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INTRODUCTION 
 
Statistical modeling essentially encompasses all numerical and mathematically based methods 

for forecasting. These techniques are powerful and widely used; a search of the Scopus data base 

for the years 2000-2009 using the terms ―statistical modeling‖ and ―statistical modelling‖ yielded 

over 30,000 hits. 

 

In this chapter, the term ―statistical modeling‖ (SM) includes both time series analysis and 

simulation modeling. (Gordon 1992 and Armstrong 2001) 

 

Time-series analysis refers to the mathematical methods used to derive an equation that 

best fits a given set of historical data points. These methods can be simple or complex 

and range from simply drawing a curve through the historical data points of a variable in 

a way that appears to minimize the error between the curve and the data to analyses that 

involve deriving equations that mathematically minimize the cumulative error between 

the given and reconstructed data. The equation can be a straight line or a curved line, a 

static average of past data or smoothed using a moving average or exponential smoothing 

(allowing more recent data to have a greater affect on the smoothing process). If the fit is 

good, the plot can be extended into the future to produce a forecast.  

 

Simulation modeling is a term that includes many different approaches: e.g. multiple 

regression, simulation modeling, and dynamic systems modeling, for example. The value 

of some variables may depend on factors other than time.  Population size, for example, 

may be dependent on the number of young women in the population a year ago, their 

education, or personal income. Models that relate a factor, such as population, to other 

input variables, such as education or personal income, can be constructed using a method 

known as multiple regression analysis. In multiple regression analysis, the subject under 

study — population — is the "dependent variable," and the factors that appear to 

―explain‖ population are included in the analysis as "independent variables." Regression 

equations can be linear and involve a few independent variables or be nonlinear or 

polynomial and involve many variables. Regression equations can be written for time 

series of dependent variables, or they may be "cross-sectional;‖ that is, written to 

represent, the relationships among independent variables at particular points in time. 

 

Sometimes the dependent variable of one equation is used as an independent variable in another 

equation.  In this way, "simultaneous" equations are built to describe the operation of complex 

systems (such as national economies) in econometrics. Without taking great care, such equations 

may contain spurious correlations which satisfy statistical tests but are in the end meaningless. 

Nevertheless these methods are powerful and widely used to replicate historical data and produce 

forecasts.  

 

In time-series analysis and statistical modeling, the equations are determined by statistical 

relationships that existed in the past.The coefficients of such equations have no physical 

meaning.  By contrast, in dynamic systems modeling, the equations are constructed to duplicate, 

to a greater or lesser degree, the actual functioning of the system under study. For example, a 
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dynamic systems model that attempts to duplicate the historical size of a population might 

involve the following logic: population today is simply the number of people who existed last 

year, plus the number of people born and minus the number of people who died during the year.  

Such an equation is appealing because it is built on an apparently logical basis; it can, of course, 

be used as a forecasting model. This approach is sometimes called a ―stock and flow‖ model, and 

the coefficients of such models have physical analogs. 

 

Other techniques that fall within the rubric of statistical modeling include analogies, conjoint 

analysis, and econometrics, which will not be discussed here. For further information Armstrong 

(2001) is recommended. 

 

These methods, however powerful, may involve serious limiting assumptions; for example, the 

methods generally assume that all of the information needed to produce a forecast is contained in 

historical data, and often that models based on historical data capture the real life structure of the 

system being modeled and that the structure of the system that gave rise to the historical data will 

be unchanging in the future.. 

 

These assumptions are often not stated explicitly and clearly cause concern.  New forecasting 

methods have been introduced to circumvent some of these issues (see the chapter on Trend 

Impact Analysis elsewhere on this CD ROM). Statistical forecasting methods are exceedingly 

useful and important to futures research. They can deepen understanding of the forces that 

shaped history. They can also provide a surprise-free baseline forecast (for example, "suppose 

things keep going as they have in the past . . .") for thinking about what could change in the 

future. 

 

The tools introduced in this chapter allow consideration of uncertainty. The basic idea is to create 

an isomorphism with reality, that is, to check our model with the surrounding world, not only to 

understand how a certain phenomenon happened, but to be able to predict future behavior within 

confidence intervals that can be calculated. To arrive at such a final model, a designer will 

require a few iterations to change assumptions, try different candidate models, and perhaps 

gather more data, until the simulated response fits the observed behavior.  

 

As we are concentrating on futures research, we will focus on models in which time is an 

independent variable. Therefore, many techniques which simply look at the statistical 

relationship among variables will be ignored if the models they build are not used in a larger 

framework where time is one of the independent variables. 

 

Another feature that is paramount in Statistical Modeling (SM) as applied to futures research is 

the treatment of uncertainties, both in the design of the model and its use. Forecasts wherever 

possible should indicate the degree of confidence or reliability of the predictions by adding either 

bounds or confidence intervals. For the simulations, we will consider how a model describes 

many trajectories in time; we will assume that trajectories deviate due to different initial 

conditions, external disturbances, or changes in the regime of the system under consideration. 

Otherwise, it would be incorrect to talk of a statistical framework, as the system would be 

deterministic. 
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Unfortunately, due to space limitations, we cannot deal in sufficient detail with such important 

topics as probability distributions, parameter estimation, hypothesis testing, linearization, or 

design of experiments, to name a few omissions. It is expected that the interested reader will 

consult the specialized literature once the basics are understood, and as the needs arise.  

 

 

I. HISTORY OF THE METHOD 
 

Even if an experiment always produces the same outcome, the crudeness of the instrument 

measuring the outcome might produce different readings, a realization that would naturally lead 

to the development of more precise instrumentation. This development, initially, would prove 

sufficient for phenomena that would not change appreciably, such as the position of the stars, or 

for predictable observations, such as the location of planets or the Moon. However, once a limit 

is reached in the precision of the measurement, other sources of inexactness start to crop up, such 

as typographic errors, parallax, or rounding. Thus, it is understandable that some processes were 

developed to cope with these errors related to measurements, such as simple averaging or the 

method of least squares, and those procedures are at the foundation of statistical methods. 

 

Secondly, once the measurement devices were good enough, it was observed that there were 

inherent and minute changes in the physical processes themselves or in the conditions under 

which the experiment was performed, producing fluctuations that made it impossible to replicate 

exactly previous results. Because of these variations, the final state of the system under 

observation would end up in a range—one of many probable results—rather than fixed on a 

specific reading. The efforts leading to the mathematical descriptions of the distributions 

displayed by those results today correspond to the field of probability studies.
2
 

 

Thus, probability and statistics became essential to describe a process, or, once an experiment 

was performed, to quantify it in a meaningful way, indicating not only where it ended up, but 

also the domain of results it could have produced. 

 

Authors disagree on the the exact origins of statistics, the differences coming from a changing 

definition of the word with time. ―Five men, Conring, Achewall, Süssmilch, Graunt and Petty … 

have been honored as the founder of statistics.‖
3
 During those times, the main application was in 

government-related areas (this relation with the state is the reason for using the Latin root stat in 

the word ‗statistics‘). The German intellectual Herrmann Conring (1606-1681), lectured on 

Statistik in 1660 (although the topic covered was political science and did not use numbers but 

relied on verbal descriptions). In England, John Graunt
4
  (1620-1674), demographer, and his 

friend William Petty
5
 (1623-1687), economist, developed methods for census and tax collection 

                                                 
2 It is much easier to deal with the concept of probability mathematically than philosophically. Some philosophers  

(Keynes, Jeffreys, Lewis, and others) thought that probability ―is ’sui generis’ and undefinable. Weatherford, Roy 

(1982). The Philosophical Foundations of Probability, Routledge, pp. 1, 15, and 224. 
3 Willcox, Walter (1938). The Founder of Statistics. Review of the International Statistical Institute 5(4):321-328. 
4 Lancaster, Henry (1962), An Early Statistician – John Graunt (1620-1674). Med. J. Aust. 49 (2): 734-8, 1962 Nov 

10; Graunt, John (1662), Natural and Political Observations upon the Bills of Mortality. London. The title page 

includes “…with reference to the Government, Religion, Trade, Growth, Ayre, Diseases, and the several Changes 

of [London].” 
5 Schumpeter, Joseph A. (1954), A History of Economic Analysis. London: Allen & Unwin. 
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applications, in some cases, using only averages. Other German precursors were Johann 

Süssmilch (1707-1767) and Gottfried Achewall (1719-1772). 

 

The numbers collected by the practitioners were used to get estimates of population, in tax 

collection, or to model urban dynamics. As some of those aggregates were difficult to obtain by 

merely counting, such as the population of Ireland during the rebellions, or the population of 

London (for which there was no census until 1801)
6
, the early researchers relied on other 

variables that could be more readily available (exports, size of the city, or numbers of deaths). 

For the particular case of population, Petty assumed that for every dead person per year there 

were 30 other persons living. Based on this inference model and using the number of deaths per 

year, he calculated the population of London (695,718 persons), Paris (488,055), and Amsterdam 

(187,350). 

 

If, instead of rudimentary mathematical operations, we focus on more sophisticated methods to 

determine the first developments in statistics, the precursors will be found in an exchange of 

seven letters written between Blaise Pascal (1623-1662) and Pierre de Fermat (1601-1665) in 

1654. They developed what we would today understand as concepts of probability as applied to 

(a) the splitting of the gains after two players suddenly stop a game before it properly finishes 

(the so-called ―unfinished game‖)
7
, and (b) to the development of the method of least squares

8
 to 

decrease the measurement errors in astronomical calculations
9
. 

 

The 18
th

 century saw contributions by Bernoulli (both Jacob and Nicolaus), de Moivre, Huygens, 

Laplace, and Montmort, concentrating on probability, the central limit theorem, the binomial 

distribution, and the Bayes theorem. During the 19
th

 century works were published by Bessel, 

Chebyshev, Laplace, Legendre, and Pearson, advancing concepts like normal distribution, 

probable error, quartiles, and standard deviation. Their works started to be used in agricultural 

research.  

 

During the 20
th

 century, besides the study of individual aspects of probability or statistics such as 

the concept of power (Neyman and Pearson), correlation coefficient (Pearson), principal 

component analysis (Hotelling) or analysis of variance (Fisher), various methodological issues 

ensue, such as the use of correlational large-scale studies (Pearson) vs. experimental small-scale 

studies (Fisher). Biologists, engineers and other specialists in the exact sciences, behavioral and 

social scientists, and business administration practitioners, among others, started to rely on 

statistical analysis and simulations
10

. Using the conceptual tools developed in the previous 

centuries along with the increasing availability of computers, it became feasible to move from 

tedious and error-prone manual calculations to the development of automatic procedures, 

                                                 
6 Petty, William (1685), Essays on Mankind and Political Arithmetic. Available in Project Gutenberg: 

http://www.gutenberg.org/dirs/etext04/mkpa10.txt, accessed October 1, 2008. 
7 Hals, Anders (2005). A History of Probability and Statistics and Their Applications before 1750. John Wiley; 

Devlin, Keith (2008), The Unfinished Game: Pascal, Fermat, and the Seventeenth-Century LetterThat Made the 

World Modern, Basic Books. 
8 Named by Adrien Marie Legendre (1752-1833) and applied by him and by Carl Friedrich Gauss (1777-1855). 
9 Stigler, Stephen (1986). The History of Statistics: The Measurement of Uncertainty Before 1900. Belknap Press of 

Harvard University Press. 
10 IMS Panel on Cross-Disciplinary Reserch in the Statistical Sciences (1990), Cross-Disciplinary Reserch in the 

Statistical Sciences, Statistical Science, 5(1), February 1990, pp. 121-146. 
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allowing the researcher to focus on the analysis of results. This simplification in the procedures 

has, unfortunately, removed the practitioner from the detailed assumptions that allow theories to 

be built—such as considerations of normality or independence of observations—forcing one to 

exercise caution when using the tools, making sure that the assumptions are understood and 

respected. The blind use of computer programs can also provide an undeserved sense of 

security.
11

. 

 

Large-scale simulation modeling could not be developed until computer technology progressed 

so that large data sets could be easily handled. Some of the first applications of simulation 

modeling occurred at the RAND Corporation in the late 1950s.  In July 1970, members of the 

Club of Rome attended a seminar at the Massachusetts Institute of Technology (MIT).  During 

this seminar, members of the Systems Dynamics Group expressed a belief that the system 

analysis techniques developed by MIT's Jay W. Forrester and his associates could provide a new 

perspective on the interlocking complexities of costs and benefits as a result of population 

growth on a finite planet. Research began under the direction of Dennis L. Meadows and was 

presented in his book, Limits to Growth, followed by Toward Global Equilibrium: Collected 

Papers and The Dynamics of Growth in a Finite World.  More recent treatments include Donella 

Meadows' Beyond the Limits:  Confronting Global Collapse, Envisioning a Sustainable Future, 

the sequel to Limits to Growth, and Groping in the Dark:  The First Decade of Global Modeling, 

which provides an excellent overview of global modeling. Simulation modeling is used 

extensively today in fields ranging from astrophysics to social interaction. 

 

Many textbooks and on-line sources are available to provide information about these techniques 

at essentially any level of detail required; one of the best and most complete is ―Principles of 

Forecasting: A Handbook for Researchers and Practitioners,‖ edited by J. Scott Armstrong of the 

Wharton School of the University of Pennsylvania. Much of the material in this book is also 

available on-line at: http://www.forecastingprinciples.com/ According to its authors, ―this site 

summarizes all useful knowledge about forecasting‖, a claim that may be close to accurate. 

 

So far we have described developments on the basic aspects of statistics, but what is the 

difference with SM, and how can this be applied to futures research? What is its difference from 

more simple, mechanical approaches? The key difference is the treatment of uncertainties that 

have to be taken into account either in the design of the model (to select the correct technique to 

build the model) or in the later simulation (to propagate not only point values but also the bounds 

for the variables under investigation). In the example above, we can be almost certain that the 

point value for the population of the city of London (695,718) is not exact, and it would be of 

interest to know a lower and upper limit for that estimate. The need to put bounds on uncertainty 

was recognized early in the development of the discipline, but the mathematical procedures to 

describe the dispersion of the errors were introduced only in 1815 (probable error
12

), 1879 

(quartile
13

), 1893 (standard deviation
14

), and 1918 (variance
15

). 

                                                 
11 For example, some of Microsoft‘s Excel statistical errors and deficiencies, from the cosmetic to the serious, can be 

found detailed in Cryer, Jonathan (2001). Problems With Using Microsoft Excel for Statistics, at 

http://www.cs.uiowa.edu/~jcryer/JSMTalk2001.pdf, accessed on October 3, 2008. 
12 Bessel, Friedrich (1818), Ueber den Ort des Polarsterns, Astronomische Jahrbuch für das Jahr 1818 
13 McAlister, D (1879), The Law of the Geometric Mean, Proceedings of the Royal Society, XXIX, p. 374. 
14 Plackett, R. (1983). Karl Pearson and the Chi-Squared Test, International Statistical Review, 51(1), April 1983, 

59-72. 
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Since the advent of digital computers
16

, ever more complex simulations are being attempted, 

allowing the testing of theories that had been postulated but could never be ‗proven‘ because of 

their complexity or because it was impractical or impossible to simulate in real life (battlefield 

simulations, explosions, economic systems, evolution of the universe). Besides, the use of 

computer simulations allows the creation of ‗what-if‘ scenarios through which uncertainties 

could be computed by simply modifying initial conditions, parameters, noise, or disturbances in 

the system (changes that result from the modification of one variable at a time are known as 

sensitivity analysis; changes that occur when more than one variable is modified at the same time 

are called scenario analysis- see the chapter on this CD ROM titled Robust Decision Making). In 

this respect, simulations like those proposed in Limits to Growth
17

 can benefit from the 

sensitivity analysis, as it was shown that ―given a 10% change [in only three constant parameters 

in the capital sector of the model] in the year 1975, the disastrous population collapse, which is 

an important conclusion of the Meadows study, is postponed to beyond the simulation interval, 

i.e. to beyond the year 2100. These changes are well within the limits of accuracy of the data, as 

described in the Meadows technical report.‖
18

  

 

In spite of the advances discussed, there are fields where simulations have made little progress, 

such as sociology, ―perhaps because most sociologists only got a smattering of notions about 

systemics and in many cases confused it with structuralism, with functionalism or even with 

applied systems analysis or with systems dynamics.‖ If, instead of a branch of science, we look 

at the applications, we can find numerous cases which could benefit from a theoretical analysis 

followed by a computer simulation: ―stock markets, ecosystems, forest fires, traffic on highways 

and panics in crowds.‖
 19

 In many cases, however, the multidisciplinary study is prevented by the 

limited collaboration of practitioners, who work in an environment that forces them to specialize 

in standardized and constrained academic disciplines.  

 

On the other hand, other specialties (i.e., finance) are too eager to implement approaches in 

which the resultant black-box model has little parallel with reality (i.e., neural networks) and, 

therefore, are of limited use as they only represent one solution at one particular point in time. 

These solutions tend not to be robust and need constant re-tuning. 

 

The advantages of large-scale systems simulations are counterbalanced by the difficulty of 

testing them in real life. Also, the procedures to perform simulations rarely follow objective and 

unobjectionable practices, such as the textbook techniques advocated in this chapter or other 

                                                                                                                                                             
15 Fisher, Ronald (1918), The Correlation Between Relatives on the Supposition of Mendelian Inheritance" 

Transactions of the Royal Society of Edinburgh, 52, 399-433 
16 Mechanical and analog computers allowed simulations, but they were very limited in their scope. Each run had to 

be recorded independently. All the runs had to be analyzed manually afterwards. 
17 Meadows, Donella et al. (1972). The Limits to Growth. New York: Universe Books. The equations were only 

presented in Dynamics of Growth in a Finite World, also by Donella Meadows (et al.), published by the MIT 

Press two years later. More comments on these world models can be found in Simon, Herbert (1990), Prediction 

and Prescription in Systems Modeling, Operations Research, Vol. 38, 1, 7-14. 
18 De Jong, D. (1978), World Models, Lecture Notes in Control and Information Sciences, Springer Berlin, Vol. 6, 

1978, 85-86.  
19 François, Charles (1999), Systemics and Cybernetics in a Historical Perspective, Systems Research and 

Behavioral Science, Systems Research, 16, 203-219. 
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similar methodologies
20

. It is enlightening to read the counterexamples and recommendations 

presented by various authors who evaluated simulations on world dynamics
21

 and climate 

change
22

 and, in some cases, the warnings of the authors themselves
23

, which are not always 

followed. 

 

 

II. DESCRIPTION OF THE METHOD AND HOW TO DO IT 
 
Time Series 

 
A time series is defined as a sequence of numerical values, spaced at even or uneven time 

intervals. In general, they represent a measurable quantity of a system of interest. We assume 

that they correspond to a unique characteristic of the system or process under observation. The 

amount of precipitation per month in Denver, Colorado, and the quarterly Gross Domestic 

Product (GDP) of France are examples of time series. In our case, they are used to understand 

how the structure and the various constants, variables, disturbances, and noises that enter into the 

definition of a model affect the observed data. Once this understanding is gained, the model is 

assumed to represent the real world within the desired accuracy, and can be used for further 

applications, for example, backcasting or forecasting. 

 

In fitting a set of time series data, a computer software program may be used to examine the 

historic data to determine how well an equation or series of equations can fit or duplicate those 

data.  The equations can be either linear or nonlinear.  The latter can be quadratic or higher order, 

―S‖-shaped curves (represented for example by a Gompertz curve or a logistic function).  

Sinusoidal variations of parameters also fall into the nonlinear category.   

 

We will use as data the Mauna Loa CO2 monthly mean data
24

, available from March 1958 to 

September 2008, to illustrate the use of various time series techniques. 

 

                                                 
20 Armstrong, Jon Scott (2001). Principles of Forecasting: A Handbook for Researchers and Practitioners, Springer. 
21 Kozinski, Alex (2002), Gore Wars, Michigan Law Review, Vol. 100, No. 6, 1742-1767. May, 2002. Judge 

Kozinski reviewed Bjorn Lomborg‘s The Skeptical Environmentalist: Measuring the Real State of the World, 

Cambridge, 2001; Cole, H.S.D et al. (Ed.) (1973). Models of Doom, A Critique of the Limits to Growth, Universe 

Publishing. 
22

 Stordahl, Kjell (2008). IPCC’s Climate Forecasts and Uncertainties, International Society of Forecasters, 29th 

International Symposium, Nice, France, Jun 22-25. Various other papers discussed the United Nations‘ 

Intergovernmental Panel on Climate Change assumptions, data, and methodologies. The proceedings are available 

at http://www.forecasters.org/isf/pdfs/ISF2008_Proceedings.pdf. 
23 Meadows, Donella (1982),Groping in the Dark: The First Decade of Global Modelling, ―We have great 

confidence in the basic qualitative assumptions and conclusions about the instability of the current global 

socioeconomic system and the general kinds of changes that will and will not lead to stability. We have relatively 

great confidence in the feedback-loop structure of the model, with some exceptions which I list below. We have a 

mixed degree of confidence in the numerical parameters of the model; some are well-known physical or biological 

constants that are unlikely to change, some are statistically derived social indices quite likely to change, and some 

are pure guesses that are perhaps only of the right order of magnitude.‖ (p. 129) 
24 ―Trends in Carbon Dioxide,‖ website of the National Oceanic and Atmospheric Administration, Earth System 

Research Laboratory, at http://www.esrl.noaa.gov/gmd/ccgg/trends. Data in ftp://ftp.cmdl.noaa.gov/ccg/co2/ 

trends/co2_mm_mlo.txt 
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To start with, a simple plot will show that there are various outliers (data that is way out of line 

with the rest of the set). In these cases it seems to be due to missing data, as all the numerical 

values of the outliers are identical (-99.99). The missing data corresponds to the months of June 

1958, February to April 1964, December 1975, and April 1984. There are various methods to 

treat outliers (copying the previous value, or an average or a weighted average of them, or some 

extrapolation of the previous values) but we will ignore the data points as we will work with a 

restricted data set, from August 1992 to September 2008 (194 data points). A description of 

methods of data imputation (filling in missing data) is contained in OECD, 2008).   

 

Once the data are selected, we inspect the set, and notice that there is a linear trend superimposed 

on an annual cycle. It is preferable to work with data that is stationary, that is, whose mean, 

variance, and autocorrelation do not change over time. For that purpose we will detrend the data 

by subtracting an estimate of the trend. After a few tries, we determine that the following model 

can be a good linear approximation to the carbon dioxide concentration (in ppm) in the period 

selected: 

 

)625.1992(9247.177.354)(2 ttCO  
 

where CO2 (t) is the level of carbon dioxide at time t and t is the year of observation.  

 

Next, we generate a mathematical model of the cyclic annual variation, which can reasonably be 

approximated by a sine function, suitable shifted to align the start time. Adding the annual model 

to the linear part we obtain a mathematical model of the concentration: 

 

))5745.0625.1992(2sin(8854.2)625.1992(9247.177.354)(2 tttCO
 

 

The original data and the approximation can be seen in Fig. 1, and the difference between both 

the real and reconstructed time series in Fig. 2. It is evident that some structure remains in the 

difference between the original data points and their approximation (the residuals), such as a 

frequency of half a year. The modeling process should continue until the residuals are within 

tolerable limits and do not present any structure (such as cycles), that is, they should behave like 

―white noise.‖ Tests (Durbin-Watson) could be used to determine that no correlation remains in 

the residuals. 

 

If we include the effects of a half-year cycle, we will reduce the residuals as evidenced in Fig. 3, 

where less structure can now be observed. The model for the concentration, then, becomes: 

 

))2972.0625.1992(sin(8085.0

))5745.0625.1992(2sin(8854.2)625.1992(9247.177.354)(2

t

tttCO

 
 

The average of the residuals is 4.8e-6 ppm, and their standard deviation 0.4377 ppm. The work is 

not finished, however, as some structure remains, but the equation above might be a good 

approximation for some applications. 

 



The Millennium Project                                                                      Futures Research Methodology—V3.0 

Statistical Modeling: From Time Series to Simulation                                                                               9 

Figure 1. Comparison of original data and mathematical model approximation 

Mauna Loa CO2 concentration - Original data and mathematical model
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Figure 2. Residuals between original data and mathematical model approximation 

Mauna Loa CO2 concentration [ppm] - Difference between original data 

and mathematical model after including an annual cycle
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Figure 3. Residuals after the annual and semi-annual cycles were also modeled 

Mauna Loa Co2 concentration [ppm] - Errors remaining after including 

an annual and semi-annual cycles
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Instead of estimating the cycles by visual means, we could calculate the correlation of the CO2 

concentration time series at different intervals. The higher the correlation coefficient, the 



The Millennium Project                                                                      Futures Research Methodology—V3.0 

Statistical Modeling: From Time Series to Simulation                                                                               10 

stronger the linear relationship between the data points will be. If we do so, and calculate the 

correlation of two time series—one built with every data point corresponding to August of each 

year from 1963 to 2008, and another with the data points exactly one year before (from August 

1962 to August 2007)—the correlation coefficient will be 0.9961, which strongly suggests the 

existence of an annual cycle. If, instead, we do the analysis every eleven months, the correlation 

will be smaller (0.9860) and even smaller if we increase the lag. As the series has an evident 

annual cycle, the correlation will exhibit a minimum at six months, and start increasing for a 

maximum at a lag of one year. This behavior is evident from Fig. 4. A more appropriate 

procedure to determine the cycles and their strength would have relied on Fourier analysis 

(spectral analysis), in the frequency domain. 

 

Figure 4. Correlation varies with the lag. One method to find the length of a cycle… 
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When curve fitting is employed, the equation chosen for making the forecast or for projecting the 

historic data is generally the one that displays the highest correlation coefficient (usually using a 

"least-squares" criterion, which refers to any methodology which evaluates the relationship 

between a set of values and alternative estimators of those values by choosing that estimator for 

which the sum of the squared differences between the actual values and the estimated values is 

lowest) with the past data points.  In certain cases, the practitioner may know beforehand that the 

system or parameter with which s/he is dealing cannot exceed 100 percent of the market.  In such 

cases, only certain equations are selected a priori for use.  

 

In the example above, two types of curves were used: a straight line, and a sinusoid. Many other 

curve types are available and may be used in fitting analyses; Figure 5 presents a set of curves 

typically used in curve fitting. 
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Figure 5. Common curve-fitting algorithms 

 
V = e

-(A+BX)
 V = M Y + B  

V = MY
2
 +BY +C 

log V = M Y + B  
log V = M log Y + B 

   V = M log Y + B 
1/V = M Y + B 

     1/V = M / Y + B 
        V = M /Y + B 

log log V = M Y + B 
log log V = M log Y + B 

log V = M / Y + B 
1/log V = M / Y + B 

     1/V = M log Y + B 
1/log V = M log Y + B  

 
Note:     M = Slope 

B, C = Constant Terms 
Y = Year  
V = Calculated value 

 

Most curve-fitting software programs allow the user to designate a curve and selection of the 

proper general curve usually is based on minimum R
2
, a measure of the ―goodness of fit.‖ 

However, two different curve shapes can, for example, each fit the historical data well and yet 

produce markedly different extrapolations.  In effect, selecting the curve shape may predetermine 

the forecast. 

 

 

Averaging Methods 

 

Data on historical trends can be smoothed using several methods.  The arithmetic mean can be 

calculated and used as a forecast. However, this assumes that the time series is based on a fairly 

constant underlying process. Simple moving averages, which are computed by dropping the 

oldest observation and including the newest, provide a method of damping the influence of 

previous earlier data.  Linear moving averages provide a more sophisticated averaging method 

better suited to addressing trends that involve volatile change.  In effect, linear moving averages 

are a double moving average, that is, a moving average of a moving average. 

 

Exponential smoothing refers to a class of methods in which the value of a time series at some 

point in time is determined by past values of the time series. The importance of the past values 

declines exponentially as they age.  This method is similar to moving averages except that, with 

exponential smoothing, past values have different weights and all past values contribute in some 

way to the forecast. 

 

Exponential smoothing methods are useful in short-term forecasting.  They can often produce 

good forecasts for one or two periods into the future.  The advantage of exponential smoothing is 

in its relatively simple application for quickly producing forecasts of a large number of variables.  

For this reason, this method has found wide application in inventory forecasting.  Exponential 

smoothing should not be used for medium-or long-term forecasts or for forecasts in which 
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change may be rapid. Such forecasts depend heavily on the most recent data points and thus tend 

to perform well in the very short term and very poorly in the long term. 

 

Regression analysis 

 

The technique of regression analysis allows building a function of a dependent variable (the 

response variable or output) in terms of independent variables (the explanatory variables or 

inputs). This function can later be used for inference, forecasting, hypothesis testing, or 

determining causality. In general, the form of the equation that relates the dependent to the 

independent variables is: 

 

 

where )(ty  is the estimate of a real response variable y (t), and c0, c1, …, cn are the constants 

(sometimes called coefficients). The variables x1 to xn are the explanatory (linearly independent) 

variables, and the error term u(t) represents a random variable in which we concentrate all the 

unknowns that exist between our ideal model and the real system in question. As all the terms are 

evaluated at a time t, the output will also be determined at time t, but this single evaluation or 

measurement is not sufficient to determine all the (n+1) constants. In general, we will have m 

measurements or data points: 

 

 

 

 

 

 

 

 

Note that we can include further functionality in the equations by introducing new variables such 

as cross-products (x1 * xn) or other functions (ln(x1), cos(x1)). Also, an added advantage of the 

method is that once we calculate the constants, each of the coefficients (say, c1) represents the 

gradient of the estimate of y(t) with respect to the variable or set of variables that it is multiplying 

(say, x1), maintaining the rest of the variables constant. 

 

Assuming that the variables are not linearly related, we need (n+1) measurements to have a 

unique solution for the constants, or more than (n+1) measurements to have an over-determined 

system with an infinite number of solutions. As we are interested in only one solution, we 

impose the additional criterion of minimizing the sum of the residuals squared 
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The usual method of determining the constants is by least squares, details of which are beyond 

the scope of the present chapter, but that most statistics software packages can solve. In the case 

of a two-constant (c0 and c1) system the solutions are  
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Forecasting with multiple-regression analysis requires: 

 

 Sets of historical values for each of the independent variables, and the 

dependent variable for the same time period.  

 

 Independently derived — extrapolated or forecasted — values of the 

independent variables for each time or occasion when a value of the dependent 

variable is to be computed. 

 

Many high-quality software statistical packages facilitate the regression process.  Not only do 

they produce high-quality graphs of actual and calculated data, but also they produce a wealth of 

information regarding how well the regression matches actual data. 

 

To illustrate the use of the technique, if our interest is to analyze how the Gross National Product 

(GNP) of the USA behaved between 1959 to the present, we can try to model it as a function of 

the monetary base M2
25

.  The expression that links the input (M2) to the single output (GNP) is 

known to have the form  

   ))(2ln())(ln( 10 tMcctGNP  

 

where t is January of any year between 1959 and 2008, and c0  and c1 are constants that have to 

be determined. Other functional expressions can be used, but this will suffice for our purposes. 

 

In many applications, it is not advisable to use all the data to determine the constants. Usually, a 

large portion of the data allows determining c0 and c1, and the rest is used to check how the 

function estimates the remaining years. Otherwise, in some cases, an effect of overestimation 

might occur, where the estimated constants fit the data ―too well‖ in the estimation interval, but 

poorly outside. In our case, we will rely on the data set from 1959 to 1999 to estimate the 

constants, and will use the M2 data from 2000 to 2008 to check how the GNP is predicted.  

 

Using the equations above or a software package, we can find that  

))(2ln(05888.11623.0))(ln( tMtGNP  

with a R
2
 coefficient of 0.997 and the t-stats indicated below the corresponding parameters. We 

can also express the above equation as  

   05888.1)(21.1762)( tMtGNP  

 

and a graphical representation of the original data and the regressed estimate can be found in 

Figure 6. 

 

                                                 
25 M2 includes all physical currency, accounts of the central bank that can be exchanged for physical currency—

minus reserves—plus checking, savings, and money market accounts, and small certificates of deposit. In the 

example, GNP data was retrieved from the Federal Reserve Bank of St. Louis, at http://research.stlouisfed.org/fred2/ 

Monetary base data from the Federal Reserve at http://www.federalreserve.gov/releases/h6/hist/h6hist1.txt. 
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Figure 6: Estimation of the USA GNP as a function of the monetary base 
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One problem in regression analysis is to find appropriate independent variables that promise a 

relationship with the dependent variable. This can be approached using multivariate correlations, 

by identifying the correlation coefficients that exist between potential variables. Figure 7 

illustrates a typical correlation coefficient printout. The data were drawn from the World Bank‘s 

database and are for the United States over the years from 1985 to 2005. The variables are: 
 Year 

 Electricity production from nuclear sources (% of total) 

 Adjusted savings: carbon dioxide damage (% of GNI) 

 Unemployment (% labor force) 

 GDP per unit of energy use (constant 2005 PPP $ per kg of oil equivalent) 

 Population growth (annual %) 

 Research and development expenditure (% of GDP) 

 Fossil fuel energy consumption (% of total) 

 GDP per capita, PPP (constant 2005 international $) 

 Life expectancy at birth, total (years) 

 

Using a commercially available statistical package, the coefficients are shown in Figure 7: 

 

Figure 7 Multivariate Correlations 

 
Nuclear 

Electricity 
Production 

CO2 Damage 
% GNP 

Unemploy-
ment % 

GDP per unit 
of energy use 

Population 
Growth % 

Fossil Energy 
Consumption 

GDP/Cap 

Nuclear Electricity 
Production 

1.0000 -0.6078 -0.3712 0.5521 0.4986 -0.8589 0.5962 

CO2 Damage % 
GNP 

-0.6078 1.0000 0.6045 -0.9799 -0.0691 0.5211 -0.9808 

Unemployment % -0.3712 0.6045 1.0000 -0.5593 0.0747 0.2600 -0.6452 

GDP per unit of 
energy use 

0.5521 -0.9799 -0.5593 1.0000 0.0051 -0.4590 0.9893 

Population Growth 
% 

0.4986 -0.0691 0.0747 0.0051 1.0000 -0.7638 0.0324 

Fossil Energy 
Consumption 

-0.8589 0.5211 0.2600 -0.4590 -0.7638 1.0000 -0.4979 

GDP/Cap 0.5962 -0.9808 -0.6452 0.9893 0.0324 -0.4979 1.0000 

 

These data tell us, for example, that there is a relatively high negative correlation between fossil 

fuel energy consumption and nuclear electricity production (-0.8589) and, similarly a very high 

negative correlation exists between GDP per unit of energy use and CO2 damage. These results 
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would lead us to expect that a good regression equation for GDP per unit of energy consumption 

would have as independent variables CO2 Damage as a % of GNP, and GDP/capita. 

 

 

Dynamic Systems Modeling 

 

This CD ROM contains a chapter on ―The Systems Perspective: Methods and Models for the 

Future‖ which provides detailed descriptions of system models. The next few paragraphs deal 

with a portion of the same material because dynamic systems modeling, in many instances, 

offers an alternative technique to statistical models.   

 

In dynamic systems modeling, an attempt is made to duplicate the system being modeled in the 

form of equations, not solely by drawing on statistical relationships among variables, but rather 

by logic and inference about how the system works. For example, using regression to forecast 

the number of people who live in Accra, Ghana, one might find a very precise, but spurious, 

correlation with the number of apples sold in New York. The statistics might appear excellent, 

but the logic flawed. Furthermore, the coefficients produced in a regression analysis have no 

actual physical meaning. The perspective changes in dynamic systems modeling. This method 

starts with an idea about how the system functions and gives meaning to the coefficients.  

 

For example, suppose we want to construct a model for use in forecasting the population of 

Accra, Ghana.  A time-series analysis might use historical population data, fit a curve, and by 

using the equation, extend the data into the future. A regression analysis would relate population 

to factors considered important, such as life expectancy, education, immigration, unemployment, 

etc.  In either case the equations would relate the dependent variable, population, to the 

independent variables such as time, life expectancy, education, etc.. The coefficients of the 

equations would be numbers that have no physical meaning. On the other hand, in dynamic 

modeling, the objective would be the same, but the modeling process would start with the 

definition of a system that would logically include population as an output. In the equations, the 

coefficients would have some meaning. For example: 

 
Population in year2= Population in year1 + Births in year1 – Deaths in year 1 + net migration in year1 

 

Dynamic systems modeling is complicated but has the advantage of forcing attention on how 

things really work. Systems dynamics models of the sort first developed by J. Forrester (1961) 

were used in the construction of the World Dynamics model for the Limits to Growth (Meadows, 

1973) study; these models involve feedback loops, stocks and flows. These three seemingly 

simple elements can be assembled into systems that exhibit complex and unexpected behavior. 

For example the model shown in Figure 8 depicts a production/ordering/retailing system 

(Kirkwood, 2001) 
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Figure 8. A production/ ordering/ retailing system (Kirkwood, 2001) 

 

 

The ―valves‖ labeled ―retailer orders,‖ ―retail sales,‖ and ―factory production‖ control flows; the 

boxes labeled ―Factory Order Backlog‖ and ―Retail Inventory‖ represent stocks and the lines 

with arrows represent flows. Kirkwood (2001) gives an excellent set of instructions on how to 

build such models. As noted, the chapter on ―The Systems Perspective: Methods and Models for 

the Future‖ contains much more detail about such models and provides references to software for 

forming systems models and their equations.    

 

If we were to use only time and the initial conditions of the explanatory variables we would be 

able to create only one time trajectory of the dependent variable. However, we know that in real 

time applications the parameters in the equations can vary and that the model will be subject to 

disturbances. Conscious of these variations, we will then have to perform many simulations, 

changing the parameters, the initial conditions, and the disturbances, each combination creating a 

different scenario. This qualitative description is not far from the spirit of the Monte Carlo 

method
26

, an automated procedure born immediately after the end of World War II that mixed 

the concepts of statistical sampling with the computer‘s versatility and speed. 

 

 

                                                 
26 Named by Nicholas Metropolis (1915-1999), after an idea of Stanislaw Ulam (1909-1984), with intervention of 

John von Neumann (1903-1957). See Metropolis, Nicholas (1987). ―The Beginning of the Monte Carlo Method,‖ 

Los Alamos Science, Special Issue, pp. 125-130. The article notes that Enrico Fermi (1901-1954) had 

independently used the method (but without calling it ‗Monte Carlo‘) some 15 years before Ulam thought of it. 
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Validation 

 

Whether the models are statistically derived or are of the systems variety, the analyst usually 

must also perform a validation step. Validation usually is accomplished by one or more of the 

following methods: 

 

 Computing the cumulative absolute error between the true historical data and the values 

produced by the statistical or simulation model. Usually this is in the form of the 

statistical measure, r
2
 (more on this in the next section of this chapter). 

 

 Demonstrating the ability of the model to reproduce recent data by constructing the 

models using data that does not include the most recent period, running the model to 

―forecast‖ that period, and then comparing the actual data from that period to the model‘s 

results. 

 

 Observing the dynamic behavior of the model and comparing it to real life. If the real 

system produces periodic peaks, for example, the model should be expected to do so as 

well. 

 

Performing sensitivity tests. The input data can be varied slightly to observe the model‘s 

response which should resemble the expected response of the real system. Excessive sensitivity 

may indicate that the system can be chaotic and that the feedback can lead to instability. 

 

 

Testing the Residuals 

 

Various tests have been developed to perform a conscientious analysis of the residuals. Among 

other points on which to focus our attention, the main two are (a) verifying that the variance does 

not change in time and (b) the residuals behave with a distribution close to normal. 

 

(a) Constant variance (homoscedasticity): Besides relying on a visual plot of the variance of the 

residuals, the whole set of residuals could be divided into two parts (one set for the first half of 

the time series and another set for the rest) and an F-Test Two-Sample could be made on the sets 

to determine if the hypothesis that the population variances are the same could be accepted. If the 

variance changes in time, weighted least squares (WLS) could be used instead of ordinary least 

squares (OLS). 

 

(b) Normality: The assumption that the residuals are normally distributed impacts the calculation 

of other statistical indicators
27

. To test normality, besides visually checking a histogram of the 

residuals or calculating the first four moments, various tests can be used (Anderson-Darling, 

D‘Agostino‘s K-squared, Lilliefors, Pearson‘s chi-square, Shapiro-Wilk), the Cramer-von-Mises 

criterion, or the QQ (quantile-quantile) plots. 

 

                                                 
27 Such as the p-values in t-tests, F-tests, or chi-square tests. 
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To determine quantitatively how good the estimates of the parameters are, firstly, we can 

calculate the coefficient of determination, R
2
, which indicates the proportion of the dependent 

variable that can be attributed to all the independent variables acting together. It can also be 

interpreted as the explained variance, the ratio between the variance as predicted by the model 

with the total variance of the data. R
2
 can vary between 0 and 1, is not affected by changes in the 

measurement units, and a modification of it (adjusted R
2
) considers the effect of small samples. 

This will indicate how adequate all of the parameters are in fitting the data. Secondly, we can 

quote the t-statistic of each of the parameters, sometimes displayed in brackets below each of the 

parameters. The t-statistic (t-stats, t-ratio, t-value) indicates how far the estimated coefficient is 

from being a specified fixed value (0 or other numerical value) given the amount of data used: 

the further it is, the more statistically significant it becomes. From the t-stats tables, for example, 

for a t-stats of 2, only 5 samples would be necessary to have a statistical significance of 90%, but 

more than 60 samples to have a statistical significance of 95%. For more statistical significance, 

more data are required. 

 

How good are the estimates of the constants? The well-known Gauss-Markov theorem states that 

the best linear unbiased estimator of the coefficients is the least squares estimator if the model is 

linear and the errors u(t) have a zero mean, are uncorrelated, and have a constant variance (thus, 

it is not necessary for the errors to be normally distributed). For this reason we try to remove all 

possible recognizable behavior from the noise term and attribute it in some functional form to the 

equations expressing y(t). Once the errors do not have a recognizable structure, the estimated 

constants are the best linear unbiased estimates obtainable. 

 

In addition to these requirements on the errors (residuals), the independent variables should be 

linearly independent.  

 

Specific regression methods can be invoked in special circumstances. For example, if the 

dependent variable y(t) is a probability, bounded by definition between 0 and 1, a logistic 

regression can be performed. The function estimate is defined as logit
28

 and will be regressed as 

usual. For example, for a linear regression:  
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Examples to predict political and economic country risks based on logit regressions have been 

developed, where the probability of a certain risk (i.e., unrest, default) is modeled as a function 

                                                 
28 Proposed by Joseph Berkson in 1944. 
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of regressors (literacy, military budget as a percentage of total budget, public debt, GNP, etc.).
29

 

The independent variables can also be categorical (that is, binaries, indicating data points which 

might exist or not). The model can also be extended to situations that have a plateau with 

decreasing growth rates (i.e., population models
30

). The next one is one such example, 
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If, instead of a probability, the dependent variable y(t) can be expressed as a specific function of 

a probability known as probit
31

 (probability unit), then the regression can be performed on the 

probit of the observed probability. 
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where Φ is the standard cumulative normal probability distribution.  

 

Probit regressions, also used for categorical independent variables, are less common than logit 

regressions because the coefficients are less easily interpreted than logits, which are simply odds 

ratios. 

 

One of the most versatile methods is the stepwise regression, in which all combinations of 

variables are tested until the best one is found
32

. Instead of simply combining variables we might 

want to combine processes (autoregressive, differencing, moving average). In this case, the most 

powerful methods are ARIMA
33

 (AutoRegressive, Integrated, Moving Average) and GARCH
34

 

(Generalized AutoRegressive Conditional Heteroskedasticity, an autoregressive-moving average 

model with varying variance), for which specialized literature should be consulted. 

 

                                                 
29 McGowan, Jr., Carl et al (2005). ―Using Multinomial Logistic Regression of Political and Economic Risk 

Variables for Country Risk Analysis of Foreign Direct Investment Decisions,‖ Southwestern Economic 

Proceedings, Vol. 32. Proceedings of the 2004 Conference, Orlando, Florida. 
30 Keyfitz, Nathan et al. (1968). ―World Population: An Analysis of Vital Data,‖ Chicago, University of Chicago 

Press, p. 215 
31 Introduced by Chester Ittner Bliss in 1934. 
32 Efroymson, M. (1960). ―Multiple Regression Analysis,‖ in Ralston, A. and Wilf, H. (Eds.) ―Mathematical 

Methods for Digital Computers,‖ Wiley. 
33 Box, George and Jenkins, Gwilym (1970). ―Time Series Analysis: Forecasting and Control,‖ San Francisco, 

Holden Day. ARIMA models are used by the U.S. Census Bureau. 
34 Bollerslev, Tim (1986). ―Generalized Autoregressive Conditional Heteroskedasticity,‖ Journal of Econometrics, 

Vol. 31, pp. 307-327. 
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III. STRENGTHS AND WEAKNESSES OF THE METHOD 
 

Although time-series analysis is quick and easy, it provides little fundamental understanding of 

the forces that will shape future behavior.  The same criticism can be raised for almost all forms 

of statistically based models- from regression to econometrics. Since the future is predicated 

solely on the past without an underlying feel for causal factors, time series is a naive but often 

useful forecasting method. 

 

While various forms of explanatory or causal forecasting strive to explain fundamental causal 

relationships, those too are predicated on past behavior and therefore also may present a naive 

forecast. The analyst must ask if the relationships intrinsic to the system being modeled will hold 

in the future. 

 

 

Major Strengths of Regression 

 

The strength of regression as a forecasting method is that it capitalizes on historical relations 

between the predicted (dependent) and predictor (independent) variables. It uses all the 

information in the historical data pairs to determine the future values of the predicted variables. 

 

The "goodness of fit" of the Yc to the historical Y values can be used to compute a measure of 

the strength of the linear relationship between the historical X, Y pairs which then can be used to 

calculate "confidence limits" or probable upper and lower bounds for the predicted values of Y.  

In general, the closer the Yc to the historical Y values, the narrower the confidence limits; that is, 

the actual values of Y are less likely to depart from the predicted values. 

 

The correlation coefficient is an index that can be used to calculate a figure of merit from the 

accuracy with which the calculated values of Y, Yc match the actual past-history data.  The 

square of the correlation coefficient ranges from 0 through 1.  A value of 0 means total failure of 

the Yc values to correspond with the corresponding Y values.  A value of 1 for the square of the 

correlation coefficient means that the Y and Yc values correspond exactly.  Values between 0 

and 1 may be interpreted as expressing the proportion of variability in the historical Y values that 

could be accounted for by the calculated linear relationship between X and Y. 

 

Major Limitations of Regression 

 

The method of least squares, as commonly used, implies that the predicted values of the 

independent variable (X) are devoid of error or uncertainty; that is, the only possible error or 

uncertainty is in values of the dependent variable (Y).  Often this assumption is questionable. For 

example, independent variables can be forecast incorrectly. Take a specific example: suppose we 

want to forecast the prime interest rate and develop a good statistical equation relating the 

Consumer Price Index (CPI) and the prime interest rate.  A forecast of the future CPI trend may 

then be used to generate a forecast of the prime interest rate, using bi-variate linear regression. 

Accuracy of this forecast depends on how strongly the past CPI values and prime interest rate are 

related and on how accurately the future CPI trend is predicted.  The latter source of inaccuracy 
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is not normally taken into account in calculating upper and lower bounds for the forecasted 

values of the dependent variable or, more generally, in evaluating the accuracy of this forecasting 

method. 

 

When the past-history data are subject to error, the effect of the error makes the predicted values 

of Y vary less than they should.  Values of Y that should fall below the mean will generally be 

forecast as such, but less so than they should be, similarly for values that should be above the 

mean.  The greater the "noise" in the past history, the greater this effect; and no way exists using 

this method to distinguish a weak relationship between X and Y from a strong relationship that is 

obscured by noise or errors of measurement. 

 

The methods, as commonly applied, assume that all past-history data pairs are equally important.  

While "weighted" data pairs can be used to generalize, the method is not common. 

 

The method fundamentally generates a "regression forecast."  The forecast of Y depends on a 

prior forecast of X.  Similarly, the forecast of X might depend upon a prior forecast of W.  But 

somewhere in this series a forecast must exist that does not depend on another forecast.  One way 

to break the chain is to have time itself as the predictor or independent variable. This option, 

however, necessarily results in the predicted (dependent) variable, which depends only on time, 

either increasing or decreasing without limit over time. 

 

One might assume that these difficulties and pitfalls lead to the conclusion that dynamic models, 

featuring cause and effect relationships are the answer. But there are weaknesses here too. The 

underlying assumption is that it is possible to conceptually bound and describe a functioning 

system, that is, to distinguish between endogenous and exogenous aspects. This is often difficult. 

Further, these methods assume that the structure depicted in causal loop diagrams are invariant 

with time and this assumption can be wrong when momentous changes affect not only the stocks, 

flows, and feedback but the structure of the model itself.  

 

 

IV. FRONTIERS OF THE METHOD 
 

Statistical methods described here rely heavily on the assumption that forces shaping history will 

continue to do so. The frontiers of statistical methods must surely include techniques to test that 

assumption and, where found wanting, permit the introduction of perceptions about change. 

Trend Impact Analysis, Probabilistic System Dynamics, Cross Impact Analysis, Interax: all of 

these methods attempt to meld judgment with statistics. 

 

Staying strictly within the bounds of statistics, some research directions that could benefit the 

field include: 

 

 Developing methods that test time series for chaos (see section Frontiers of Futures 

Research). Unless special cases are involved, fitting chaotic time series using any of the 

techniques suggested here will probably be unproductive. 

 Exploring new forms of regression equations that match the time series under study. For 
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example, using an S-shaped function when regressing variables that relate to 

technological maturation or substitution. 

 Simulating policies in regression models. To date, "dummy variables" whose value is 

either zero or one have been used in regression studies to indicate the presence or absence 

of a policy. This method is not refined. 

 Using improved clustering or multidimensional scaling techniques to improve the 

efficiency of searching for variables that can fit in a group or relate to one another. 

 Including nonlinear relations in simulation models, which can sometimes result in 

apparent chaotic behavior. 

 

 

V. WHO IS DOING IT 
 

Fortunately statistical analysis is facilitated by a large number of software programs that are 

growing in sophistication.  These programs have made more sophisticated quantitative analysis 

widely available and relatively inexpensive to forecasters and planners.  The most sophisticated 

methods tend to be used by consultants, mathematicians, and econometricians who have devoted 

considerable time to the study of the subject. 

 

There are many fine packages to perform SM and related activities. Currently, 56 packages are 

listed in a comparison of statistical packages
35

, of which ADamSoft, BrightStat, Dataplot, gretl, 

MacAnova, OpenEpi, PSPP, R, R Commander, RKWard, SalStat, and SOCR are free.  

 

Many packages have a large user base: Gauss, Mathematica, Minitab, R, S, SAS, SPlus, SPSS.  

 

Software packages are available from numerous sources, including: 

 

SYSTAT Inc. 

1800 Sherman Avenue 

Evanston, IL 60201 

(708) 864-5670, Fax (708) 492-3567; 

http://www.cranessoftware.com/products/products/systat.html 

 

Smart Software, Inc. 

(Charles Smart, President) 

4 Hill Road 

Belmont, MA 02178 

(617) 489-2743 Fax (617) 489-2748; http://www.smartcorp.com/ 

 

SPSS, Inc. 

444 North Michigan Ave., Suite 3000 

Chicago, IL 60611 

(312) 329-2400, Fax (312) 329-3668; http://www.spss.com/ 

                                                 
35 http://en.wikipedia.org/wiki/Comparison_of_statistical_packages 
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SAS Institute Inc. 

SAS Campus Drive 

Cary, NC 27513 

(919)677-8000, Fax (919)677-8123; http://www.sas.com/ 

 

TSP International 

P.O. Box 61015 

Palo Alto, CA 94306 

(415) 326-1927; http://www.tspintl.com/ 

 

The MathWorks, Inc. 

3 Apple Hill Drive 

Natick, MA 01760-2098 

UNITED STATES 

Tax ID# 942960235 

Phone: 508-647-7000 

Fax: 508-647-7001; 

http://www.mathworks.com/products/econometrics/?s_cid=HP_FP_ML_EconometricsToolbox 

 

Applications of statistical methods span a vast canvas and range from analysis of astronomical 

bodies to genetics, from analysis of breaks in water systems to disease epidemics. Wherever 

there are data, there are statistical studies. Some of these are summarized below to illustrate the 

broad scope of applications.  

 

 Boyacioglu et al (2009) applied statistical methods to the prediction of bank failures in 

Turkey. Their approach include several methods, in particular ―multivariate statistical 

methods; multivariate discriminant analysis, k-means cluster analysis and logistic 

regression analysis.‖ 

 Zhang (2009) in his paper, ―Likelihood-Based Confidence Sets For Partially Identified 

Parameters,‖ applies statistical techniques of the sort described here to complete data sets 

with missing data, including data that has been deleted as a result of censorship. 

 Bordley, R., and Bier (2009) address the problem of updating beliefs about the 

relationships among variables included in a regression model or a simulation model. The 

paradox is that the original models may be based on beliefs which are revised as a result 

of the model. How then can the models be updated? 

 

Ye et al. (2009) describe a new statistical technique which has proven useful in the analysis of 

near-infrared spectroscopy (NIRS) in the measurement of brain activity. They have developed 

―a. a new public domain statistical toolbox known as NIRS-SPM.‖ In their approach‖NIRS data 

are statistically analyzed based on the general linear model (GLM) …The p-values are calculated 

as the excursion probability of an inhomogeneous random field… dependent on the structure of 

the error covariance matrix and the interpolating kernels. NIRS-SPM not only enables the 

calculation of activation maps of oxy-, deoxy-hemoglobin and total hemoglobin, but also allows 

for the super-resolution localization, which is not possible using conventional analysis tools.‖ 
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We have only scratched the surface of SM and, overall, we have simplified the issues to the 

extreme, so much so that it would seem that just with a handbook on statistics under the arm, it 

would be possible to attack any modeling problem. On the contrary, if we have learned anything 

during the previous century is that we have not stopped marveling at the complexity of the 

systems that we wish to simulate or control, and that the most ―impressive theories have 

provided us … not so much [with] a solution of the problem[s] as [with] a demonstration of 

[their] deep intractability.‖
 36

  

 

At their core, SM techniques rely on using a model as a substitute for reality, and we should be 

conscious that the model will always be an inaccurate representation of a phenomenon that 

happens in real life. The question is how far we may allow our model to deviate from reality, 

and, to help our decision to be evaluated quantitatively, we need to use formal numerical 

procedures.  

 

In that sense, the inputs, the model, and the outputs need to be carefully treated by the modeler. 

The inputs (including uncertainties) have to represent those found in reality. The model 

(including changes of parameters) has to contain all the modes of behavior that are relevant for 

the study in question (i.e., neither too detailed nor too general). Further, for the same type of 

inputs, the outputs have to track real-life measurements within a specified tolerance. Specific 

techniques exist to test these considerations, and the literature cited in the preceding pages and in 

the bibliography should be consulted for more details. 

 

                                                 
36 In particular, it can be said that most of the scientific efforts for the last 50 or 100 years have been directed to 

model situations far from equilibrium and the steady state. For a glimpse at general issues related to modeling, 

including the philosophy of modeling, complex systems, chaos, nonlinearities, and comments about the Club of 

Rome models as more prescriptive than predictive, see Simon (1990), op. cit. in Note 16. 
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