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A B S T R A C T

The phase slope index (PSI) is a method to disclose the direction of frequency-specific neural interactions from
magnetoencephalographic (MEG) time series. A fundamental property of PSI is that of vanishing for linear mixing
of independent neural sources. This property allows PSI to cope with the artificial instantaneous connectivity
among MEG sensors or brain sources induced by the field spread. Nevertheless, PSI is limited by being a bivariate
estimator of directionality as opposite to the multidimensional nature of brain activity as revealed by MEG. The
purpose of this work is to provide a multivariate generalization of PSI. We termed this measure as the multivariate
phase slope index (MPSI). In order to test the ability of MPSI in estimating the directionality, and to compare the
MPSI results to those obtained by bivariate PSI approaches based on maximizing imaginary part of coherency and
on canonical correlation analysis, we used extensive simulations. We proved that MPSI achieves the highest
performance and that in a large number of simulated cases, the bivariate methods, as opposed to MPSI, do not
detect a statistically significant directionality. Finally, we applied MPSI to assess seed-based directed functional
connectivity in the alpha band from resting state MEG data of 61 subjects from the Human Connectome Project.
The obtained results highlight a directed functional coupling in the alpha band between the primary visual cortex
and several key regions of well-known resting state networks, e.g. dorsal attention network and fronto-parietal
network.
Introduction

Systems neuroscience studies in the last decade have made clear that
normal brain function requires the concurrent and synergic cooperation of
several segregated areas (Deco et al., 2015; Sporns, 2013). Indeed, the
putative coordinating mechanism supporting brain inter-areal functional
cooperation is the phase locking of brain oscillatory activity, i.e., of brain
rhythms (Engel et al., 2013; Hillebrand et al., 2016; Varela et al., 2001).
Understanding the resulting large-scale network organization of the brain
has thus become crucial to disclose brain functioning. To this end, a non
invasive measurement of electrophysiological activity with millisecond
time resolution, such as magnetoencephalography (MEG) or electroen-
cephalography (EEG), is needed to characterize synchronization among
brain sources at a time scale relevant to behaviour, i.e. occurring with
subsecond timing and at frequencies in the range 1–100Hz.
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The reliable estimation of functional connections between brain areas
from MEG/EEG data requires methods able to cope with the negative
effects of field spread,1 i.e. the artificial instantaneous coupling between
measurement sensors or brain sources. In fact, the resulting artificial
connectivity cannot be eliminated even by solving an electromagnetic
inverse problem to infer source activities from sensor data.

Several computational approaches have been designed and success-
fully used to capture the different aspects of inter-areal synchronization
bearing in mind their ability to face field spread effects (Brookes et al.,
2012; Colclough et al., 2015; Ewald et al., 2012; Hipp et al., 2012;
Marzetti et al., 2008; Nolte et al., 2004, 2009; Soto et al., 2016; Vinck
et al., 2011). In this framework, a key aspect of inter-areal synchroni-
zation is the directionality of the coupling. Namely, it is important not
only to know that brain area A is coupled to brain area B but also if brain
area A leads brain area B or vice versa. This knowledge is crucial to
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unravel the complex mechanisms that guide dynamic network instanti-
ation during cognitive processing in humans, e.g. to disambiguate feed-
back versus feedforward control.

Among the possible different approaches used to estimate directional
coupling between brain areas, a promising approach relies on the tem-
poral delays that occur because of the finite speed of information (Bastos
et al., 2015; Fries, 2015). Indeed, to estimate the directionality of
frequency-specific coupling in a way robust to the field spread effects, the
phase slope index (PSI) has been developed (Nolte et al., 2008). PSI is a
bivariate estimator that detects the coupling direction by relying on the
sign of the discrete derivative with respect to frequency of the phase
difference between two time series, e.g. source activities, this derivative
being proportional to the time delay between them (Nolte et al., 2008;
Basti et al., 2017). The bivariate nature of the PSI imposes that this
measure is able to detect the directionality from a pair of scalar, i.e.
one-dimensional, time series. Thus, when used to assess directionality
between brain sources estimated from MEG/EEG data, the vector source
activity must be reduced to a scalar one, prior to applying PSI. This is
usually accomplished by fixing, for each brain source, a preferential di-
rection for its activity, e.g. geometrical direction normal to the cortical
surface, or functional direction such as that of maximum source power.
Nevertheless, this dimensionality reduction might be suboptimal when
connectivity is at target, as already shown for non-directed bivariate
measures when source direction is fixed according to a maximum power
criterion (Marzetti et al., 2013). Moreover, choosing a geometrical
approach in fixing the direction can also be misleading if, e.g., coregis-
tration errors or distortions in the reference anatomical image are
present.

Purpose and structure of the work

In this paper, we will provide the definition of a multivariate mea-
sure2 based on the concept of PSI, namely the multivariate phase slope
index (MPSI), which overcomes the need for dimensionality reduction
prior to PSI estimation in a way robust to the negative field spread effects.
Specifically, the purpose of this work is to: i) provide the definition of
MPSI; ii) demonstrate MPSI performance in detecting the directionality
of coupling in extensive and biologically realistic simulations based on
synthetic multivariate time series; iii) derive frequency-specific directed
networks in a real data application, i.e., resting state data from 61 sub-
jects of the Human Connectome Project (HCP) MEG database.

The paper is organized as follows. In the “Methods” section, we will
briefly review the mathematical formulation of the bivariate PSI, as
originally introduced in Nolte et al. (2008), and we will provide a new
generalized formulation for the multivariate case by introducing a
blockwise approach. In the “Experiments” section, we will describe the
experiments performed in this work: the simulation studies to evaluate
the reliability of MPSI in detecting the right directionality in multivariate
interactions in synthetic data, and the real data study to assess seed-based
directed functional connectivity in resting state MEG data from the HCP
database. Results for MPSI in both synthetic and real data will be
compared to the results of two measures based on the bivariate PSI in
which scalar information are derived either by canonical correlation
analysis (Hotelling, 1936) or by maximizing the imaginary part of co-
herency (Ewald et al., 2012). The results for the experiments and for the
different approaches are described and discussed in the “Results” and the
“Discussion” sections.
2 We used the term multivariate to indicate that the signals from which the
method estimates the directionality can be two multivariate time series, i.e. two
vector time series with dimensions higher than 1.
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Methods

Bivariate phase slope index

The PSI (Nolte et al., 2008) is a measure of directionality of coupling
between brain areas based on the spectral properties of electrophysio-
logical data. Specifically, it estimates which is the leading source in a pair
by relying on the sign of the discrete frequency derivative of the phase
difference between two signals. The PSI between two given scalar signals
z1 and z2 over the set of frequencies of interest F, is defined as

PSI :¼ ℑ

 X
f2F

sz1 ;z2 ðf þ df Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sz1 ;z1 ðf þ df Þsz2 ;z2 ðf þ df ÞÞp s�z1 ;z2 ðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sz1 ;z1 ðf Þsz2 ;z2 ðf Þ
p !

(1)

where ℑ is the imaginary part, the symbol � denotes the complex con-
jugate, df is an incremental step in the frequency domain, and, e.g., sz1 ;z2
is the cross-spectrum between z1 and z2. That is,

sz1 ;z2 ðf Þ :¼
�bz1ðf Þbz�2ðf Þ �; (2)

where < ⋅ > denotes the expectation value.
A fundamental property of PSI is that it vanishes for linear mixtures of

independent sources (see Appendix A). This property makes PSI robust to
the artificial connectivity induced by the field spread when PSI is used to
disclose the direction of bivariate interactions from sensor signals or from
source time series.

Definition of the multivariate phase slope index

In this subsection, we will introduce a multivariate generalization of
the bivariate PSI. To this end, we will firstly define the vector time series
of interest and, then, we will: 1) transform them by using a spatial
whitening based on the real part of their cross-spectra; 2) apply an
averaging process based on the calculations of PSI between all the
possible combination of the transformed signals. This procedure will
allow us to obtain a multivariate estimator of directionality that will be
invariant under invertible linear static transformations of the vector time
series, such as rotations of the physical reference frame.

Let us consider two data spaces A and B of dimensions NA andNB
3

with the associated vector time series ZA ¼ ðz1;…; zNA Þt and ZB ¼
ðzNAþ1;…; zNAþNB Þt , where t denotes the transposition. For instance, the
data spaces could represent the three-dimensional dipole moments at two
brain locations and thus they would have dimensions NA ¼ NB ¼ 3, or
they could indicate two different groups of electrophysiological sensors
and thus NA and NB would be equal to the number of sensors of each data
space.

Now, let us suppose to be interested in investigating the directionality
of a frequency-specific interaction between A and B from the time series
ZA and ZB.

These real valued time courses can be written in the frequency
domain and, at a given frequency f 2 F with F being the set of frequencies

of interest, they are described by the complex vectors bZAðf Þ ¼
ðbz1ðf Þ;…; bzNA ðf ÞÞt , bZBðf Þ ¼ ðbzNAþ1ðf Þ;…; bzNAþNB ðf ÞÞt representing their
Fourier transforms. For the sake of simplicity, it is convenient to put them
together by using the following compact notation

bZðf Þ ¼ �bZAðf Þt bZBðf Þt
�t
: (3)

The complex cross-spectral matrix of Z, namely Sðf Þ, shows the
following block form:
3 NA does not need to be equal to NB.
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Sðf Þ ¼ �bZðf ÞbZðf ÞH� ¼ ��bZAðf ÞbZAðf ÞH
� �bZAðf ÞbZBðf ÞH

��b b H� �b b H��
ZBðf ÞZAðf Þ ZBðf ÞZBðf Þ

¼
�
SRAAðf Þ þ iSIAAðf Þ SRABðf Þ þ iSIABðf Þ
SRBAðf Þ þ iSIBAðf Þ SRBBðf Þ þ iSIBBðf Þ

�
; (4)

with H denoting the Hermitian transpose of a matrix, the apexes R and I
the real and the imaginary part, respectively. Each of the four sub-
matrices represents the complex cross-spectrum between the corre-
sponding vector time series.

Now, let us transform the vector Z by using the matrix defined as

Tðf Þ ¼

0BBBBBBB@

�
SRAAðf Þ þ SRAAðf þ df Þ

2

��1
2

0AB

0BA

�
SRBBðf Þ þ SRBBðf þ df Þ

2

��1
2

1CCCCCCCA; (5)

where df is an incremental step in the frequency domain and 0AB, 0BA
denote the zero matrices of RNA�NB and RNB�NA . The matrix Tðf Þ is a
spatial whitening transformation which completely removes the average
contribution of the real parts of cross-spectra at the frequencies f and f þ
df within the data spaces A and B and which normalizes the average
power spectra. Indeed, if we define the transformed frequency dependent

data as bUðf Þ ¼ ðbu1ðf Þ;…; buNAþNB ðf ÞÞt ¼ Tðf ÞbZðf Þ, for the frequency f,

and as bV ðf þ df Þ ¼ ðbv1ðf þ df Þ;…; bvNAþNB ðf þ df ÞÞt ¼ Tðf ÞbZðf þ df Þ, for
f þ df , we have that

<	� bUðf ÞbUðf ÞH�þ< bV ðf þdf ÞbV ðf þdf ÞH >
�2¼<	Tðf Þ	< bZðf ÞbZðf ÞH >þ
< bZðf þdf ÞbZðf þdf ÞH >
Tðf Þt
�2
¼

0BB@ IdAA
CR

ABðf ÞþDR
ABðf þdf Þ

2	

CR
BAðf ÞþDR

BAðf þdf Þ

2

IdBB

1CCA
(6)

where < is the real part, IdAA is the identity matrix of dimension NA and,
e.g., the matrices CR

AB, D
R
AB denote, respectively, the real part of the cross-

spectrum between UA and UB and between VA and VB. In particular, by
applying Tðf Þwe obtain that the average of the power spectra at f and f þ
df of all the transformed scalar time series are exactly equal to 1. Indeed,
by indicating with e1 ¼ ð1;…; 0Þt a standard vector of RNA , we have that	�bu1ðf Þbu�

1ðf Þ
�þ < bv1ðf þ df Þbv�1ðf þ df Þ > 
�2 ¼ et1

		
< bUAðf ÞbUAðf ÞH > þ

< bVAðf þ df ÞbVAðf þ df ÞH >

�

2


e1

¼ et1
	
IdAA þ i

	
CI

AAðf Þ þ DI
AAðf þ df Þ
�2
e1 ¼ jje1jj2 ¼ 1:

(7)

Even though the spatial whitening normalizes the average power
contribution at f and f þ df , it does not guarantee that the power gets
exactly flat at both the two frequencies. In fact, by using a single spatial
transformation it is not possible to guarantee flatness for both fre-
quencies, and the use of multiple spatial transformations would not lead
to the invariance of the resulting metric under invertible linear static
transformations of the data. Thus, the use of the matrix Tðf Þ is a way to
normalize the data at the two frequencies by relying on a single trans-
formation and, at the same time, to have rotational invariance.

To the final aim of introducing the multivariate version of PSI, let us
now apply an averaging process based on the sum, over all possible
combinations, of the unnormalized bivariate PSIs between the trans-
formed scalar time courses. Indeed, given that the spatial whitening has
already allowed us to remove possible biases induced by source powers,
we do not need to use the PSI normalization factor, which would be equal
to the square root of the product of power-spectra (see (1)) and which
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would not guarantee invariance under rotations of the reference frame.
Specifically,

X
f2F

XNA

i¼1

XNB

j¼1

ℑ
�
setiVA ;etjVB ðf þ df Þs�etiUA ;etjUB

ðf Þ



¼
X
f2F

XNA

i¼1

XNB

j¼1

ℑ
�
eti
DbVAðf þ df ÞbVBðf þ df ÞH

E
ej
�
eti
DbUAðf ÞbUBðf ÞH

E
ej

�


¼
X
f2F

XNA

i¼1

XNB

j¼1

ℑ
�
eti
DbVAðf þ df ÞbVBðf þ df ÞH

E
ejetj
DbUBðf ÞbUAðf ÞH

E
ei



¼
X
f2F

XNA

i¼1

eti

 XNB

j¼1

DI
ABðf þ df ÞejetjCR

BAðf Þ þ DR
ABðf þ df ÞejetjCI

BAðf Þ
!
ei

¼
X
f2F

XNA

i¼1

eti

 
DI

ABðf þ df Þ
 XNB

j¼1

ej � etj

!
CR

BAðf Þ

þDR
ABðf þ df Þ

 XNB

j¼1

ej � etj

!
CI

BAðf Þ
!

¼
X
f2F

XNA

i¼1

eti
	
DI

ABðf þ df ÞCR
BAðf Þ þ DR

ABðf þ df ÞCI
BAðf Þ



ei

¼
X
f2F

tr
	
DI

ABðf þ df ÞCR
BAðf Þ þ DR

ABðf þ df ÞCI
BAðf Þ



(8)

where we used that
PNB

j¼1ej � etj ¼ IdB, with the symbol � denoting the
tensor product. By using the definitions of the spectral matrices of U, V
and by using the properties of the trace, it is thus possible to write the
quantity defined in (8) as a function of only the cross-spectral matrices of
ZA and ZB defined in (4). In fact, 8f 2 F

tr
	
DI

ABðf þ df ÞCR
BAðf Þ þ DR

ABðf þ df ÞCI
BAðf Þ



¼ tr

�		
SRAAðf Þ þ SRAAðf þ df Þ
�2
�1

SIABðf þ df Þ
⋅
		
SRBBðf Þ þ SRBBðf þ df Þ
�2
�1⋅SRBAðf Þ þ

		
SRAAðf Þ þ SRAAðf þ df Þ
�2
�1

⋅SRABðf þ df Þ⋅		SRBBðf Þ þ SRBBðf þ df Þ
�2
�1⋅SIBAðf Þ


:

(9)

Finally, by using that for two given matrices M1 and M2 it holds that
ðM1=2Þ�1⋅ðM2=2Þ�1 ¼ 4⋅ðM�1

1 ⋅M�1
2 Þ, we can introduce the multivariate

phase slope index (MPSI) between A and B as

MPSIAB : ¼ 4⋅tr

 X
f2F

	
SRAAðf Þ þ SRAAðf þ df Þ
�1⋅SIABðf þ df Þ

⋅
	
SRBBðf Þ þ SRBBðf þ df Þ
�1⋅SRBAðf Þ þ

	
SRAAðf Þ þ SRAAðf þ df Þ
�1

:SRABðf þ df Þ⋅	SRBBðf Þ þ SRBBðf þ df Þ
�1⋅SIBAðf Þ
!

(10)

The equation (10) thus represents a multivariate phase slope based
approach to assess the directionality of the frequency-specific multivar-
iate interaction between A and B.

MPSI exhibits three properties which hold by construction:

1) it can directly assess the directionality of frequency-specific in-
teractions without relying on dimensionality reduction approaches,
as opposed to bivariate PSI (Fig. 1);

2) it vanishes for linear mixture of independent sources, analogously to
bivariate PSI. The proof of this property can be found in Appendix A;

3) it is invariant under invertible linear static transformations of the data
such as rotations of the data spaces A and B. Thus, MPSI is indepen-
dent of the choice of the three-dimensional reference frame in which
e.g. the MEG source space is defined. The proof of this property can be
found in Appendix B, while two computational examples are provided
in Fig. 2.



Fig. 1. Graphical representations of the multivariate (MPSI) and bivariate PSI. In particular, MPSI is able to directly assess directionalities from multivariate signals,
e.g., from the time series of three-dimensional dipole moments at two brain locations, while the bivariate methods estimate directionality from two one-dimensional
time series.
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As for the bivariate PSI (Nolte et al., 2008, 2010), to assess the sta-
tistical significance of the observed results, it is convenient to consider a
standardized version of MPSI. Indeed, by interpreting the ratio between
MPSI and its standard deviation as a pseudo-Z score, and by fixing a level
of significance, it is possible to read the observed p-values according to a
Gaussian distribution. A complete description of an approach to estimate
the standard deviation is provided in subsection 3.1.

Experiments

In this section, the experiments performed in this work are described.
In the simulated studies, we evaluated the performance of MPSI in
detecting the directionality of frequency-specific multivariate coupling in
different synthetic experiments. Next, we assessed seed-based directed
functional connectivity for resting state MEG data from the HCP data-
base. The results obtained by MPSI in both simulated and real data were
compared to the results obtained by two bivariate PSI approaches, i.e. PSI
after the maximization of the imaginary part of coherency (MICPSI), and
the PSI after canonical correlation analysis (CCAPSI).

Synthetic experiment 1

Here, we evaluate the performance of MPSI in assessing directionality
from synthetic datasets consisting in pairs of multivariate time courses
defined as a weighted superposition of a signal term, which represents a
directed interaction between two vector sources of dimensions NA and
NB, with a correlated noise term. This situation corresponds to an ideal
case in which e.g. brain activity is a priori known without the need to
estimate it from sensor level data. The case of estimated brain activity
will be considered in the next section (Synthetic experiment 2).

Each simulated pair of multivariate time series ZA and ZB is combined
in Z ¼ ½Zt

A Zt
B�t and defined as

Z ¼ ð1� γÞ X
kXkF

þ γ
Y

kYkF
; (11)

where X ¼ ½Xt
A Xt

B�t is the signal of interest, Y is a noise vector,
����X��jF
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and
����Y��jF are the Frobenius matrix norms of X ¼ ðXð1Þ;…;XðTÞÞ and

Y ¼ ðYð1Þ;…;YðTÞÞ. The value of γ 2 ½0;1� indicates the noise strength,
thus e.g. γ ¼ 1=2 indicates a balanced contribution between signal and
noise for Z.

The time series of the leading source, which without loss of generality
we assume to be A, XA ¼ ðx1;…; xNA Þt and the evolution of the following
source XB ¼ ðxNAþ1;…; xNAþNB Þt are defined as

xiðtÞ ¼
XNA

j¼1

XP
k¼1

aijkxjðt � τkÞ þ ξiðtÞ; i ¼ 1;…;NA

xiðtÞ ¼
XNAþNB

j¼NAþ1

XP
k¼1

bijkxjðt � τkÞ þ
XNA

j¼1

XP
k¼1

cijkxjðt � τkÞ þ ξiðtÞ;
i ¼ NA þ 1;…;NA þ NB:

(12)

While the noise is modeled as

Y ¼ 	y1;…; yNAþNB


t ¼ Mð~y1;…;~vNÞt; (13)

where the components, which are independent among them, have the
following evolution

~yiðtÞ ¼
XP
k¼1

dik~yiðt � τkÞ þ εiðtÞ i ¼ 1;…;N: (14)

In equations (12) and (14) aijk, bijk, cijk, dik, ξiðtÞ and εiðtÞ are re-
alizations of independent Gaussian random variables of zero mean and a
standard deviation equal to 1=10. Finally, M 2 RðNAþNBÞ�N is a mixing
matrix whose entries are realizations of a standard normal random
variable.

For all the simulation repetitions, we set the dimension of each data
space equal to 3, i.e. NA ¼ NB ¼ 3, the number of noise sources N equal
to 6, the model order P equal to 5. Each of the generated time courses has
a length of T¼ 76200 data points, which, sampled at 254Hz, corre-
sponds to 5min of continuous data. With this approach, we used 20000
pairs of multivariate time series. Specifically, 2000 for each value of γ in
the range from 0 (i.e., 100% signal) to 0.9 (i.e., 10% signal and 90 %
noise) with an incremental step of 0.1. These 2000 pairs were further



Fig. 2. A computational proof of the property of MPSI to be invariant under rotations and rescaling of signals, by using a simulated directed interaction between two
three-dimensional sources. The panel a) shows the results obtained by MPSI and the average PSI, i.e. the bivariate PSI averaged over all the possible combination of
scalar signals, when we applied rotations of the xy plane of one of the two vector signal. The panel b) shows the results of MPSI, with (i.e. as defined in (10)) and
without the application of the spatial whitening (i.e. (10) but without the inverse matrices in the equation), as a function of a scaling factor.
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divided into 20 sets of 100 pairs of time courses each, such that for each
value of γ, the average percentage and standard deviation over the 20 sets
of the number of right detections, of wrong detections and of no answers
of MPSI in the alpha band (8–12 Hz) can be estimated.

The calculation of MPSI requires the estimation of the cross-spectra
between time courses. To compute them, we firstly divided each multi-
variate time series into E ¼ 150 epochs of the same length, containing
continuous data, and we further divided each epoch into 3 segments
which have 50% overlap within each epoch but not across the epochs.We
estimated the cross-spectra as an average of the products of the Fourier
transforms over all segments (Nolte et al., 2008) and we calculated MPSI
over each pair of frequencies f and f þ df for which at least one of them
lies in the alpha band, by using a df value equal to 1 Hz.

To provide an estimation of the standard deviation (SD) of MPSI, we
used the jackknife method (Nolte et al., 2008, 2010). In this approach,
the SD of MPSI is defined over a set of its estimates, MPSIk with k ¼ 1;…;

E, each obtained from the data in which the k-th epoch has been
removed. The SD of theMPSI value is finally estimated for the E epochs asffiffiffi
E

p
σ where σ is the standard deviation of the set fMPSI1;…;MPSIEg.
165
Finally, we used a significance level for the standardized MPSI equal
to 0.01. This means that if the absolute value of MPSI for a given pair of
time series exceeded 2.58, the direction of coupling detected by the sign
of MPSI was considered as significant.
Synthetic experiment 2

Here, in order to investigate the impact of the MEG forward and in-
verse models on MPSI and the other phase slope based metrics, we per-
formed biologically realistic simulations. Specifically, we simulated
networks of interacting sources with two different levels of complexity.
In the first case, we generated a single pair of interacting sources and four
independent noise sources. In the second case, we simulated more
complex networks, comprising four interacting sources and four inde-
pendent noise sources, with a partially connected topology consisting of a
directed closed cycle of three sources and a feed-forward connection
from one of them to the fourth source.

The simulated time series at the level of brain regions were always
modeled as single three-dimensional current dipoles with a temporal



A. Basti et al. NeuroImage 175 (2018) 161–175
evolution following equations in (12) for the drivers and the receivers.
The evolution of the independent noise sources follows the same equa-
tion of the drivers, but without any source which receives information
from them. For the simulation of the first case, the cortical locations of
the two interacting regions were chosen to be located on the somato-
sensory areas (panel a) of Fig. 4 while, for each time series realization of
the second case, the location of the four regions belonging to the simu-
lated network were randomly chosen among six locations placed on
parietal, frontal and temporal lobes (Fig. 5a). Finally, the noise sources
for each different simulation realization were randomly located over the
cortex.

In both cases, the simulated signals were projected to the sensor space
to obtain the MEG recordings S as

S ¼ ð1� γÞ
PN

i¼1LiXi

kXkF
þ γ

PNþ4
i¼Nþ1LiYi

kYkF
þ μ; (15)

where X and Y denote the time courses of the N interacting regions (two
for the first case and four for the second case) and the four independent
regions, γ denotes the strength of the biological noise, L is the spread
pattern (i.e. leadfield matrix) for the neural sources and μ is an uncor-
related sensor noise with 0 mean and standard deviation equal to 1/10.
For each of the ten γ values considered (from 0 to 0.9 with step of 0.1), we
generated 2000 time series. The length of each time series generated was
76200 data points which, with a sampling frequency of 254Hz, corre-
sponds to 5min of continuously recorded activity. The leadfield matrix L
was obtained by a single shell approach (Nolte, 2003) for one among the
realistic source space, which consisted of a cortical layer of 8004 uni-
formly distributed points, and volume conductor model provided by the
HCP.

Finally, in order to reconstruct the brain activities Z from S, we
applied an inverse operator to generatedMEG recordings. To this end, we
used the eLoreta inverse method (Pascual-Marqui et al., 2011), a
non-adaptive linear inverse solver with a weight matrix such that the
estimated source distribution has maximal power at the true single dipole
location. We relied on the eLoreta implementation provided in the
FieldTrip toolbox (Oostenveld et al., 2011) where the weight matrix is
obtained from the normalized leadfields. The cross-spectra in the alpha
band (8–12Hz) were estimated as averages of the products of the Fourier
transforms over all segments and the SD of MPSI was estimated by using
the jackknife method, as for the simulation described in the previous
paragraph. Each directionality obtained from one of the methods was
considered as significant if the absolute value of the measure was larger
than 2.58, i.e. we used for all the methods a level of significance of 0.01.
Fig. 3. Average percentages and standard deviations of a) right, b) wrong and c) n
(MPSI), the bivariate PSI with a maximization of imaginary part of coherency ap
approach (CCAPSI).
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In the first case, we assessed the mean value and the standard devi-
ation of the number of right, wrong and not significant detections. In the
second case, we assessed the ability to identify the correct topology of the
simulated network by using a compound measure of pairwise coupling
between all the different network nodes. Specifically, for each γ value, we
computed the ratio between the mean squared errors (MSEs) in esti-
mating the directionality of each simulated coupling. By denoting with
ωi 2 f�1; 1g the parameter which describes if the direction of the i� th
simulated interaction is from source1 to source2 (source1-to-source2,
ω ¼ 1), or from source2 to source1 (source2-to-source1, ω ¼ � 1), we
have that the MSE of MPSI in approximating Ω ¼ fωig is defined as

MSEðMPSIÞ ¼ 1
#time series pairs

X
i

ðsgnðMPSIðiÞÞ � ωiÞ2; (16)

where sgn (MPSI(i)) is equal to �1 if a statistical significant source1-to-
source2 or source2-to-source1 direction for the i� th coupling is detec-
ted by MPSI, while, it is equal to 0 if the detected directionality is
considered to be not statistically significant. Analogously, MSEs for
MICPSI and CCAPSI can be defined. The ratio between the MSE of MPSI
and the MSE of either MICPSI or CCAPSI allows a direct comparison
between the performance MPSI and the other two approaches. Hence, a
value lower than 1 for this ratio implies a better performance of MPSI in
disclosing statistically significant directionalities, while a value larger
than 1 implies the opposite. To calculate the average and standard de-
viation of the number of right detections, of wrong detections, of not
significant detections and of MSEs of the three methods, the generated
signals were divided into 20 sets of 100 pairs.
Real MEG data experiment

Resting state MEG data from Human Connectome Project
Resting-state MEG data were taken from 61 subjects as part the HCP

MEG2 release (Larson-Prior et al., 2013). The release included a total of
67 subjects, but resting-state recordings that passed the quality control
checks were not available from 6 of them, leading to the final cohort of 61
subjects, all young (22–35 years of age) and healthy. The same cohort of
61 subjects was used in Colclough et al. (2016). For each subject,
resting-state data were measured using a whole-head Magnes 3600
scanner (4D Neuroimaging, San Diego, CA, USA) in three consecutive
sessions lasting 6min each. Preprocessing, as provided in the MEG2
release, included: data down-sampling to 508.6 Hz, removal of noisy
time segments from the recordings, identification of faulty recording
channels, and artefact rejection based on an independent component
ot significant detections are shown for the three methods, i.e. multivariate PSI
proach (MICPSI) and the bivariate PSI with a canonical correlation analysis



Fig. 4. The panel a) shows the locations of the interacting sources (green dots), with the direction of the interaction, and the locations of the independent noise
sources (black dots) for a single time series realization. The panels b), c) and d) show, respectively, the average percentages and standard deviations of right, wrong
and not significant detections for the three methods.
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analysis (ICA) decomposition (Mantini et al., 2011). For ease of
computation, we further down-sampled the data to 254.3 Hz.

A seed-based analysis was used to assess functional connectivity in
the alpha band. As a preliminary step, we applied a data driven approach
based on power maps in the alpha frequency band to identify the seed
location as the location of maximum alpha power.

To this end, we computed channel level power from each session in
the alpha band using a set of 7 orthogonal Slepian tapers (Slepian, 1978)
with a 10Hz center frequency to produce 2 Hz frequency smoothing.
Alpha band power in source space, which consisted of a cortical layer of
8004 uniformly distributed points, was estimated by the eLoreta inverse
procedure with free source orientation (Pascual-Marqui et al., 2011). We
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relied on the eLoreta implementation provided in the FieldTrip toolbox
(Oostenveld et al., 2011) where the weight matrix is obtained from the
normalized lead fields obtained with the single shell approach (Nolte,
2003) for the source space and volume conductor model provided by the
HCP. The group averaged alpha power map was obtained as the mean
across all sessions and subjects. The HCP source space and volume
conductor model are already provided in the standard co-ordinate space
of the Montreal Neuroimaging Institute (MNI), thus allowing straight-
forward group averaging. Finally, the seed was defined as the location
corresponding to maximum alpha power.

Once the seed location has been identified as above, seed-based MPSI
analysis in source space has been performed and the directed connec-



Fig. 5. a) The possible locations for the four interacting sources, their role in the simulated network by varying the realization simulations and a possible location for
the four independent sources. The ratio between b) the mean square error (MSE) of MPSI and the MSE of MICPSI and between c) the MSE of MPSI and the MSE
of CCAPSI.
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tivity map has been obtained as the map of

MPSIA;B ¼ 1ffiffiffiffiffiffiffiffiffi
3⋅61

p
X3
ses¼1

X61
sub¼1

MPSIses;subA;B

std
	
MPSIses;subA;B


; (17)

where 1=
ffiffiffiffiffiffiffiffiffiffi
3⋅61

p
is a normalization factor used to have the standard de-

viation of the group MPSI equal to 1. In other words, the map was ob-
tained as the average over the 61 subjects and the 3 sessions of the
standardized MPSI between the multidimensional source time series of
any cortex location A and the multidimensional source time series of the
seed, denoted by B.

The estimates of the cross-spectra and of the SDs of MPSI were
computed as for the synthetic data. Furthermore, we used the same level
of significance, i.e. we considered as statistically significant only
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observed p < 0:01. Nevertheless, to account for multiple comparisons, a
false discovery rate (FDR) correction on the observed p-values has been
used.

Bivariate approaches based on PSI

The results obtained from MPSI on synthetic and measured time se-
ries were compared to the results of other two methods based on the
phase slope, namely MICPSI and CCAPSI.

More specifically, MICPSI is the bivariate PSI between two scalar time
series obtained from an approach based on the maximization of the
imaginary part of coherency (Ewald et al., 2012) applied to the multi-
variate signals ZA and ZB, i.e. the PSI between the bivariate signals ~αtZA



A. Basti et al. NeuroImage 175 (2018) 161–175
and ~β
t
ZB where

~α :¼ argmaxjjαjj¼1

(
αt
X
f2F

�
SRAAðf Þ�

1
2SIABðf ÞSRBBðf Þ�1SIBAðf ÞSRAAðf Þ�

1
2



α

)

~β :¼ argmaxjjβjj¼1

(
βt
X
f2F

�
SRBBðf Þ�

1
2SIBAðf ÞSRAAðf Þ�1SIABðf ÞSRBBðf Þ�

1
2



β

)
:

(18)

In (18) SAA, SBB, SAB and SBA indicate cross-spectral matrices, and the
superscripts R and I denote the real and imaginary part, respectively,
following the same notation adopted in equation (4). Hence the di-
rections, ~α and ~β, over which the multivariate signals are projected are
those which allow for the maximization of the imaginary part of the
coherency between any pair of bivariate signals αtZA and βtZB in the
alpha band.

On the other hand, CCAPSI is a bivariate PSI between two scalar time
series obtained from canonical correlation analysis (Hotelling, 1936) as
detailed below. Let us define the alpha band-filtered data ~ZA and ~ZB

obtained from the original signals ZA and ZB. The estimator of direc-

tionality is then the bivariate PSI between the time series ~αtZA and ~β
t
ZB

where the vectors ~α and ~β are defined as:

~α :¼ argmaxjjαjj¼1

n
αtðΣAAÞ�

1
2ΣABðΣBBÞ�1ΣBAðΣAAÞ�

1
2α
o

~β :¼ argmaxjjβjj¼1

n
βtðΣBBÞ�

1
2ΣBAðΣAAÞ�1ΣABðΣBBÞ�

1
2β
o (19)

where ΣAB denotes the covariance between ~ZA and ~ZB, and similarly for
ΣBA, ΣAA, and ΣBB. Thus, the bivariate PSI is calculated on the directions,
~α and ~β, which allow for a maximization of the temporal correlation
between any pair of bivariate signals αt ~ZA and βt ~ZB.

The approaches used to estimate the cross-spectra between time
courses, which are the basis for MICPSI and CCAPSI computation, as well
as for SDs, are the same described in subsection 3.1.

Results

Synthetic experiment 1

We found that MPSI outperforms both PSI based methods, i.e. MICPSI
and CCAPSI, as shown in Fig. 3a. Indeed, MPSI features a percentage of
right detections which is two to four times (in case of high or low signal
percentage, respectively) the corresponding percentages featured by
MICPSI and CCAPSI. Conversely, no substantial differences among the
three methods in the number of wrong detections are evident (Fig. 3b).
Actually, all estimators have obtained very low average percentages of
wrong detections (< 3%), even in very noisy conditions, showing the
robustness to noise of both the multivariate and the bivariate phase slope
based methods. However, it is important to notice that, over all the
simulation realizations, the number of pairs in whichMPSI has detected a
wrong directionality is exactly 0. Finally, Fig. 3c shows the percentage of
not statistically significant detections for the three methods. Specifically,
the percentage for MPSI decreases as the signal percentage increases
reaching a value of about 20%. Conversely, the curves for MICPSI and
CCAPSI, clearly show a slower decrease with average percentages always
larger than 50%. Thus, the observed prominent difference between MPSI
and the two bivariate methods is basically due to the large number of
multivariate pairs for which MICPSI and CCAPSI are not able to asses a
statistically significant directionality.

Synthetic experiment 2

When the effect of the MEG forward/inverse model and of biological
noise are taken into account, a consistent difference in the performance
between MSPI and the bivariate estimators is also evident. In the simple
case, with a network made by only two nodes, the results are shown in
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Fig. 4 panels b), c), d). Specifically, MPSI achieves the highest number of
right detections, panel b), and the lowest number of not significant de-
tections and wrong detections, panels c) and d), in comparison to both
MICPSI and CCAPSI. This general behaviour is in accordance with the
results found for the ”Synthetic experiment 1” in which the effect of MEG
forward/inverse model was not considered.

The results obtained for the complex network case are shown in Fig. 5
and Fig. S1 of the Supplementary Material. Here, we compared the mean
squared errors (MSEs) of the different methods in reconstructing the
correct topology of the simulated network. The ratio between the MSE of
MPSI and the MSEs of the other two methods, panel b) for MCIPSI and
panel c) for CCAPSI, is always lower than 1. Moreover, the MSE of MPSI
is, on average, about 10% lower than each of the other two MSEs. This
result thus reveals that MPSI is, for every noise condition, better at
reconstructing the topology of the simulated network.

Real MEG data experiment

For the HCP resting state MEG data, the cortical location associated
with the maximum of the group averaged alpha power was used as seed
for the directed functional connectivity analysis (Fig. S2 panel A). The
resulting location belongs to the ”calcarine fissure” parcel of the AAL
Atlas (Tzourio-Mazoyer et al., 2002) and specifically it is positioned in
the right primary visual cortex (V1) at MNI coordinates (6.5, �62.5,
18.5) mm (grey dot on the right medial view in Fig. 6, Fig. 7, Fig. S2 and
Fig. S3).

Fig. 6 shows the FDR corrected (p <0.01) group averaged map in the
alpha band between V1 and all other locations over the cortex obtained
by applying MPSI.

In this map, regions which exert an influence on V1 are color coded in
red while regions on which V1 exerts an influence are indicated in blue.
Specifically, we observe as a prominent feature an input from V1 to oc-
cipital cortex, left and right frontal cortex, and medial prefrontal cortex.
Conversely, bilateral parietal areas and the posterior cingulate cortex
lead V1.

Of note, all of the above areas belong to well-known resting state
networks (RSNs), i.e. sets of brain regions exhibiting temporally corre-
lated activity fluctuations in the absence of imposed task structure ((Deco
and Corbetta, 2011), (Fox et al., 2005), (Smith et al., 2009)). Indeed, the
MPSI map in Fig. 6 shows that areas of dorsal attention network (DAN),
fronto-parietal network (FPN), ventral attention network (VAN), default
mode network (DMN) and visual network (VN) are coupled to V1 in the
alpha band. Specifically: i) for DAN areas, an influence on V1 is exerted
by the left and right superior parietal lobule (SPL); ii) for FPN areas,
while the left inferior parietal sulcus (IPS) and the right inferior parietal
lobule (IPL) lead V1, the left dorsolateral prefrontal cortex (dlPFC) fol-
lows V1; iii) for VAN areas, the right inferior frontal gyrus (IFG) and the
right anterior insula (AI) are influenced by V1; iv) for DMN areas, the
posterior cingulate cortex (PCC) exerts an influence on V1 while V1 leads
the medial prefrontal cortex (mPFC); v) for VN areas, left primary visual
areas. RSN nodes, whose MNI coordinates are listed in Table 1, are taken
from Hacker et al. (2013) and Marzetti et al., 2013.

These MPSI results can be compared to the results on the same data
and frequency band obtained by the bivariate PSI approaches. Indeed,
Fig. 7 shows a comparison of the MPSI results with MICPSI and CCAPSI
results (FDR corrected p < 0:01). Although some of the observed directed
interactions with V1 are visible for all metrics, e.g. an input from V1 to
the right occipital cortex and from parietal areas to V1, differences in
group averaged functional connectivity maps are evident. Specifically,
CCAPSI in contrast to MPSI did not detect a statistically significant input
from V1 to the right middle frontal cortex and left inferior frontal cortex,
while MICPSI detected these couplings only to a lower extent. Further-
more, MPSI is the only method among the three which is able to disclose
an input from V1 to the right and left mPFCs and from PCC to V1.

Altogether, the maps obtained by applying the bivariate methods on
real MEG data show fewer regions which exhibit directed interactions



Fig. 6. The FDR corrected (p <0.01) group averaged map in the alpha band between V1 (grey dot on the right medial view) and all other locations over the cortex
obtained by using MPSI approach is shown. Red cortical locations exert an influence on V1 while V1 exerts an influence on blue coloured regions. The coloured dots
represent resting state network nodes which overlap the blue and red areas.

A. Basti et al. NeuroImage 175 (2018) 161–175
with V1 with respect to the map obtained by using MPSI.
Finally, a point-to-point comparison between the group averaged

alpha power map and the group averaged MPSI map results into a very
small value of the square of Pearson correlation between MPSI and the
alpha power value (r2 ¼ 0:047) indicating a weak degree of predict-
ability between the two variables. Specifically, only the 4.7% of the
variation of the MPSI values can be explained by the variation in the
alpha power (Fig. S2).

Discussion

In this work, we developed and successfully applied to synthetic and
real data, the multivariate phase slope index (MPSI), a generalization to
multivariate time series of the phase slope index (PSI) (Nolte et al., 2008)
directed connectivity method, that retains the desirable property of being
by construction robust to the artificial brain source coupling. MPSI is able
to disclose the directionality of frequency-specific neural interactions
from multivariate electrophysiological signals, such as those associated
to the brain sources as reconstructed from magnetoencephalographic
(MEG) or electroencephalographic (EEG) data. The usual way to detect
directionality of frequency-specific neural interactions from e.g. MEG
source time courses is to first find, for each source, a scalar time series
obtained by a priori fixing the source orientation, and second to use a
bivariate approach on the reduced time series of the sources. Conversely,
MPSI can directly assess the coupling direction from e.g. MEG source
time courses, without fixing an a priori orientation.

The results obtained on simulated data prove that MPSI achieves
substantial higher performance than bivariate PSI approaches in detect-
ing directionality of multivariate interactions, i.e. with source orientation
fixed according to a canonical correlation based approach and with
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source orientation fixed according to the maximization of imaginary
coherency. Indeed, the latter procedures lead to unavoidably discard part
of the signal and to not completely exploit the multivariate nature of the
sources, thus supporting the notion that bivariate estimators perform
worse than multivariate methods (Marzetti et al., 2013). Additionally,
biologically realistic simulations have proven that MPSI outperforms the
other two tested approaches also when the sources are considered as
resulting from the solution of an MEG inverse approach. This is true for
the estimation of directionality between two sources in a simple network,
but also for the detection of the topology of a more complex network with
several interacting and non-interacting nodes and with a given pattern of
directionality among the interacting sources. Importantly, the general
pattern of these results is only mildly affected by the simulated signal
strength, indicating that MPSI is able to correctly assess the directionality
also for signals with low signal-to-noise ratio.

MPSI has also proven to be able to disclose directed interactions in
real MEG data from a resting state experiment in 61 subjects from the
Human Connectome Project database. Our findings are in line with the
existing MEG observations of resting state alpha band coupling between
the Visual Network and other RSNs (Brookes et al., 2011; de Pasquale
et al., 2010, 2012; Marzetti et al., 2013). In addition, our study provides
an insight into a directed coupling between the visual cortex and DAN,
VAN and FPN which is in accordance with feedback and feedforward
relations (Varela et al., 2001) between areas of these networks (Vossel
et al., 2014; Corbetta and Shulman, 2002). Specifically, the results con-
cerning the coupling from the DAN to the visual cortex are in accordance
with the idea of a feedback control exerted by the DAN on visual areas to
instantiate goal-directed control of attention (Corbetta and Shulman,
2002). Along the same line, the observed coupling from the visual cortex
to the VAN can be attributed to the role of the VAN in stimulus driven



Fig. 7. The FDR corrected (p < 0:01) group average MPSI, MICPSI and CCAPSI maps of the directed functional connectivity in the alpha band for the 61 HCP MEG
subjects are shown.
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Table 1
Resting State Network nodes, their MNI coordinates (mm) and the directionality
of their interactions with V1 seed revealed by using MPSI. A leading role exerted
on V1 is denoted with the symbol → while, a following role, with the symbol ←.

Cortical
area

MNI coord.
(x;y; z)

Direction Resting State
Network

left aIPS (-32.3, �45.6, 46.6) → V1 Dorsal Attention Network
left SPL (-22.2, �57.3, 53.6) → V1 Dorsal Attention Network
right SPL (28.3, �53.1, 53.8) → V1 Dorsal Attention Network
left dlPFC (-43.4, 20.9, 38.1) ← V1 Fronto-Parietal Network
left IPL (-31.3, �62.9, 42.4) → V1 Fronto-Parietal Network
right IPL (51.5, �50.6, 43.0) → V1 Fronto-Parietal Network
right vPrCe (39.4, 10.2, 23.4) ← V1 Ventral Attention Network
right IFG-AI (42.4, 28.8, 2.6) ← V1 Ventral Attention Network
right vIFG (46.5, 10.9, 10.4) ← V1 Ventral Attention Network
left PCC (-4.0, �54.0, 30.0) → V1 Default Mode Network
left mPFC (-10.0, �53.0, 2.0) ← V1 Default Mode Network
right PCC (4.0, �54.0, 30.0) → V1 Default Mode Network
right mPFC (10.0, 53.0, 2.0) ← V1 Default Mode Network
left dV2 (-2.0, �94.1, 3.7) ← V1 Visual Network
right V3 (20.2, �95.7, 14.5) ← V1 Visual Network
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control of attention (Corbetta and Shulman, 2002). We also found a
twofold coupling between the visual cortex and the FPN. Indeed, while
the parietal parts of the FPN exert a leading role on the visual cortex in
line with the notion that FPN controls cognitive processes through a
feedback mechanism (Dosenbach et al., 2008), the dlPFC is connected to
the visual cortex in a feedforward fashion. The latter result is in accor-
dance with the putative role of this region in action preparation in
response to the visual stimulus (Heekeren et al., 2006).

The observed coupling between the visual network and the DMN can
be ascribed to the processing of internal visual representations related to
the DMN. Indeed, our directionality results are in line with the hypoth-
esis that PCC, which is known to be involved in visual imagery (Cavanna
and Trimble, 2006), exerts a control on the visual cortex to instantiate a
visual response even in the absence of a visual stimulus (Tong, 2004), and
that, in turn, the visual cortex sends inputs to the mPFC node of the DMN
which is known to be involved in mentalizing and self-referential pro-
cessing (de Pasquale and Marzetti, 2014; Marzetti et al., 2014). Finally,
the internal coupling observed within the visual network is consistent
with previous observations that primary visual areas lead secondary and
associative visual areas according to a feedforward model (Riesenhuber
and Poggio, 1999) to account for, e.g., the ability to recognize specific
objects.

In conclusion, the relatively large cohort of subjects from the Human
Connectome Project allowed us to conclude that the alpha band directed
interactions between visual cortex and several RSNs are a remarkable
feature of MEG resting state networks coupling. An interesting perspec-
tive for future studies would be the reproducibility of this feature in
single subjects as well as its alterations in brain diseases.

As for the simulated situations, the differences in the directed func-
tional connectivity results for the three methods observed in real data are
likely to be attributed to the higher performance of the MPSI in the
detection of the coupling direction between areas which conceivably
have a multivariate nature. Indeed, in the simulation studies we found a
large number of multivariate couplings in which, as opposed to MPSI,
MICPSI and CCAPSI did not succeed to disclose a statistically significant
directionality. The unthresholded resting state maps reveal that the same
behaviour holds for the three methods at different significance levels.
Thus, ultimately suggesting that MPSI is able to detect the same coupling
directions of MICPSI and CCAPSI but with noisier data, e.g. with lower
number of subjects.

An additional interesting general issue to be discussed when con-
nectivity is the target is to what extent the connectivity maps differ from
the power maps. We have thus investigated, in the real data experiment,
if there is a direct relation between the group averaged MPSI maps (with
respect to the primary visual cortex) and the corresponding alpha band
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power maps. Our results have shown a weak degree of predictability
between the power and MPSI on a point-to-point basis on the cortex.
Moreover, the points corresponding to cortical regions belonging to the
tail of the 5% of sources with the highest power can have either small or
large, positive or negative, in the corresponding MPSI map (Fig. S2). This
result is conceivable given that MPSI implies a whitening step which
takes into account power normalization. Indeed, although this normali-
zation is not able to exactly flatten at the same time the power at fre-
quency f and at frequency f þ df from a theoretical point of view, in
practice, given that power variations across frequency within physio-
logical bands are smooth, this normalization results into making MPSI
results not driven by power results.

Even though MPSI has extensively proven to be a better estimator of
the directionality than the tested bivariate versions, one must be aware of
a potential limitation of these approaches. Indeed, all phase slope based
methods can detect the directionality of delayed interactions only and,
thus, the direction of the functional couplings occurring at zero phase
cannot be assessed by MPSI as well as by the bivariate PSIs. Nevertheless,
it is unlikely that perfectly zero phase interactions occur in the brain
consistently with the communication through coherence model (Fries,
2015) and as reasonable due to conduction delays in physical commu-
nication between brain areas.

Additionally, while in this work we compared only methods based on
phase slope, other computational approaches which exploit different
features of the data have been defined to assess the directionality of
neural couplings. It will be thus interesting to investigate in future studies
the performance of MPSI as compared to other types of measures, e.g.
based on Granger causality (GC) (Geweke, 1982; Granger, 1969). Of
note, GC based approaches do not differ from phase based approaches in
that they also assess directionality by relying on temporally delayed
signals. Moreover, most of GC based measures are not able to cope with
the negative effects of field spread, and the use of an orthogonalization
procedure (Brookes et al., 2012; ONeill et al., 2015) prior to their
application can indirectly make the obtained results robust to these ef-
fects. For example, a bivariate GC approach in the frequency domain
(Geweke, 1982) can be used to assess directionality from synthetic scalar
signals obtained by maximizing the power of the two simulated sources
after orthogonalization. Preliminary simulations referring to data
generated with the Synthetic experiment 1 approach (Fig. S4) show that
also in this case the use of a bivariate approach on multivariate data
results in a lower percentage of right detections. Indeed, several GC
versions exist, e.g.: the one in the time domain (Granger, 1969), the
nonlinear one (Marinazzo et al., 2008), or other slightly different mea-
sures such as the partial directed coherence (Baccal�a and Sameshima,
2001) or the directed transfer function (Blinowska et al., 2004). An
extensive comparison between phase slope based methods and these
Grager causality versions is beyond the scope of this work and will be the
topic of future investigations.

Finally, while the real data results have provided interesting insights
into RSNs directed interactions, a whole brain all-to-all connectome in
which directionality between all brain areas is assessed would provide a
broader view on brain functioning. Therefore, while a connectomic
approach was beyond the scope of this work, we believe that an all-to-all
approach is a worth direction to take in future works and that MPSI
should be used to derive directed frequency specific all-to-all con-
nectomes, which can be subsequently subject to e.g. graph analysis
(Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). In fact, being
the MPSI defined as a product of cross-spectral matrices, a fast imple-
mentation of MPSI that allows to derive a dense functional connectome is
indeed possible. Additionally, a connectomic approach would further
limit the possible effects induced by spurious interactions from ghost
sources on the observed results (Palva and Palva, 2012) with respect to
seed based approaches.
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Appendix A. PSI and MPSI vanish for linear mixtures of independent sources

The purpose of this appendix is to show an explicit proof that PSI and MPSI are robust to the artificial and instantaneous coupling induced by field
spread effects in source space.

Let us assume that the one-dimensional sensor signals fσigNsensors
i¼1 can be written as a superposition ofNsources three-dimensional brain sources, denoted

by fðx1k; x2k; x3kÞgNsources
k¼1 . Therefore, for a fixed channel i it holds that its Fourier transform can be written as bσ iðf Þ ¼P3

g¼1
PNsources

j¼1 Ligjbxgjðf Þ, where L 2
RNsensors�3�Nsources is the leadfield tensor and f is a fixed frequency. The application of an inverse procedure to the Nsensors signals leads to the definition of
~Nsources reconstructed source time series fðz1k; z2k; z3kÞg~Nsources

k¼1 : The h-th component of the k-th three-dimensional vector is thus described, in the fre-

quency dependent domain, as bzhkðf Þ ¼PNsensors
i¼1 Whkibσ iðf Þ, whereW 2 R3�~Nsources�Nsensors is the inverse operator. Moreover, these reconstructed source time

courses can be in turn expressed as a superposition of the components of the actual brain sources, as in:

bzhkðf Þ ¼ XNsensors

i¼1

Whkibσ iðf Þ ¼
XNsensors

i¼1

X3
g¼1

XNsources

j¼1

WhkiLigjbxgjðf Þ
¼
X3
g¼1

XNsources

j¼1

bxgjðf Þ XNsensors

i¼1

WhkiLigj ¼
X3
g¼1

XNsources

j¼1

Rhkgjbxgjðf Þ (20)

where R 2 R3�~Nsources�3�Nsources is the resolution tensor.
As we previously noted, to apply the bivariate PSI on a pair of reconstructed source time courses it is necessary to fix a unidimensional time series for

each vector source. To this end, a transformation that leads each three-dimensional source time series into a scalar time series has to be defined.
Alternatively, it is possible to use MPSI which is basically an average process defined over the bivariate PSIs calculated between time series which are
obtained by a suitable linear mixing of the components of the vector sources. Thus, to prove that PSI and MPSI are robust to the negative field spread
effects, it is sufficient to show that the cross-spectrum between every pair of linear combination of the source components is a real number if the
components of two different brain sources are non-interacting and the components of the same brain source have among them a zero-phase difference.
Indeed, a real cross-spectrum would imply zero values for PSI and MPSI given that the PSI numerator at frequency f can be written as a difference
between products of real and imaginary parts of cross-spectra as in: ℑðs1;2ðf þ df ÞÞ<ðs1;2ðf ÞÞ� ℑðs1;2ðf ÞÞ<ðs1;2ðf þ df ÞÞ. Thus, if the imaginary part of
cross-spectrum vanishes, it also vanishes PSI and MPSI.

We thus have to prove that the cross-spectrum between
P3

h¼1Thkzhk and
P3

e¼1Telzel, where T 2 R3�~Nsources , is real for all k and l in the range 1;…;

~Nsources. By using that the components of the reconstructed sources can be written as functions of the components of the actual brain sources and by using
that R and T are not time dependent, it holds that* X3

h¼1

Thkbzhk
! X3

e¼1

Telbzel
!�+

¼
X3
h¼1

X3
e¼1

ThkTel

*bzhkðf Þbz�elðf Þ
+

¼
X3
h¼1

X3
e¼1

ThkTel

* X3
g¼1

XNsources

j¼1

Rhkgjbxgjðf Þ
! X3

d¼1

XNsources

i¼1

Reldibxdiðf Þ
!�+

¼
X3
h¼1

X3
e¼1

ThkTel

X3
g¼1

X3
d¼1

XNsources

j¼1

XNsources

i¼1

RhkgjReldi

*bxgjðf Þbx�diðf Þ
+
: (21)

Now, by assuming that the actual brain sources are independent among them, we have that all terms < bxgjðf Þbx�
diðf Þ > with j 6¼ i are equal to zero. In

fact, these terms can be written as the product between < bxgjðf Þ > and hbx�
diðf Þi, which are both equal to zero. Furthermore, by assuming that all the

components of the same brain source are independent among them or that they have a pairwise phase difference equal to zero, it holds that
hbxgiðf Þbx�

diðf Þi 2 R. Thus, equation (21) becomes equal to

X3
h¼1

X3
e¼1

ThkTgl

X3
g¼1

X3
d¼1

XNsources

i¼1

RhkgiReldi

*bxgiðf Þbx�diðf Þ
+
; (22)
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which is a real number.
Appendix B. MPSI is invariant under invertible linear static transformations of the data

Let WA and WB be two linear and invertible spatial transformations of the data spaces A and B. We will in the following show that the MPSIAB
between the multivariate time series ZA and ZB coincides with the MPSI~A~B between WAZA and WBZB. This statement follows from

MPSI~A~B ¼ 4⋅
X
f2F

tr
		
WASRAAðf ÞWt

A þWASRAAðf þ df ÞWt
A


�1

	
WASIABðf þ df ÞWt

B


	
WBSRBBðf ÞWt

B þWBSRBBðf þ df ÞWt
B


�1	
WBSRBAðf ÞWt

A



þ 4⋅
X
f2F

tr
	
WASRAAðf ÞWt

A þWASRAAðf þ df ÞWt
A


�1

	
WASRABðf þ df ÞWt

B


	
WBSRBBðf ÞWt

B þWBSRBBðf þ df ÞWt
B


�1	
WBSIBAðf ÞWt

A



þ 4⋅
X
f2F

tr
		
SRAAðf Þ þ SRAAðf þ df Þ
�1

SIABðf þ df Þ	
SRBBðf Þ þ SRBBðf þ df Þ
�1

SRBAðf Þ þ
	
SRAAðf Þ þ SRAAðf þ df Þ
�1

SRABðf þ df Þ	
SRBBðf Þ þ SRBBðf þ df Þ
�1

SIBAðf Þ

 ¼ MPSIAB;

(23)

where we have used that	
WASRAAðf ÞWt

A þWASRAAðf þ df ÞWt
A


�1 ¼ 	WA

	
SRAAðf Þ þ SRAAðf þ df Þ
Wt

A


�1 ¼ 	Wt
A


�1	
SRAAðf Þ þ SRAAðf þ df Þ
�1

W�1
A (24)

and the same for B.
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