in humans, are mediated by two members of PAR family, PAR-1,
the primary thrombin receptor, and PAR-4 [96].

Once activated by a peculiar proteolytic mechanism, these receptors couple to different G-proteins,
with PAR-1 linking to Gq, Gi and G12/13 and PAR-4 activating Gq and G12/13 [97]. The activation
of PAR-1 coupled G-proteins results in the stimulation of different signaling pathways including
mitogen-activated protein kinase, Rho kinase, phospholipase C-β and phosphatidylinositol 3-kinase;
these factors are known to participate in the modulation of cell proliferation, migration, and
adhesion [98].

Interestingly, PAR-1 has also been detected in several types of tumors including melanoma, lung,
breast, ovarian, prostate, and gastric cancer [99–102], and, importantly, its expression levels have been
reported to associate with poor prognosis in most of these tumors [99–103].

PAR-1 has been reported to contribute to cancer cell invasion and dissemination through several
mechanisms including EMT. In A549 human lung carcinoma cells in vitro, thrombin-activated PAR-1
decreases E-cadherin and increases α-SMA protein expression, and both are markers of the EMT
process [104]. Consistently, in MCF-7 cells, a human breast cell line, doxycycline, a tetracycline with
recognized anti-tumor activity, constrains EMT by inhibiting the PAR-1/NF-κB/miR-17/E-cadherin
pathway [105]. Moreover, in 45% of 129 samples from patients with gastric cancer, intense positive
immunostaining for PAR-1 was reported [103]. This expression was associated with depth wall
invasion, peritoneal dissemination, and a higher risk of death [103].

In the human gastric adenocarcinoma cells MKN-28 and SNU-638, galectin-3,
a carbohydrate-recognition protein involved in cancer cell dissemination, increased PAR-1
expression and cell migration, using a zebrafish embryo in vivo model of cancer cell invasion [106].
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These effects were markedly reduced by PAR-1 silencing [106]. Accordingly, a parallel increase in
galectin-3 and PAR-1 expression was detected in malignant tissues from gastric cancer patients when
compared to normal samples. Also, the two proteins were found to co-localize only in the cancerous
areas of the tissue [106].

Beyond platelets and malignant cells, the expression of PAR-1 is detected in fibroblasts, macrophages,
and endothelial cells, which represent the principal cell types of the tumor microenvironment deeply
involved in cancer cell seeding and growth [107].

It has been reported that the subcutaneous injection of MC38 cells, an aggressive C57Bl/6-derived
colonic adenocarcinoma cell line, in PAR-1−/− and wild-type mice caused the development of palpable
tumors in both genotypes [108]. However, the tumors grew significantly more slowly in PAR-1−/−

mice than in control animals [108]. These data suggest a role for stromal-PAR-1 in tumor outgrowth.
However, experiments with conditional animal models in which PAR-1 gene expression is “floxed,”
and thus silenced in a cell-specific manner, are needed to corroborate this mechanism.

Although in vitro and in vivo results suggest that the control of PAR1-mediated signaling may
represent a promising strategy for the treatment of malignancy, currently only vorapaxar (SCH530348)
is approved, as a PAR-1 antagonist, for patients with a history of myocardial infarction or peripheral
arterial disease in the United States and with a history of myocardial infarction in Europe [109]. The clinical
development of atopaxar (E5555), another PAR-1 antagonist, is limited to phase 1 and phase 2 trials [110].

It has been recently reported that vorapaxar pretreatment of three different epithelial ovarian
cancer cells (SKOV-3, OVCAR-3, and CaOV-3) can reduce the thrombin-induced cell proliferation
to the basal values (Table 1). It does not seem to be an off-target effect given that, in the absence of
thrombin, vorapaxar was unable to modify the baseline levels of cell proliferation [61].

Despite the strong rationale and these encouraging effects on cancer cells in vitro, the potential
use of these drugs in long-term treatments in chemoprevention or chemotherapy seems to be not
viable due to their possible side effects, including the significantly increased risk of bleeding [109].

Finally, PAR-1 may be of interest for the development of a novel approach to pathological
conditions not directly linked to tumorigenesis or cancer cell dissemination, but associated with
cancer therapy such as the intestinal radiation injury. Interestingly, in a rat model of intestinal
radiation-induced mucositis, the short-term administration of SCH602539, a vorapaxar analog, was
effective at reducing early inflammatory and proliferative effects [111].

3.4. Glycoprotein IIb/IIIa Antagonists

Integrins represent a broad family of transmembrane adhesion receptors involved in cell–cell and
cell–extracellular matrix interactions. Among them, glycoprotein (GP) IIb/IIIa (also known as αIIbβ3)
is the most abundant receptor expressed in platelets. On the GPIIb/IIIa receptor, two main binding
sites are present. One recognizes the amino acid motif Arginyl-glycyl-aspartic acid (RGD) found on
multiple ligands, including fibronectin, von Willebrand factor (vWf), vitronectin and fibrinogen. The other
binding site interacts with fibrinogen via the peptide sequence lysine-glutamine-alanine-glycine-aspartic
acid-valine (KQAGDV) [112]. GPIIb/IIIa participates in hemostasis and thrombosis by the crosslinking of
neighboring platelets mainly through the binding of fibrinogen [113,114]. In fact, fibrinogen contains two
RGD sequences and the KQAGDV sequence [115]. However, fibrinogen-independent platelet aggregation
in vitro and in vivo has been described [116–118] and may play a role in TCIPA [34].

In vivo studies have demonstrated that the inhibition of platelet GPIIb/IIIa could restrain lung
colonization of cancer cells [119,120]. Interestingly, a role for platelet GPIIb/IIIa in bone metastasis was also
pointed out. In fact, in a mouse model of osteolytic bone metastasis, obtained through the injection of B16
melanoma cells into the left cardiac ventricle, the bone lesions were developed by only 4% of β3integrin−/−

mice compared to 74% of β3integrin+/+ mice [121]. Moreover, the pharmacological inhibition of murine
GPIIb/IIIa by ML464, orally administered to the β3integrin+/+ before the B16 cell injection, markedly
reduced the number of bone metastasis and also the number and size of visceral metastasis [121].
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More recently, it has been reported that the use of JON/A, a blocking antibody against GPIIb/IIIa,
can markedly reduce the adhesion of B16 melanoma cells in vitro to immobilized murine platelets
without affecting their number [122]. A role of this integrin in platelet–cancer cell interaction has
been shown in melanoma cells (M3Dau cell line) where a GPIIb/IIIa-like integrin was reported to
guarantee a direct binding with the platelet GPIIb/IIIa counterpart [123]. Thus, even though the role
of GPIIb/IIIa in the platelet–cancer cell crosstalk has to be further clarified, this integrin represents an
attractive chemotherapeutic target.

Currently, three GPIIb/IIIa blockers, namely abciximab, eptifibatide, and tirofiban, are used in
clinical practice to prevent ischemic events in high-risk patients [124–126].

Up to now, few in vitro studies have shown the capability of these agents to affect cancer
cell proliferation and migration. Tirofiban and eptifibatide have been reported to constrain tumor
cell invasive potential in HSC-3 human tongue squamous cell line and human breast carcinoma
MDA-MB231 cells, respectively (Table 1) [63,126]. Abciximab and eptifibatide have been shown to
cause apoptosis in MCF-7 human breast cancer cells [62] (Table 1).

All these drugs can be administered only by intravenous injection and enhanced risk for serious
adverse events, such as bleeding, is associated with their use [127]. These factors may limit their
long-term use as chemotherapeutic agents.

Unfortunately, the attempt to develop GPIIb/IIIa blockers administrable p.o., such as lotrafiban,
xemilofiban, orbofiban, and sibrafiban, have shown, in all the undertaken clinical studies, an increased
risk of mortality associated with their use [128].

As a consequence of these negative outcomes, the development of further oral GPIIb-IIIa
antagonists was abandoned, but the interest towards a therapeutic strategy involving this integrin was
not. Thus, novel blockers were designed to bind only the activated GPIIb/IIIa receptors.

A human single-chain antibody scFv MA2 has been developed that is unable to cause
conformational changes but can inhibit fibrinogen binding to platelets. The novel compound has
been tested in an animal model of thrombosis by using C57BL/mice in which filter paper saturated
with ferric chloride was positioned under the right carotid artery for 3 min [129]. It showed an
antithrombotic potency similar to tirofiban and eptifibatide when infused through the tail vein before
the ferric chloride treatment, without significantly prolonging bleeding time [129].

Although no data are yet available on the potential effects of scFvMA2 in tumorigenesis, this
compound can be used as a novel diagnostic tool. Indeed, an scFv that can bind to the active
conformation of GPIIb/IIIa in mouse, or human platelets, has been conjugated with different
types of contrast agents for fluorescence, PET, and ultrasound imaging (namely Cy7, 64Cu and
ultrasound-enhancing microbubbles). Irrespective of the coupling tracer, this innovative approach
allowed us to individuate activated platelets within the tumor microenvironment with high specificity,
and sensitivity and give an accurate anatomical view of the tumor itself. The study was carried out
in four different human tumor xenograft mouse models, including SKBr3 and MDA-MB-231 breast
cancer, HT-1080 fibrosarcoma, and Ramos Burkitt’s lymphoma [130]. Further studies are needed
using these GPIIb/IIIa-based contrast agents to confirm their possible use as an auxiliary non-invasive
method for the detection and imaging of cancer and metastatic lesions.

4. Novel Antiplatelet Agents in Clinical Development

4.1. GPVI Blockers

GPVI is the principal human platelet collagen receptor and is involved in platelet recruitment in
response to vascular injury [131]. The interaction of platelet GPVI with immobilized collagen in the
extracellular matrix initiates platelet signaling pathways essential for platelet activation and thrombus
formation [131]. Moreover, GPVI ligation mediates a panel of platelet responses including platelet
spreading, granule secretion and integrin αIIbβ3-dependent aggregation [131].
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The use of anti-GPVI antibodies or the soluble GPVI receptor has been proposed to inhibit
the interaction of collagen with platelet GPVI [132]. Revacept, a novel antiplatelet agent in clinical
development, is a fusion protein of the dimeric form of the soluble GPVI receptor with the Fc
immunoglobulin component, which binds to collagen at the sites of vascular injury. Thus, revacept
may prevent platelet adhesion and consecutive thrombus formation at the site of vascular injury [132].
In a clinical phase I study, revacept inhibited collagen-induced platelet aggregation in a dose-dependent
fashion while not affecting ADP- or thrombin-dependent platelet aggregation [133]. Interestingly, the agent
did not affect general hemostasis, as determined by measuring bleeding times, or coagulation (assessed by
evaluating activated partial thromboplastin time and international normalized ratio) [133]. Results from
phase II clinical studies are ongoing to determine the efficacy and the safety profiles of revacept in patients
with symptomatic carotid artery stenosis, transient ischemic attacks or stroke, and in coronary artery
disease patients [131].

In preclinical studies performed in vitro, revacept interfered with the interaction of platelets and
colorectal cancer cells HT29, thus preventing the induction of COX-2 (considered a pivotal event
in carcinogenesis) and EMT [30]. COX-2-dependent PGE2 biosynthesis caused the downregulation
of p21WAF1/CIP1 and the upregulation of cyclinB1, since these effects were prevented by rofecoxib
(a selective COX-2 inhibitor) and rescued by exogenous PGE2 [30]. Galectin-3, which contains a
collagen-like domain, was involved in the platelet-dependent induction of COX-2 in HT29 cells [30].
In fact, inhibitors of galectin-3 function [β-lactose, a dominant-negative form of galectin-3 (Gal-3C),
and anti-galectin-3 antibody M3/38] prevented the aberrant COX-2 expression. A similar result
was obtained by revacept. These findings support the role of galectin-3 and collagen receptors in
platelet–cancer cell crosstalk [30]. These results reveal that blockers of collagen binding sites, such
as revacept, and galectin-3, may represent an innovative strategy in colon cancer chemotherapy that
should be tested in experimental animals.

Consistent with the role of platelet GPVI in metastasis formation, it has been shown that in GPVI
deficient mice, the injection of Lewis Lung carcinoma (D21) or melanoma B16F10.1 cells caused a
reduction of about 50% in the lung number of tumor foci compared to control wild-type mice [134].

4.2. Antagonists of the EP3 Receptor for PGE2

PGE2 activates the platelet receptors EP2, EP3, and EP4, which have opposite effects on adenylate
cyclase: EP3 inhibits, whereas EP2 and EP4 activate the enzyme [49]. Some lines of evidence show
that EP3-induced inhibition of adenylate cyclase predominates over EP2 and EP4 activations [135,136].
PGE2 alone does not cause platelet aggregation, but sensitizes the platelets to aggregate in response to
different activators [136]. Deletion of EP3 on platelets reduced in vivo murine atherothrombosis [137].
Furthermore, the blocking of EP3 decreased murine pulmonary embolism and potentiated platelet
inhibition by clopidogrel without altering tail bleeding time [138]. In healthy individuals, the selective
EP3 antagonist DG-041, in clinical development (phase II), reduced platelet aggregation without
significantly altering the cutaneous bleeding time [138]. Thus, targeting the EP3 receptor might enhance
the antiplatelet effects of conventional antithrombotic agents without increasing the bleeding risk.

In platelet-cancer cell co-cultures, DG-041 can prevent platelet-induced EMT and enhanced
migratory capacity of HT29 colon cancer cells [27]. Since, EP3 receptors were expressed in platelets,
but not in HT29 cells, these effects of DG-041 were mediated by the selective blockage of platelet
EP3 [29]. The efficacy of EP3 antagonism in the prevention of tumorigenesis and metastasis has to be
proved in appropriate animal models before testing them in patients.

4.3. GPIbα Antagonists

GPIbα is a glycoprotein component of the platelet GPIb-IX-V complex that mediates adhesion
to vWf normally present in the vascular subendothelium. This event induces platelet adhesion and
platelet aggregation, particularly at high shear. Some blockers of the GPIbα are in preclinical or clinical
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development as antithrombotic agents (such as the snake venom-derived antagonist anfibatide and
humanized anti-glycoprotein Ib monoclonal antibody (h6B4-Fab)) [139] (Table 1).

Some reports have shown that blocking GPIbα may inhibit TCIPA and tumor arrest in the
vasculature [36]. However, other studies have found no impact of antibodies against GPIbα on
TCIPA [140]. Moreover, some discrepancies have been reported in an experimental metastasis model
using B16F10 melanoma cells in mice. In fact, GPIbα deletion was associated with a lower number of
lung metastases than wild-type mice, whereas functional inhibition of GPIbα by monoclonal antibodies
caused a strong increase in pulmonary metastasis [68]. However, in the presence of P-selectin deficiency,
GPIbα blockade had no enhancing effect on metastasis. These results suggest the involvement of
GPIbα in the induction of metastasis by P-selectin [68].

4.4. P-Selectin Inhibitors

P-selectin (CD62P) is a protein stored in granules of platelets and endothelial cells, i.e., α-granules
and Weibel–Palade bodies, respectively, that mediates the interaction of activated endothelial cells or
platelets with leukocytes [141]. Platelet activation is associated with P-selectin translocation to the cell
surface and the formation of platelet–monocyte aggregates, which promote vascular inflammation,
thrombosis, but also metastasis [142]. Platelet interactions with cancer cells, including colorectal
adenocarcinoma cell line Caco2 [143] and ovarian tumor epithelial cell line 59 M [144], have been
shown to be associated with the enhanced expression of P-selectin on platelets. P-selectin deletion
significantly suppresses the growth of subcutaneously implanted human colon carcinoma cells
and lung metastases from intravenously injected cells [145]. Altogether these results sustain the
contribution of P-selectin in metastasis and provide the rationale to develop anticancer strategies by
targeting the P-selectin pathway.

Anti P-selectin antibody and anti-CD24 (a sialoglycoprotein that binds P-selectin) antibody FL80
are in the preclinical stage of development [69].

We have tested the role of P-selectin in the overexpression of COX-2 in colorectal cancer HT29 cells by
the crosstalk with human platelets. However, we obtained negative results using the P-selectin antagonist
(gallolyl-N-gaba-WVDV-OH) [30]. These results suggest that the direct interaction of platelets with cancer
cells is a complex phenomenon and different cancer cell types have developed specific pathways.

5. Concluding Remarks

The results of a large number of preclinical and clinical studies with antiplatelet agents and
the availability of genetically modified mouse strains with defects in specific platelet proteins have
allowed for identifying novel roles of platelets in tumorigenesis and metastasis. Platelets play critical
roles in these settings for their capacity to release a wide array of biologically active soluble factors,
i.e., lipids and proteins, and vesicles rich in genetic materials, including miRs, which may deliver
their cargo to other cells, including cancer cells (Figure 1) [13,27,33,146]. Thus, the platelet is now
considered an essential element in the intercellular communication. Novel platelet functions involve
the capacity to activate different pathways in cancer cells, resulting in their transition to an invasive
mesenchymal-like phenotype characterized by enhanced metastatic potential. Importantly, platelet and
platelet-derived MPs may contribute to the immune escape of cancer cells [16]. Moreover, activated
platelets play a role in the development of cancer by influencing the early steps of the disease, such as
the promotion of chronic inflammation [13,16,17,27,146]. In this context, platelet activation in response
to tissue damage leads to the development of a healing program through their adhesion to injured
tissues, the release of several factors involved in angiogenesis, and the recruitment of inflammatory
and immune cells [16]. The expression of COX-2 in the stromal cellular components amplifies the
inflammatory response, which promotes the epithelial cell transformation associated with elevated
biosynthesis of COX-2-dependent PGE2 [16] (Figure 1). In this scenario, antiplatelet agents inhibit the
platelet contribution to tumorigenesis and metastasis development [27].
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Although clinical evidence of the anticancer effects by antiplatelet agents is mainly related
to the use of low-dose aspirin, a similar efficacy can be assumed for other antiplatelet agents,
in particular clopidogrel and other P2Y12 antagonists. However, their effectiveness should be tested in
population-based case-control studies and RCTs. Importantly, the possible improved anticancer effect
by the co-administration of low-dose aspirin with P2Y12 antagonists remains to be explored.

Additional evidence for the chemopreventive effects of aspirin is being sought prospectively in
ongoing primary prevention trials [27,147]. Moreover, several adjuvant trials of various low-dose aspirin
regimens have recently been initiated in patients with newly diagnosed cancers, including colorectal,
gastroesophageal, breast, and prostate cancer (e.g., the Add-Aspirin trial) [27].

The results of basic and preclinical research have identified novel platelet targets to fight against
cancer development [36]. However, the development of innovative pharmacological approaches
for cancer prevention, which involve the chronic use of drugs for a long time, should have two
essential features: (i) associated with reduced side-effects and (ii) appropriate bioavailability after oral
administration. These criteria are met by aspirin [27]. In fact, the chronic use of aspirin, even at low
doses, can be associated with enhanced risk of bleeding [27]. However, the extent of risk reduction of
both vascular events and cancer translates into an advantage [27]. Thus, the USA. Preventive Services
Task Force recommended initiating low-dose aspirin use for the primary prevention of cardiovascular
disease and colorectal cancer (and possibly other cancers) [148].

An emerging field of clinical research is related to the discovery of biomarkers to identify those
subjects who will respond to the antineoplastic effect of aspirin. In this context, genomics, transcriptomics,
and proteomics information of tumor-associated blood platelets and possibly MPs have the potential to
address this essential medical need [13]. In fact, cancer may alter the RNA profile of blood platelets that
provide specific information on the location and molecular composition of the primary tumor [149–151].
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