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Modeling Spikes in Natural and Social Phenomena
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We propose a general methodology to model natural and social phenomena characterized by
stochastic dynamics in which the occurrence of random spikes can be observed. The method uses
excitable dynamics in a multi-regime switching approach to describe dynamical systems where the
motion randomly switches between a stable dynamics and an excited dynamics. In particular we
discuss a two-regime switching model in which the stable motion is described by mean-reverting
diffusion process and the spikes dynamics by a stochastic FitzHugh-Nagumo model.

PACS numbers: 89.65.Gh, 89.75.-k
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1. Introduction

Many natural and social phenomena show
sudden and unpredictable changes of their dynamical
behavior. In such cases the motion seems to be
characterized by random switches between a stable
regime and an excited regime in which the occurrence
of spikes of very large magnitude can be observed.
Solar cycles (sunspots), planetary magnetospheres,
lithosphere dynamics and earthquakes, brain
dynamics [1, 2] as well as power prices observed
in deregulated markets represent relevant examples
[3-8]. The presence of spikes is a typical property of
excitable systems and it is observed in a wide range
of natural phenomena, as, among the others, lasers
physics, chemical reactions, ion channels, neural
systems and climate dynamics [9]. Figure 1 show
at left the historical dynamics of electricity prices
observed at the Californian electricity market (SP15)
since October 22, 2002 until January 27, 2007. Data
refer to daily base load power prices [10], calculated
as arithmetic averages of the 24 hourly market prices
(week-end days have been discarded). At the right
side, the historical behavior of the total seismic
activity observed in California since 1960 to 1985 is
shown. Data refer to weekly cumulated intensities of
earthquakes with magnitude 3.0 or more [11].
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FIG. 1. Left side: California electricity prices since October
22, 2002 until January 27, 2007. Right side: historical
behavior of the Californian total seismic activity.
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In both cases the empirical analysis reveals a
multi-regime dynamics with random switches from
one regime to another. In particular we can observe
normal stable periods in which the dynamics is
characterized by fluctuations around some long-run
mean, and turbulent periods in which the dynamics is
affected by more pronounced fluctuations with jumps
and short-lived spikes of very large magnitude.

In this paper we propose a two-regime switching
approach in order to capture the principal statistical
properties of the empirical dynamics. Regime-
switching models offer indeed the possibility to
introduce various mean-reversion rates and volatilities
depending on the state of the system thus allowing to
model the stable motion and the spike regime in a very
flexible way. We assume that the switching mechanism
between the states is governed by un unobservable
Markov process. In the two-regime model we discuss,
one regime drives the stable motion and it is described
by a mean-reverting diffusion process. The spike
regime is then modelled according to a stochastic
FitzHugh-Nagumo dynamics [12, 13]. Even if spikes in
the FHN-model are characterized by the same height
and the same time duration [14, 15|, we will show
that the regime-switching mechanism allows us to
modulate these quantities in such a way to produce
stochastic spikes of random heights and random
durations.

In the following Section we introduce the
methodology and we discuss in some detail the random
spikes generation mechanism. Some comments about
future research conclude the paper.

2. The general model

In the general model we propose, the normal
regime is described by a mean-reverting diffusion
process to account for random fluctuations around
some long run mean. The spike regime is modelled
according to a well defined transformation of the
voltage solution of a stochastic FitzHugh-Nagumo
(FHN) dynamics. The model can be cast therefore in
the following form,
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dz(t) = (po — oz (t))dt + f(z(t))dwo(t)
A oW

where z,(t) denotes the fast variable of a FHN-
dynamics of the type

edzs = (zo — 323 — y)dt @)
dy = (zs + a)dt + odw (t)

and 1 is an arbitrary transformation of this function.
We also assume that the random noise w;(t)
in the FHN-dynamics and wg(t) are uncorrelated
Brownian processes. The switches between regimes are
controlled by an unobservable Markov process, and we
cast the transition probabilities matrix in the following
form

1—§&dt 1 —ndt
r= (Yt L) 3)

where £dt denotes the transition probability for the
switching from the base state to the spike regime in
the infinitesimal time interval [t,t + dtﬁ), and 1 — ndt
is the probability for the opposite transition. § and
n are assumed to be constant. In the above matrix,
the diagonal terms give the probability of remainin

in any given state during the time interval [t,t + dt],
and the off-diagonal terms represent the transition
probabilities to the other state in the same time
interval. We expect that the probability to remain
in the stable regime as well as the probability to
revert back to the stable regime are quite high.
The above model has been proposed to describe
the stochastic movements of natural logarithm . of
power prices in competitive markets [16] by assuming
constant volatility in the diffusion process and a
linear transformation of the FHN-dynamics, namely
¥(zs) = ¢ +caxs, for the spiky regime. This approach
seems quite flexible to describe dynamical systems
in which the motion randomly switches between a
stable dynamics and an excited dynamics. Although
in the FHN-dynamics the oscillations have the same
height and the same duration, in the two-regime model
the heights and the durations of the spikes can be
modulated by controlling the parameters £ and 7. As
the probability of the system to remain in the spike
regime reduces, the duration of the spike reduces itself
and we can observe the formation of spikes of different
heights. To better put in evidence this mechanism,
Figures 2 and 3 show simulated trajectories for the
zs-dynamics and for the corresponding z-dynamics by
using the following positive square-root process

{ dz(t) = (po — cox(t))dt + oo/ (t)dwo(t) (4)

z(t) = exp (c1 + cazs(t)).

The observed behavior can be explained by
considering that, if the parameter n reduces, the
system spends less time in the excited regime and,
in general, the trajectory cannot complete the whole
oscillation before reverting back to the stable motion.
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FIG. 2. zs-dynamics (left), and z-dynamics (right) in the
exponential case: the values of the transition probabilities
are 95% of remaining in the stable state and 95% of
remaining in the spike regime.

o

FIG. 3. The values of the transition probabilities are 95%
of remaining in the stable state and 5% of remaining in
the spike regime.

In particular, Figure 2 shows five spikes in the free
FHN-dynamics. By assuming that the probability
to remain in the excited state is 95%, four spikes
survive in the z-dynamics and their heights and
time amplitudes do not vary in a significant way.
The phenomenon of randomizing heights and time
durations is more evident in Figure 3, where the
probability of remaining in the excited state is
assumed to be of 5%. The five spikes in the FHN
dynamics become four in the z-dynamics, and they
are characterized by very different heights and very
short durations. Figure 4 shows simulated trajectories
for the z,-dynamics and for the corresponding z-
dynamics if a linear transformation of the FHN-
dynamics of the type ¥(zs) = c1 + cpms is used.

In this case we can distinguish three different kinds
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FIG. 4. zs-dynamics (left), and z-dynamics (right) in the
linear case: the values of the transition probabilities are
97% of remaining in the stable state and 1% of remaining
in the spike regime.

of dynamics: the first one is a stable dynamics
around some long-run mean, the second one is
characterized by medium size jumps, and the third
is a spiky dynamics. A jump occurs whenever the

system switches to the FHN-dynamics, and isolated -
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random spikes are generated if the transition happens
when the excitable dynamics is performing the large
oscillation around the stationary state [16]. In Table
1 are summarized the values of the dynamical
parameters used in the simulation. The first two
columns refer to model 4, and the remaining ones show
the value of the dynamical parameters when a linear
transformation of the FHN-dynamics is used.

Table 1. Simulation parameters.

Stable dyn.  Spikes dyn.  Stable dyn.  Spikes dyn.
o = 3.00 e=0.10 o = 10.0 e=0.10
ag = 0.30 a=1.08 ao = 0.20 a=1.08
oo = 0.50 o =0.08 oo = 0.55 o = 0.08

Cc1 = 2.97 c1 = 280
c2 = 0.90 c2 = 100

3. Concluding remarks

In this paper we have proposed a general
methodology to model dynamical systems showing
very complex behavior. In particular we discussed the
possibility to describe in a flexible way dynamical

systems in which the motion randomly switcheg
between a stable and an excited dynamics where
Jumps and spikes may occur. The methodology uses
Markovian transitions from diffusion processes to
nonlinear stochastic excitable dynamics, and this
switching mechanism produces spikes of random
heights and random durations. The proposed
approach can be generalized to excitable systems
transmitting excitation among themselves, producing
synchronization, multistability and chaos phenomena,
From this point of view, the method can be extended
introducing in the spike regime, a pair of FHN-
dynamics with diffusive coupling [17] as follows

zs3

3

€1y = Ts — —y+k(v—a)
Y=zs+a;
o3
621'1='u—-3——z+k(:c5—v)

zZ =0+ as.

It is a well know fact that, if k& > 0, the rest state
is globally stable: a finite perturbation to the rest
state causes the excitation of an element, which is
transmitted to the other, then the synchronization
occurs till the elements return to the rest state. On
the contrary, if k < 0, various types of cyclic firing
patterns emerge including chaotic firing [18].
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