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Power prices dynamics in deregulated markets appears variable and unpredictable with jumps,

spikes, and high, non constant, volatility. Empirical distributions of log-returns are characterized
by large values of the standard deviation as well as non-zero skewness and very high kurtosis. In
this paper we discuss a reduced-form methodology to describe the dynamics of electricity prices
in order to capture the statistical properties observed in real markets. Particular attention will be
devoted to regime-switching models which seem good candidates to incorporate the main features of
power prices as the seasonality component, the occurrence of stable and turbulent periods, as well as
jumps and spikes. Regime-switching models o�er, indeed, the possibility to introduce various mean-
reversion rates and volatilities depending on the state of the system thus enhancing the �exibility of
the reduced-form approach. An empirical analysis performed on market data is provided to test the
adaptability of the discussed models in replicating the �rst four moment of the empirical log-returns
distributions.
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1. Introduction

Until early 90's the electricity sector has been
a vertically integrated industry in which all the
phases of the process, the generation of electric
power, transmission, distribution and retailing, were
a well organized monopoly. In the last decade several
countries all around the world decided to undertake
a liberalization process in order to bring competition
to the previously monopolistic market. In deregulated
markets electricity is a traded commodity and its price
is determined according to the rule of supply and
demand. As a consequence, the power prices dynamics
appears variable and unpredictable with jumps and
spikes, and high, non constant, volatility. Empirical
distributions of log-returns are characterized by large
values of the standard deviation as well as non-
zero skewness and very high kurtosis. To a deeper
insight, the presence of stable and turbulent periods
can be also observed: prices experience normal stable
periods in which they �uctuate around some long-run
mean, and turbulent periods in which the dynamics is
characterized by higher values of the mean-reversion
parameter and of the volatility. Randomness in the
time evolution of prices implies electricity price risk,
which can be hedged if and only if we can dispose
of good models to describe the main characteristics
of the dynamics. In this paper we propose a
reduced-form methodology [1, 2] to model electricity
prices dynamics in order to reproduce the statistical
properties of prices observed in real markets. Within
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this approach, regime-switching models seem good
candidates to describe the main characteristic of the
prices dynamics [3�6]. Regime-switching models o�er
in fact the possibility to introduce various mean-
reversion rates and volatilities depending on the state
of the system thus enhancing the adaptability of
the modeling procedure. This approach is �exible
enough to distinguish the normal stable motion
from the turbulent one, and to reproduce jumps
and spiky dynamics. Furthermore, regime-switching
models can be very useful for �nancial applications
and for energy risk-management: option prices, as well
as forward and futures prices, can be obtained as
solutions of well de�ned partial di�erential equations
and are smooth functions of the spot price [7, 8].
Finally, reduced-form models can be incorporated
in a demand-supply framework in a quite natural
way. Within a demand-supply context, we show that
electricity prices dynamics in deregulated markets can
be described by modeling the movements of the power
margin level in a stochastic environment [9].

The paper is organized as follows. Section 2
presents basic and stylized facts about electricity: the
mean-reversion property and the spike phenomenon
are then described from a structural perspective of
the power market. The reduced-form methodology is
discussed in Section 3: four basic models are described
in details, namely a jump-di�usion model, and three
regime-switching models. The empirical analysis is
developed in Section 4 in which the models are
estimated on market data. A comparison between the
empirical moments of the log-returns distributions and
the estimated model distributions is discussed. Section
5 describes the possibility to include the proposed
models within a demand-supply framework. Some
comments conclude the paper.
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2. Basic facts

In attempt to model a phenomenon, it is very
important to put in evidence the structural features
of the phenomenon itself on the basis of the observed
realizations. Secondly, the basic underlying variables
must be identi�ed, and then, the dynamics driving
the time evolution of such variables must be speci�ed.
The objective is to obtain a good compromise between
model parsimony and adequacy to capture the main
characteristics of the phenomenon observed in the
real world. The observation of the phenomenon is
therefore of crucial importance in de�ning all these
steps. In the case of power prices we can use, as
empirical basis, the realized market prices. Figures
1 and 2 show the historical behavior of daily base
load power prices, calculated as arithmetic averages
of the 24 hourly market prices (week-end days
have been discarded), respectively at the European
Energy Exchange (EEX), the Scandinavian Nord Pool
Elspot, and in two American markets, namely at
the New England market (NEPOOL) and in the
Texas market. The empirical analysis reveals that
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FIG. 1. Historical behavior of prices at EEX (left) and
at Nord Pool (right) since January 2, 2001 until June 19,
2004.
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FIG. 2. Historical behavior of prices at EEX (left) and
at Nord Pool (right) since January 2, 2001 until June 19,
2004.

observed prices are variable and unpredictable with
seasonality, mean-reversion, high volatility, jumps and
pronounced spikes. To a deeper insight, the presence
of stable and turbulent periods can be also observed:
prices experience normal stable periods in which they
�uctuate around some long-run mean, and turbulent
periods in which the dynamics is characterized by

higher values of the mean-reversion and of the
volatility parameters. Furthermore, the motion is
a�ected by jumps and short-lived spikes of very large
magnitude. The historical behavior of log-returns,
calculated as daily changes in natural logarithm of the
base load prices, is depicted in Figures 3 and 4. Table
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FIG. 3. Historical behavior of log-returns at EEX (left)
and at Nord Pool (right) since January 2, 2001 until June
19, 2004.
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FIG. 4. Historical behavior of log-returns at NEPOOL
(left) and in the Texas market (right) since October 22,
2002 until January 15, 2007.

1 displays the descriptive statistics of price returns.
All these markets exhibit large prices �uctuations and
the presence of jumps and spikes is revealed by non-
normal empirical distributions with very high values
of the standard deviation as well as non-zero skewness
and large values of the kurtosis. Figures 5 and 6
show the empirical distributions of log-returns and
a comparison with the �tted normal distribution is
proposed. There is evidence that log-returns are non-
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FIG. 5. Empirical distribution of log-returns at EEX (left)
and at Nord Pool (right) since January 2, 2001 until June
19, 2004.

normally distributed, and the presence of jumps and
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Table 1. Descriptive statistics.

EEX Nord Pool NEPOOL Texas
Start Jan 2, Jan 2, Oct 22, Oct 22,

2001 2001 2002 2002
End June 19, June 19, Jan 15, Jan 15,

2004 2004 2007 2007
n 904 904 1103 1103
Min -1.9627 -0.6983 -2.3140 -2.3058
Max 2.3694 0.7837 2.3657 2.2591
Mean 0.0005 0.0006 0.0008 0.0004
Std. dev. 0.2797 0.0837 0.2277 0.1905
Skew 0.4677 0.5440 0.3239 -0.1211
Kurt 16.8189 26.6337 66.8421 91.5021
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FIG. 6. Empirical distribution of log-returns at NEPOOL
(left) and in the Texas market (right) since October 22,
2002 until January 15, 2007.

spikes is revealed by very high values of the daily
volatility as well as by large values of the kurtosis. The
rule of demand and supply has dramatically increased
the volatility of price returns: daily volatilities of
about 30% are frequent. Figures 5 and 6 show that
prices �uctuations are characterized by very high, non
constant volatility.
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FIG. 7. Historical volatility at EEX (left) and at Nord Pool
(right) since January 2, 2001 until June 19, 2004.

2.1. Electricity: a very special commodity

The unusual behavior of power prices can be
explained on the basis of some well known properties
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FIG. 8. Historical volatility at NEPOOL (left) and in the
Texas market (right) since October 22, 2002 until January
15, 2007.

of electricity. Electricity is in fact a very special
commodity: with the exception of hydroelectric power,
it cannot be stored and must be generated at the
instant it is consumed. As reported in Table 2,
the Nord Pool market is the unique market in
our analysis which has a signi�cant hydropower
production. Nevertheless, all these markets show
large prices �uctuations, with extreme jump behavior
observed at NEPOOL and in the Texas market. It has
been pointed out that, due to the storage capability,
hydroelectric energy generation can dampen prices
�uctuations and reduce the volatility in the short
term, but not in the long term [4]. If we look at the
standard deviation of log-returns, Nord Pool exhibits
the lowest value (8.37%), signi�cantly below the
values observed in the other markets. The interaction

Table 2. Power generation by source in 2002.

Germany Nordic Countr. New Eng. Texas
Hydro 4 % 47 % 5 % 0 %
Nuclear 28 % 24 % 27 % 9 %
Conv.
thermal 62 % 27 % 61 % 88 %
Other
sources 6 % 2 % 7 % 3 %

between demand and supply of electricity is very
peculiar: the demand is highly inelastic and very
sensitive to the temperature and weather conditions;
the generation process, i.e. the supply of electricity,
is assured by generators with low marginal costs to
cover the base load, as hydroelectric plants, nuclear
power plants, and coal units. To meet peaks in the
demand, emergency units (oil and gas �red plants)
with high marginal cost are to be put on operation.
Supply curves exhibit therefore a time variable kink
after which o�er prices rise almost vertically [6].
Figure 9 illustrates the price formation in a demand-
supply context. Whenever the load (demand) crosses
the o�er curve in the rapidly raising part of the
curve, electricity prices may assume very high values:

Nonlinear Phenomena in Complex Systems Vol. 11, no. 2, 2008
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FIG. 9. A schematic supply stack with an hypothetical
demand curve superimposed in the �at part of the supply
(left) and in the almost vertical part of the supply (right).

a spike occurs when the load intersect the o�er curve
in the almost vertical part of the curve. This may
be due to peaks in electricity demand, forced and
planned outages, or shortages in electricity generation
as consequences of �uctuations of fuel prices. Finally,
electricity must be transported in a transmission
network and the perfect operation of the power
system is assured if and only if the instantaneous
and continuous balancing between the electricity
injected into the grid and the energy withdrawn is
achieved, if electricity �ows along each power line
does not exceed the maximum transmission capacity,
and if the frequency and the voltage of electricity
on the grid is kept within a narrow range [10].
Grid congestions and outages may occur whenever
the above quoted constraints are violated. Power
prices are therefore very sensitive to the demand,
outages and grid congestions: shortages in electricity
generation move randomly the position of the kink
in the o�er curve and jointly with random peaks in
electricity demand may determine short-lived spikes
of very large magnitude.

3. Modeling power prices

A good representation of the spot electricity
prices dynamics is crucial to value power derivatives,
as well as to design supply contract, and to de�ne
risk management strategies. To model power prices,
several approaches have been proposed in literature,
and they are characterized by di�erent purposes and
�nalities [11]. In the so called cost-based models,
the ultimate objective is to obtain power prices
by minimizing the cost of power generation to
meet demand in a certain region under operational
and environmental constraints. In a similar way,
fundamental equilibrium models tend to obtain power
prices as a solution of well de�ned equilibrium
(between supply and demand) problems. Although
both these approaches focus on using some primary
factors (fuel prices, temperature, outages) as drivers
of power prices, such models are not designed

to capture the price dynamics. In the so called
reduced-form models, the objective is to replicate
the statistical properties of electricity prices observed
in real markets. They produce stochastic dynamics
to describe seasonality, mean-reversion, jumps and
spikes, high kurtosis, and regime-switching. Within
this framework, standard �nancial techniques can
be used for building risk-management strategies and
for pricing energy derivatives. Hybrid models fuse
the bene�ts of di�erent methodologies: stochastic
techniques are used to describe the dynamics of
the underlying drivers (as temperature, fuel prices,
and outages); the fundamental methodology to
represent demand-supply relations. Equilibrium prices
dynamics can be then obtained by the interplay
between demand and supply. In this paper we mainly
concern with models which can be used in developing
risk management tools in order to hedge power price
risk. Reduced-form models and hybrid models seem to
be good candidates.

Following Lucia and Schwartz [12], we model
the dynamics of the natural logarithm of the spot
price. By spot price we mean the day-ahead base load
price, calculated as arithmetic average of the 24 hourly
market prices. We denote by P (t) the spot price at
time t of one megawatthour (MWh) of electricity and
by s(t) its natural logarithm,

s(t) = ln P (t). (1)
We assume that the dynamics of s(t) can be

viewed as the sum of two processes
s(t) = f(t) + x(t), (2)

where f(t) is a highly predictable component
accounting for the seasonality e�ects and x(t)
is the random component re�ecting unpredictable
movements of the prices. To account for the annual
and semiannual periodicity of power prices, due to
the fact that prices are higher in winter time and
in summer time, we assume that the deterministic
component of the motion is given by

f(t) = µ + a0 cos
(
a1 +

2πt

261
)
+ b0 cos

(
b1 +

4πt

261
)
, (3)

where µ = ln h0. In the empirical analysis the
parameters µ, a0, a1, b0, and b1, are determined �tting
f(t) to market prices using least squares.

In the remaining part of this Section we will
present in some details four models describing the
dynamics of the x−component accounting for the
stochastic movements of power prices.

3.1. A jump-di�usion approach

To describe prices �uctuations in the Nord
Pool market, Lucia and Schwartz [12] proposed the
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following a�ne mean-reverting di�usion process with
constant volatility

dx(t) = −α0x(t)dt + σ0dw(t), (4)

where α0 is the mean-reversion rate and σ0 the
volatility parameter; w(t) is a one-dimensional
Brownian motion. The model capture the mean-
reverting behavior observed in real market but it does
not allow for jumps and spikes. To overcome this
di�culty and to include stochastic volatility, jump-
di�usion processes can be used [13, 14]. In this paper
we test on market data the following jump-di�usion
model:

Model 1

dx(t) = −α0x(t)dt + σ0dw(t) + Jdq(t), (5)

where q(t) is a Poisson process with constant
intensity λ. In the empirical analysis we assume that
the Brownian motion and the Poisson process are
independent, and that the random jump amplitude
J is distributed according to a normal random
variable, J ∼ N(0, σJ), with zero mean and standard
deviation σJ . The model describes the mean-reverting
behavior of power prices around the stable level µ:
normal �uctuations around this point are described
by the di�usive component of the motion; Poisson
jumps account for unpredictable and pronounced
movements of power prices due to shortages in
electricity generation, forced outages, and peaks in
electricity demand. Even if they are mathematically
tractable also in the case including mean-reversion,
jump-di�usion models are not well suited to describe
electricity prices dynamics: a strong mean-reversion
component is necessary to make price spikes shortly-
lived.

3.2. A two-regime approach

Regime-switching models o�er the possibility to
introduce various mean-reversion rates and volatilities
depending on the state of the system. This approach
is �exible enough to be used in modelling electricity
prices dynamics in order to distinguish the normal
stable motion from the turbulent and spike regime.
We assume that the switching mechanism between the
states is governed by un unobservable Markov process.
In the two-regime approach, one regime drives the
stable motion during normal periods and the second
regime is used to account for turbulent periods with
high volatility, high values of mean-reversion rate,
jumps and short-lived spikes. In this way we can model
the prices dynamics in di�erent sectors of the supply
stack. The �rst model we propose is characterized by a

two-regime switching dynamics in which the stochastic
movements of electricity prices are modelled according
to mean-reverting di�usion processes both in the base
state and in the excited state [15]. The dynamics can
be then cast in the following form:

Model 2

dx(t) =

{
−α0x(t)dt + σ0dw0(t)
−α1x(t)dt + σ1dw1(t).

(6)

The �rst equation describes the normal motion of the
system and the second one drives the dynamics in the
excited state. Both regimes are characterized by their
own mean-reversion rates, α0 and α1, and volatility
parameters, σ0 and σ1. w0(t), w1(t) are uncorrelated
one-dimensional Brownian motions.

The second model (Model 3) we propose
describes a two-regime switching dynamics in which
the stochastic movements of electricity prices in the
base state are modelled according to a mean-reverting
di�usion process; the second regime accounts for
turbulent periods of the market in which short-lived
jumps and spikes are modelled as Poisson jumps in
a mean-reverting jump-di�usion dynamics [5]. The
dynamics is given therefore by:

Model 3

dx(t) =

{
−α0x(t)dt + σ0dw0(t)
−α1x(t)dt + σ1dw1(t) + Jdq(t).

(7)

q(t) is a Poisson process with constant intensity λ.
We assume that the the random jump amplitude J
is distributed according to a normal random variable,
J ∼ N(0, σJ), with zero mean and standard deviation
σJ . The Brownian motions and the Poisson process are
independent and independent of the jump amplitude.
This parametrization tends to separate the normal
di�usive dynamics from the jump regime in a such
a way that any turbulence in the power market
can be captured by the dynamics of the second
regime. The switches between regimes in both models
are controlled by the following one-period transition
probabilities matrix

π =

(
1− γdt ηdt

γdt 1− ηdt

)
, (8)

where γdt denotes the transition probability for the
switching from the base state to the second regime
in the in�nitesimal time interval [t, t + dt] and ηdt
is the probability for the opposite transition. γ and
η are assumed to be constant. In the matrix, the
diagonal terms give the probability of remaining in
any given state during the time interval [t, t + dt]; the
o�-diagonal terms represent the transition probability

Nonlinear Phenomena in Complex Systems Vol. 11, no. 2, 2008
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to the other state in the same time interval. The above
parametrization allows for multiple jumps and the
duration of turbulent periods as well the duration of
spikes can be more than one day. Although the model
can describe the price movements in terms of one
stable regime and one unstable short-lived regime, we
will show in the following that the empirical analysis
performed on market data reveals that the probability
of the price system to remain in the same state is high
for the base regime as well for the jump regime. Mean-
reversion rates and volatilities are allowed to assume
di�erent values in di�erent regimes and the empirical
analysis con�rms that in the turbulent regime such
parameters are larger than the respective values in
the base state.

3.3. A three-regime approach

In the three-regime model proposed by Huisman
and Mahieu [3], the third regime is used to revert
back prices to the stable state when the system is in
the excited state. The dynamics of electricity prices is
described by:

Model 4

dx(t) =





−α0x(t)dt + σ0dw0(t)
µ1dt + σ1dw1(t)
−α−1x(t)dt + σ−1dw−1(t)

(9)

where w0, w1, and w−1 are uncorrelated one
dimensional Brownian motions. The �rst equation
describes the normal regime in which prices follows a
mean-reverting di�usion process; the second-one tries
to model spikes using an arithmetic Brownian motion,
and the third equation drives prices to revert back
to the normal regime after a spike has occurred. The
transitions from one state to another is governed by
the following transition probabilities matrix

π =




1− γdt 0 1
γdt 0 0
0 1 0


 . (10)

The above parametrization means that once the
system is in the excited state at time t, it decays with
probability one to the base state by a strong mean-
reverting dynamics. In this model multiple jumps are
not allowed.

4. Empirical analysis

Our data set consists of day-ahead base load
prices, calculated as arithmetic averages of the

24 hourly market prices, at the European Energy
Exchange (EEX), at the Scandinavian Nord Pool, at
NEPOOL and at the Texas market. The seasonal
component (3) has been estimated using least squares,
and the estimated parameters are reported in Table 3.

Table 3. Estimated parameters of the seasonal component.

EEX Nord Pool NEPOOL Texas
µ 3.3010 3.3185 4.2054 3.9593
a0 0.0793 0.1991 0.0036 0.1558
a1 1.0354 0.1347 -5.2782 1.7437
b0 -0.0166 0.0553 0.0654 0.0471
b1 -4.0326 7.1777 3.3015 3.2083

4.1. Model 1

In the empirical analysis the time-step ∆t is
assumed to be one day and we adopt the following
discretised version of the jump-di�usion model:

x(t + 1) = (1− α0)x(t) + σ0ε0(t) + JM(t), (11)

where ε0(t) ∼ N(0, 1), and M(t) is a random variable
assuming the value 1 with probability λ, and the value
0 with probability 1−λ. The parameters of the model
have been estimated by maximum likelihood, and the
results are shown in Table 4, where we reported,
for each market under investigation, the values of
the model parameters, the values of the loglikelihood
(LL) and the values of the Schwartz criterion (SC).
Table 5 displays the �rst four moments of the

Table 4. Model 1 estimation results. Standard errors are
between parentheses.

EEX Nord Pool NEPOOL Texas
α0 0.2384 0.0076 0.0340 0.0454

(0.024) (0.004) (0.009) (0.009)
σ0 0.1337 0.0299 0.0650 0.0667

(0.006) (0.001) (0.002) (0.002)
λ 0.1693 0.2113 0.0720 0.0497

(0.024) (0.021) (0.009) (0.009)
σJ 0.5334 0.1690 0.7988 0.7815

(0.045) (0.011) (0.064) (0.090)
LL -2825.4 -1677.9 -3582.5 -3249.5
SC 5678.0 3383.1 7193.1 6527.0

model distribution of log-returns obtained averaging
over 5000 simulated paths randomly generated using
estimated parameters. Even if the agreement with the
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Table 5. Simulated moments using Model 1. Standard
errors are between parentheses.

EEX Nord Pool NEPOOL Texas
Mean 0.0003 0.0003 0.0004 0.0003

(0.0005) (0.0007) (0.0008) (0.0006)
Std.dev. 0.2730 0.0832 0.2253 0.1878

(0.0140) (0.0045) (0.0200) (0.0186)
Skew 0.0088 0.0137 -0.0228 -0.0622

(0.3811) (0.4436) (1.3282) (1.6983)
Kurt 8.8968 11.2864 33.6626 42.9418

(1.2113) (1.3949) (6.9095) (9.4282)

�rst two moments is very interesting, the (model)
distributions of log-returns show very low values of
the kurtosis with respect to the observed values in
each market. We recall the importance that a given
model captures the �rst four moments of the empirical
distribution. Namely, skewness is related in particular
to the properties of upward versus downward moves;
the value of the kurtosis describes the tails of the
distribution and is particularly important in the case
of power prices in which extreme events may occur
[10].

4.2. Model 2

The discretised version of Model 2 we use in the
empirical analysis is given by

x(t + 1) =

{
(1− α0)x(t) + σ0ε0(t)
(1− α1)x(t) + σ1ε1(t)

(12)

where ε0(t), ε1(t) ∼ N(0, 1) are i.i.d. normal random
variables. Regime-switching models can be estimated
by maximum likelihood. Following Hamilton [16], in
a multi-regime model the likelihood function can be
expressed as a linear combination of the likelihoods of
the single regimes. The estimation has been performed
using the Hamilton �ltering technique [17], and the
results are shown in Table 6. In Table 7 we reported
the �rst four moments of the model distribution of log-
returns obtained averaging over 5000 simulated paths
randomly generated using estimated parameters.

4.3. Model 3

The discretised version of Model 3 we use in the
empirical analysis is given by

x(t + 1) =

{
(1− α0)x(t) + σ0ε0(t)
(1− α1)x(t) + σ1ε1(t) + JM(t).

(13)

Table 6. Model 2 estimation results. Standard errors are
between parentheses.

EEX Nord Pool NEPOOL Texas
α0 0.2074 0.0055 0.0317 0.0405

(0.023) (0.004) (0.009) (0.008)
σ0 0.1294 0.0293 0.0628 0.0635

(0.005) (0.001) (0.002) (0.002)
α1 0.4357 0.0990 0.7059 0.4736

(0.068) (0.032) (0.099) (0.101)
σ1 0.5066 0.1622 0.5932 0.6029

(0.034) (0.010) (0.048) (0.056)
1− γ 0.9466 0.9099 0.9648 0.9729

(0.012) (0.013) (0.007) (0.006)
1− η 0.7785 0.6942 0.6390 0.6394

(0.048) (0.049) (0.064) (0.072)
LL -2770.2 -1623.3 -3513.2 -3170.8
SC 5581.2 3287.3 7068.4 6383.6

Table 7. Simulated moments using Model 2. Standard
errors are between parentheses.

EEX Nord Pool NEPOOL Texas
Mean 0.0003 0.0003 0.0004 0.0003

(0.0004) (0.0004) (0.0004) (0.0004)
Std.dev. 0.2770 0.0832 0.2179 0.1851

(0.0220) (0.0058) (0.0263) (0.0241)
Skew 0.0224 0.0510 0.0292 -0.0010

(0.3107) (0.3220) (0.7826) (1.0103)
Kurt 9.6630 10.7365 29.2307 33.2943

(1.4570) (1.5427) (7.1919) (8.0073)

As in the previous case, the parameters of the
model have been estimated by maximum likelihood,
and the estimation has been performed using the
Hamilton �ltering technique. The results are shown in
Table 8. Table 9 displays the �rst four moments of the
model distribution of log-returns obtained averaging
over 5000 simulated paths randomly generated using
estimated parameters. The results show a very
interesting agreement: in all the markets under
investigation the value of the kurtosis is fairly similar
to the observed one and the empirical skewness is
situated at about one half of the standard error. The
inclusion of Poisson jumps seems to better capture
the randomness of power prices due to unpredictable
outages and peaks in electricity demand.
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Table 8. Model 3 estimation results. Standard errors are
between parentheses.

EEX Nord Pool NEPOOL Texas
α0 0.1858 0.0056 0.0197 0.0167

(0.030) (0.005) (0.008) (0.007)
σ0 0.1246 0.0223 0.0482 0.0367

(0.005) (0.001) (0.002) (0.002)
α1 0.4719 0.0306 0.2216 0.0768

(0.075) (0.013) (0.037) (0.020)
σ1 0.3617 0.0730 0.1397 0.1065

(0.036) (0.006) (0.008) (0.007)
λ 0.0641 0.1218 0.0850 0.0489

(0.040) (0.033) (0.022) (0.013)
σJ 1.0914 0.2805 1.2119 1.1124

(0.346) (0.046) (0.191) (0.189)
1− γ 0.9408 0.8935 0.9476 0.9221

(0.016) (0.021) (0.012) (0.016)
1− η 0.8206 0.8635 0.8710 0.9108

(0.046) (0.034) (0.030) (0.031)
LL -2757.1 -1584.7 -3441.5 -3079.3
SC 5568.6 3223.9 6939.1 6214.6

Table 9. Simulated moments using model 3. Standard
errors are between parentheses.

EEX Nord Pool NEPOOL Texas
Mean 0.0003 0.0003 0.0004 0.0003

(0.0004) (0.0005) (0.0004) (0.0005)
Std.dev. 0.2774 0.0828 0.2164 0.1860

(0.0285) (0.0077) (0.0353) (0.0288)
Skew 0.0140 0.0473 0.1752 -0.1225

(0.8714) (1.1351) (2.7574) (3.2828)
Kurt 17.0803 23.5910 67.8732 78.4923

(7.5577) (6.3148) (23.2237) (26.0368)

4.4. Model 4

The discretised version of Model 4 we use in the
empirical analysis is given by

x(t + 1) =





(1− α0)x(t) + σ0ε0(t)
x(t) + µ1 + σ1ε1(t)
(1− α−1)x(t) + σ−1ε−1(t)

(14)

where ε0(t), ε1(t), and ε−1(t) ∼ N(0, 1) are i.i.d.
normal random variables. As in the previous case,
the parameters of the model have been estimated
by maximum likelihood and using the Hamilton
�ltering technique. The results are shown in Table

10. Table 11 displays the �rst four moments of the

Table 10. Model 4 estimation results. Standard errors are
between parentheses.

EEX Nord Pool NEPOOL Texas
α0 0.2065 0.0059 0.0500 0.0414

(0.023) (0.006) (0.009) (0.008)
σ0 0.1470 0.0464 0.0748 0.0735

(0.004) (0.002) (0.002) (0.002)
µ1 -0.1118 -0.0176 0.5337 0.4949

(0.086) (0.039) (0.156) (0.173)
σ1 0.6630 0.2133 0.7853 0.7031

(0.064) (0.029) (0.106) (0.130)
α−1 0.6393 0.3049 0.8541 0.7565

(0.092) (0.102) (0.054) (0.060)
σ−1 0.4992 0.2305 0.3591 0.2911

(0.052) (0.030) (0.052) (0.050)
1− γ 0.9313 0.9525 0.9717 0.9784

(0.012) (0.009) (0.006) (0.006)
LL -2806.1 -1737.6 -3563.9 -3213.6
SC 5659.9 3522.9 7176.8 6476.3

model distribution of log-returns obtained averaging
over 5000 simulated paths randomly generated using
estimated parameters.

Table 11. Simulated moments using model 4. Standard
errors are between parentheses.

EEX Nord Pool NEPOOL Texas
Mean 0.0003 0.0002 0.0004 0.0003

(0.0004) (0.0004) (0.0003) (0.0003)
Std.dev. 0.2859 0.0856 0.2317 0.1791

(0.0203) (0.0068) (0.0299) (0.0256)
Skew -0.0717 0.1769 0.2183 0.9361

(0.4220) (0.6862) (0.7102) (0.8280)
Kurt 12.2632 18.0892 39.8483 44.3733

(2.2642) (3.9153) (9.3625) (12.3473)

Even if the third regime can be used to add
�exibility to the model, the statistical properties of the
simulated trajectories are less appealing with respect
to those obtained using Model 3. Some generalizations
of the three-regime model to allow for multiple
jumps can be then considered to better capture the
main characteristics of the power prices dynamics in
deregulated markets [5].

Finally, we point out that more general dynamics
can be included into a regime-switching approach
to generate spikes of well de�ned properties. A
three-regime switching model in which the spikes
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phenomenon is described by a stochastic FitzHugh-
Nagumo excitable dynamics has been recently
proposed in literature [18].

5. Towards a demand-supply
model of electricity prices dynamics

Reduced-form models are not capable of
incorporating non-price information. We propose
therefore an equilibrium methodology in which the
dynamics of power prices is determined by the
interplay between demand and supply. Barlow [19]
proposed an equilibrium model characterized by a
�xed, i.e. time-independent, supply curve of the form

P (t) =

{ [(
a0 − q(t)

)
/a1

]1/c if q(t) < a0 − ba1

b
1
c if q(t) ≥ a0 − ba1

(15)
where q(t) is the load at time t, and a0, a1, and c
are constant parameters. Since the demand is fairly
inelastic and it can be represented by a quasi-vertical
line, Barlow assumes that

q(t) = D(t), (16)

where D(t) is a stochastic process independent of
the power price P (t). In the proposed model, D(t)
is driven by a mean-reverting di�usion process and
and the presence of jumps and spikes is assured by
the nonlinearity of the supply function. To introduce
a time-dependent supply function we can assume, as
shown in Figure 10, that the functional form of the
o�er curve is given by

P (t) = h0 exp
[
q(t)− k(t)

h1

]
, (17)

where k(t) de�nes the kink position in the o�er curve
at time t, h0 and h1 are normalization parameters
[9]. The electricity demand is assumed to be highly
inelastic and expressed by

q(t) = D(t) (18)

for some stochastic process D(t) which is independent
of the power price. The equilibrium between demand
and supply is assured if

P (t) = h0 exp
[
D(t)− k(t)

h1

]
≡ h0 exp(−z(t)), (19)

where

z(t) =
k(t)−D(t)

h1
(20)
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FIG. 10. A schematic supply curve (left) and the
exponential representation of the o�er (right).

measures the (normalized) power margin level at time
t, that is the (normalized) di�erence between the
demand level and the kink position in the o�er curve
at time t. In this approach, the power margin level
is assumed as explanatory variable for describing
the dynamics of power prices and interpreting the
occurrence of the spike phenomenon in electricity
markets: we expect that power prices may experience
spikes when the margin level approaches zero and
becomes negative, that is when the load is greater than
the kink value in the o�er curve. Power prices are very
sensitive to the demand, outages and grid congestions:
shortages in electricity generation move randomly the
position of the kink in the o�er curve and jointly with
random peaks in electricity demand may determine
short-lived spikes of very large magnitude. The
dynamics of z(t) must account for seasonality of the
demand and for random �uctuations of the demand
level around some long-run mean, for unpredictable
supply outages and shortages in electricity generation
(moving the position of the kink in the o�er curve)
as well as for peaks in electricity demand. During
normal periods the process z(t) is positive, and we
expect that electricity prices experience spikes when
z(t) becomes negative and intersect the o�er curve in
the exponentially raising part of the curve. Seasonal
e�ects in the electricity demand can be then captured
if we decompose z(t) as

z(t) = f(t) + x(t), (21)

where f(t) is a highly predictable component
accounting for the seasonality and x(t) is the random
component re�ecting unpredictable movements of the
power margin level. Including h0 in the exponential
representation of prices, we get

P (t) = exp
(
f̃(t)

)
exp

(− x(t)
)
, (22)

where

f̃(t) = ln h0 − f(t). (23)

Jump-di�usion models with mean-reversion can
be used to describe the dynamical behavior of the
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power margin around some stable level: normal
�uctuations around this point are described by the
di�usive component of the motion; Poisson jumps
account for unpredictable and pronounced movements
of the power margin level due to shortages in
electricity generation, forced outages, and peaks in
electricity demand. A regime-switching approach is
also useful to distinguish the normal stable motion
from the turbulent regime. For example, in a two-
regime model one regime can be used to drive the
stable motion during normal periods and can be
described by a mean-reverting di�usion process with
constant volatility to account for random �uctuations
of the power margin level around the long-run mean.
The second regime can used to describe turbulent
periods in which peaks in electricity demand, supply
outages, and shortages in electricity generation may
occur.

6. Concluding remarks

Fundamental variables, as fuel prices,
temperature and outages, can be taken into account

at this step of the modeling process. Indeed, a
stochastic model of the temperature can be used to
model the time-evolution of the load curve. On the
other side, the dynamics of the supply function can
be described by using, as primary drivers, fuel prices.
A model to describe planned and forced outages is
necessary to complete the time behavior of the supply
stack. Several models have been proposed in literature
[2, 11]. To make the models realistic more and more
fundamental variables can be incorporated: highly
complex hybrid models are subject to a signi�cant
modeling risk and a balance between model parsimony
and adequacy to capture the main characteristics of
the power prices dynamics is required to price power
derivatives.
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