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Abstract

Regime-switching models seem to well capture the main features of power prices be-
havior in deregulated markets. In a recent paper we proposed an equilibrium method-
ology to derive electricity prices dynamics from the interplay between supply and de-
mand in a stochastic environment. In particular, assuming that the supply function
is described by a power law where the exponent is a two-state strictly positive Markov
process, we derived a regime switching dynamics of power prices in which regime switches
are induced by transitions between Markov states.

In this paper we provide a dynamical model to describe the random behavior of
power prices where the only non-Brownian component of the motion is endogenously
introduced by Markov transitions in the exponent of the electricity supply curve. In
this context, the stochastic process driving the switching mechanism becomes observ-
able, and we will show that the non-Brownian component of the dynamics induced by
transitions from Markov states is responsible for jumps and spikes of very high mag-
nitude. The empirical analysis performed on three Australian markets confirms that
the proposed approach seems quite flexible and capable of incorporating the main fea-
tures of power prices time-series, thus reproducing the first four moments of log-returns
empirical distributions in a satisfactory way.

Keywords: electricity prices, stochastic processes, regime-switches, spikes.

1 Introduction

Regime-switching models are widely used in literature to describe the random character of
power prices in deregulated markets. From the pioneeristic work by Huisman and Mahieu
[1], several studies have been proposed in order to capture the main features of the observed
time behavior of power prices (see [2]-[6] and references therein for a comprehensive overview
of the topics). As a consequence of the deregulation and liberalization process, electricity
prices are determined by the interaction between demand and supply and they exhibit a
very erratic dynamics. Fig.1 shows the historical path of daily base-load power prices in
three Australian markets, namely at the New South Wales market, at the Tasmania and at
the Victoria markets.
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Figure 1: Historical behavior of power prices at the New South Wales market (left), at the Tasmania
market (central) and at the Victoria market (right) from January 1, 2006 to May 31, 2010. Market
prices are available at www.aemo.com.au and they are provided as average daily prices without
weekend days.

The resulting time series exhibit multi-regime dynamics where stable periods can be dis-
tinguished by turbulent periods in which unanticipated, short-lived extreme price changes
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may occur. After a jump, power prices are forced back to their normal level by some mean-
reversion mechanism inducing them to fluctuate around the long-run average. Regime-
switching models offer the possibility to introduce various mean-reversion rates and volatil-
ities in order to distinguish the dynamics in different states and they seem good candidates
to capture the most important observed features of historical data.

In a recent article [7], we proposed an equilibrium methodology to derive regime
switching dynamics directly by the interplay between demand and supply in a stochastic
environment. Under the hypothesis that the functional form of the electricity supply curve
is described by a power law in which the exponent is a two-state strictly positive Markov
process, we derive the dynamics of power prices from the equilibrium between demand and
supply.

In this paper we propose a dynamical model to describe the evolution of power prices
in which the only non-Brownian component of the motion is introduced in a natural way by
Markov transitions in the exponent of the electricity supply curve. Various approaches have
been proposed in literature to model jumps and spikes in power prices dynamics. Poisson
jumps [8]-[9], and other spiking mechanisms, as for example excitable dynamics [10], have
been introduced in an exogenous way to reproduce observed behavior of electricity prices
in deregulated markets. We investigate the possibility that the non-Brownian component
of the dynamics induced by transitions from Markov states in the exponent of the supply
curve can be responsible for observed jumps and spikes. This paper completes therefore
the work presented in [7], and it provides a dynamical example where the Markov process
driving the switching mechanism is observable. Such a process can be therefore estimated
from market data and, in the empirical part of the paper, we provide a model estimation
using maximum-likelihood techniques.

The paper is organized as follows. In the next Section we briefly review some basic
concepts about the proposed methodology, and we derive the main equation characterizing
the dynamics of power prices. Section 3 presents a dynamical model to describe power
prices dynamics; an empirical analysis on market data is also provided in order to test the
adaptability of the model. The analysis, performed on the New South Wales power market,
on the Tasmania and the Victoria markets, reveals that the non-Brownian component of
the motion is responsible for the high values of the kurtosis and it seems to well capture
the spiking behavior of power prices. The followed approach is quite flexible and capable
of incorporating the main features of observed prices time-series, thus reproducing the first
four moments of the empirical distributions in a satisfactory way. Some comments conclude
the paper.

2 Basic facts and results

Let us briefly recall the main ideas and the basic concepts of the methodology in order to
make the analysis self-contained (for a deeper insight see [7]).

It is well known that electricity is a very special commodity: with the exception of
hydroelectric power, it cannot be stored and must be generated at the instant it is consumed.
In general the generation process is assured by generators with low marginal costs to cover
the base load, as hydroelectric plants, nuclear power plants, and coal units. To meet peaks
in the demand, emergency units (oil and gas fired plants) with high marginal costs are
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to be put on operation [11]. The supply curve (stack function) exhibits therefore a time
variable kink after which offer prices start rising almost exponentially [12]. The demand is
highly inelastic and very sensitive to the temperature and weather conditions. Whenever the
market volume (demand) crosses the stack function in the rapidly raising part of the curve,
electricity prices may assume very high values: a spike occurs when the demand intersects
the offer curve in the almost vertical part of the curve. This may be due to unpredictable
peaks in electricity demand, and/or random movements of the supply curve reducing the
power offer in a significant way [13]. We assume therefore that the offer curve is described
by:

P (t) = h0(t)
(

q(t)
a(t)

)β(t)

(1)

where h0 is a deterministic function accounting for power-price seasonality, q(t) represents
the market volume at time t, and a(t) is a scale process responsible of random movements
of the offer curve. β(t) is a discrete, strictly positive Markov process assuming only two
values, β0 and β1, with β0 < β1 and β1 > 1. Both processes, β(t) and a(t), can capture
random movements of the offer curve due to unpredictable changes in the generation process
as outages and grid congestions as well as random power generation from renewable sources.
Anyway we will show that, without introducing any spiking mechanism in an exogenous way,
the process β(t) can be responsible of jumps and spikes of very high magnitude. To give an
example, in Fig.2 we simulated a situation in which at the same level of the market volume
the switching mechanism in the exponent of the offer curve produces very high prices. This
may happen, for example, whenever unpredictable outages reduce the offer in a significant
way thus determining price spikes also in the case of normal market volumes.
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Figure 2: Understanding the spike phenomenon as a consequence of the switching mechanism in
the offer curve: a schematic supply stack with a hypothetical demand curve superimposed. In
correspondence of the normalized volume q/a = 10, the price becomes two order of magnitude
greater when the Markov exponent switches from β0 = 3 to β1 = 5 (for simplicity h0 has been posed
equal to 1).

In the following we will prove that transitions between Markov states in the offer curve induce
regime-switching dynamics on power prices and introduce a non-Brownian component of the
motion which can be responsible for the spiking mechanism. To see this let us recall that
the demand of electricity is fairly inelastic and it can be represented by a quasi-vertical line.
We assume that it can be approximated by,

q(t) = D(t), (2)
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for some stochastic process D(t) which is independent of the power price [14]. The equilib-
rium between supply and demand is assured if

P (t) = h0(t)
(

D(t)
a(t)

)β(t)

, (3)

so that log-prices can be represented by the following process:

log P (t) = log h0(t) + β(t) [log D(t)− log a(t)] . (4)

The seasonal component of electricity prices is more pronounced with respect to other com-
modities due to the sensitivity of the demand to climate conditions, such as the temperature
or the number of daylight hours. In order to consider seasonality effects, we assume that
log P (t) = log h0(t) + p(t) where p(t) is the stochastic component of log-prices. Without
loss of generality we also assume that log D(t) and log a(t) have the same deterministic
component fx(t), i.e. log D(t) = fx(t) + x(t) and log a(t) = fx(t) + y(t). We finally get:

p(t) = β(t) [x(t)− y(t)] , (5)

where x(t) accounts for the stochastic behavior of the demand, and β(t) and y(t) are re-
sponsible for random movements of the offer curve. The dynamics of power prices is then
obtained from the time evolution of both processes, x(t) and y(t), and from the dynamics
of the Markov process β(t). We assume that the two-state process β(t) is independent of
both process x(t) and y(t), and that the transition probability matrix can be cast in the
following form:

π =
(

1− γdt ηdt
γdt 1− ηdt

)
, (6)

where γdt denotes the transition probability for the switching from the base state β0 to
β1 in the infinitesimal time interval [t, t + dt] and ηdt is the probability for the opposite
transition. As shown in [7], if the supply curve makes a transition from state i to state j
in the infinitesimal time interval [t, t + dt], that is if β(t) switches from state i to state j
(i, j = 0, 1), we obtain

dp(t) = βj [dx(t)− dy(t)] +
βj − βi

βi
p(t), (7)

where βi is the value of the Markov exponent of the supply curve in the state i and βj

is the Markov exponent in the state j. Apart from the dynamics of x(t) and y(t), the
switching mechanism in the supply curve introduces the non-Brownian component of the
motion given by the last term in equation (7). In this paper we investigate the possibility
that such a component can be responsible for the spikes generation. To do this we assume
that the dynamics of both processes, x(t) and y(t), is described by a mean-reverting diffusion
process with constant volatility. As proved in [7] the random evolution of power prices can
be cast therefore in the following final form:

dp(t) =
(
µij − αij p(t)

)
dt + σij dWij +

βj − βi

βi
p(t). (8)

Equation (8) clearly shows that the ratio between βj and βi is observable in the dynamics
of power prices and it can be estimated from market data. In the next Section we provide
an empirical analysis in order to test the adaptability of the model to market data.
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3 The model

In this Section we model the random behavior of power prices according to the stochastic
process (8). If we look at equation (8) we can observe that the dynamics of transitions
between Markov states (transitions i → j and j → i) can be modelled independently from
the dynamics of the stable regime (transition i → i) and of the turbulent regime (transition
j → j). It is only during transitions i → j and j → i that the Markov parameters βi

and βj become observable, specifically in the ratio βi/βj . The following parametrization is
therefore adopted:

dp(t) =





(
µ0 − α0 p(t)

)
dt + σ0 dW0

(
µ01 − α01 p(t)

)
dt + σ01 dW01 +

β1 − β0

β0
p(t)

(
µ1 − α1 p(t)

)
dt + σ1 dW1

(
µ10 − α10 p(t)

)
dt + σ10 dW10 +

β0 − β1

β1
p(t)

(9)

in which the Brownian motions W0, W01, W1, and W10 are assumed mutually independent.
Even if the process β(t) is a two-state Markov process, the dynamics of power prices can be
described in terms of four distinct processes: the first one governs the dynamics in the base
state; the second describes the dynamics of transitions from state 0 to state 1; the third
accounts for the dynamics in the excited state, and the fourth is responsible for transitions
from state 1 to the base state 0. In this dynamical representation the transition probability
matrix is described by the following 4× 4 matrix, directly obtained by the two-state matrix
(6):

π =




1− γ 0 0 1− γ
γ 0 0 γ
0 1− η 1− η 0
0 η η 0


 . (10)

In the next part of this Section we estimate the model on three Australian markets, namely
the New South Wales market, the Tasmania and the Victoria markets to test the adaptability
of the model to market data. We will show that the followed approach seems capable of
incorporating the main features of observed power prices, thus reproducing quite well the
first four moments of the empirical distributions of log-returns.

3.1 The empirical analysis

The data set consists of day-ahead base-load prices, calculated as daily averages of market
prices from January 1, 2006 to May 31, 2010. Market prices are available at www.aemo.com.au
and they are provided as average daily prices without weekend days. The behavior of elec-
tricity prices time-series is depicted in Fig.1. Seasonal effects can be captured by adopting
the following decomposition:

log P (t) = fp(t) + p(t), (11)
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where fp(t) ≡ log h0(t) is a deterministic function of time. To account for the semiannual
periodicity, due to the fact that power prices may be higher in winter time and in summer
time, we assume that the seasonality component of the motion is given by:

fp(t) = b0 + b1
t

261
+ b2 cos

(
b3 +

2π t

261

)
+ b4 cos

(
b5 +

4π t

261

)
, (12)

in which a linear trend has been included. We estimated the parameters of the deterministic
component by fitting fp(t) to market data using ordinary least-squares (OLS) techniques.
The results are reported in Table 1.

N. South Wales Tasmania Victoria
b0 3.6319 3.8562 3.7417
b1 -0.0270 -0.0540 -0.0686
b2 0.1278 0.1293 0.1486
b3 -3.1661 -2.1071 -2.7574
b4 0.1204 0.1144 0.0836
b5 6.6588 6.9652 6.3807

Table 1: Estimated parameters of the seasonal component.

In Fig.3 the deterministic component has been superimposed on the historical path of market
log-prices.
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Figure 3: Daily log-prices and their seasonal components (thick red lines) for the New South Wales
market (left), for the Tasmania market (central) and for the Victoria market (right) since January
1, 2006 until May 31, 2010.

Fig.4 shows the historical behavior of deseasonalized log-returns. The rule of demand and
supply has strongly increased the volatility of price returns: deregulated markets exhibit,
in general, large price fluctuations, and the presence of jumps and spikes is revealed by
non-normal empirical distributions with very high values of the kurtosis. The descriptive
statistics of log-returns observed in the markets under investigation is displayed in Table 2.
We observe that the Tasmania market presents a positive skewness unlike the Victoria and
the New South Wales markets in which the skewness assumes negative values. Such a
statistical parameter is related to the properties of upward versus downward jumps. For
example, negative skewness indicates that price drops (downward jumps) have on average
a greater weight than upward jumps. To account for the sign and the magnitude of the
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Figure 4: Deseasonalized log-returns at the New South Wales market (right), at the Tasmania
market (central) and at the Victoria market (right), from January 1, 2006 to May 31, 2010.

N. South Wales Tasmania Victoria
Mean 0.0003 - 0.0001 0.0006
Std.Dev. 0.4994 0.4295 0.4426
Skewness - 0.7105 0.2739 - 0.3666
Kurtosis 21.8111 19.0504 26.0731

Table 2: Descriptive statistics.

skewness parameter as well as for the high values of the kurtosis, a parsimonious version of
the model (9) can be proposed. First of all, to ensure that the reverting back dynamics (the
fourth regime) drives the system toward the stable regime to fluctuate around the long-run
mean, we impose that α0 = α10 and µ0 = µ10. Further, we assume that both, the dynamics
of the excited regime and the dynamics governing the transition between the stable regime
and the excited regime, have the same mean-reversion parameter, α01 = α1. To account
for positive and negative skewness, a different choice regarding µ01 and µ1 is adopted.
The markets under observation exhibit positive skewness (Tasmania market) and negative
skewness (New South Wales and Victoria markets). Since the non-Brownian component
in the dynamics is proportional to log-prices, to get positive skewness one possibility is to
require that µ1 is positive and greater than µ0, thus enhancing the average weight of upward
jumps. To do this we require that in the case of the Tasmania market, the only exhibiting
positive skewness, we pose µ01 = µ0 without constraining µ1. On the contrary, for the New
South Wales and the Victoria markets, both with negative skewness, we require µ1 = µ0

without constraints on µ01.
The model has been estimated by maximum-likelihood using the Hamilton filtering

technique [15]-[16]. Following this approach, the likelihood function in multi-regime dy-
namics can be expressed as a linear combination of likelihoods of the single regimes. The
estimation results are summarized in Table 3.
The proposed model seems to well capture the main features of power prices dynamics
observed in real markets. In particular, the model distinguishes the stable regime from
the turbulent one in the sense that the values of the mean-reversion parameter and of the
volatility are lower in the stable regime with respect to the excited one. Furthermore the
ratio β1/β0 is greater than one, thus revealing that the switching mechanism in the supply
curve works well in arising the exponent when the system make a transition from the base
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N. South Wales Tasmania Victoria
µ0 = µ10 -0.0291 -0.0085 -0.0278

(0.0058) (0.0049) (0.0070)
α0 = α10 0.1436 0.0538 0.1537

(0.0161) (0.0170) (0.0171)
σ0 0.1462 0.1118 0.1675

(0.0051) (0.0081) (0.0094)
µ01 0.4194 -0.0085 0.3302

(0.0596) (0.0049) (0.1560)
α01 = α1 0.6148 0.8870 0.6094

(0.1067) (0.1131) (0.1104)
σ01 0.3025 0.3135 0.4125

(0.0520) (0.0595) (0.0997)
µ1 -0.0291 0.2572 -0.0278

(0.0058) (0.1202) (0.0070)
σ1 1.3752 0.9787 1.3647

(0.1373) (0.1013) (0.1444)
σ10 0.4984 0.3539 0.4075

(0.0487) (0.0356) (0.0551)
β1/β0 2.0146 1.6385 1.6820

(0.1487) (0.1128) (0.1846)
1− γ 0.9177 0.8184 0.9185

(0.0114) (0.0308) (0.0229)
1− η 0.4794 0.4101 0.4261

(0.0592) (0.0610) (0.0635)
LL 5.8013 -6.0138 54.7355

Table 3: Estimation results. Standard errors are between parentheses.

state to the excited state. Table 4 displays the first four moments of the model distribution
of log-returns, obtained by averaging over 5000 simulated paths randomly generated using
estimated parameters. The statistical analysis of simulated trajectories reveals a very inter-
esting agreement with experimental data: without introducing Poisson jumps in the model
as in [13] and [7], the first four moments of log-returns distributions are very close to the
empirical ones. In particular, the proposed model allows for very high values of the kurtosis.
To complete the empirical analysis, Fig.5 compares the historical path of market prices with
some simulated trajectories generated by the estimated model using Monte Carlo techniques,
and Table 5 reports the first four moments of the simulated trajectories. The model seems
capable to capture the main features of power prices dynamics observed in real markets.

4 Concluding remarks

Within the context of an equilibrium methodology where the supply curve follows a power
law in which the exponent is a two-state strictly positive Markov process, we proposed a
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N. South Wales Tasmania Victoria
Mean 0.0006 0.0004 0.0009

(0.0005) (0.0005) (0.0005)
Std.Dev. 0.4948 0.4383 0.4472

(0.0457) (0.0333) (0.0418)
Skewness - 0.4524 0.5868 - 0.3724

(0.5765) (0.4965) (0.6884)
Kurtosis 20.3313 16.2756 21.8586

(4.2475) (3.1351) (5.5528)

Table 4: Simulated moments. Standards errors are between parentheses.
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Figure 5: Historical prices and simulated price trajectories at the New South Wales (upper), at the
Tasmania (middle), and at the Victoria (lower) markets.

regime-switching model to capture the main features of power prices in deregulated markets.
Switches in the dynamics are induced by transitions of the offer curve between Markov
exponents. We also showed that the model accounts also for jumps and spikes without
introducing spiking mechanisms in a exogenous way. As discussed in the text, the switching
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N. South Wales Mean Std.Dev. Skewness Kurtosis
Observed 0.0003 0.4994 -0.7105 21.8111
Simulated 1 0.0008 0.4980 -0.6379 21.0198
Simulated 2 0.0006 0.4778 -0.7410 20.1859

Tasmania Mean Std.Dev. Skewness Kurtosis
Observed -0.0001 0.4295 0.2739 19.0504
Simulated 1 -0.0001 0.4271 0.3332 18.5960
Simulated 2 0.0001 0.4214 0.3352 18.2837

Victoria Mean Std.Dev. Skewness Kurtosis
Observed 0.0006 0.4426 -0.3666 26.0731
Simulated 1 0.0006 0.4493 -0.3176 25.8648
Simulated 2 0.0007 0.4495 -0.2873 26.4104

Table 5: Descriptive statistics of observed and simulated trajectories.

mechanism in the supply function induces in a natural way a non-Brownian component which
is responsible for jumps and spikes of very high magnitude. The model is flexible enough to
account for non-zero skewness and very high values of the kurtosis. The empirical analysis
reveals that the proposed dynamics reproduces market data in a satisfactory way: the first
four moments of the model distributions of log-returns are very close to the empirical ones.
It is worth notice that a good representation of observed price movements is crucial to value
power derivatives and to define risk management strategies. In particular fitting the first
four moments of the empirical distributions is very important for pricing purposes in which
the calculus of expectations values is a crucial task [17].
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