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Abstract

In this paper we present a dynamic discrete-time model that allows to investigate the

impact of risk-aversion in an oligopoly characterized by a homogeneous non-storable

good, sticky prices and uncertainty. Our model nests the classical dynamic oligopoly

model with sticky prices by Fershtman and Kamien (Fershtman and Kamien, 1987),

which can be viewed as the continuous-time limit of our model with no uncertainty

and no risk-aversion. Focusing on the continuous-time limit of the infinite horizon for-

mulation we show that the optimal production strategy and the consequent equilibrium

price are, respectively, directly and inversely related to the degrees of uncertainty and

risk-aversion. However, the effect of uncertainty and risk-aversion crucially depends

on price stickiness since, when prices can adjust instantaneously, the steady state equi-

librium in our model with uncertainty and risk aversion collapses to Fershtman and

Kamien’s analogue.
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1 Introduction

How do price stickiness, uncertainty and risk aversion affect the equilibrium outcome of

an oligopoly where firms compete over the demand of a homogeneous, non-storable good?

This might be a relevant question for many markets. For instance, in the electricity market

end-use consumers are served by few firms selling a good which is perfectly homogeneous

and cannot be stored (at least at reasonable costs). Moreover, in these markets retail prices

adjust only very gradually to changes in market conditions. Thus, Bils and Klenow (2004)

estimate that the average monthly frequency of price changes in the US electricity market is

43.4 percent corresponding to an average time between price variations of about 1.8 months.

This is a particularly striking level of stickiness for retail prices, given that wholesale electric-

ity prices change hour by hour (Borenstein and Holland, 2005). Price stickiness in electricity

markets is also a regulatory issue as it may represent an obstacle to efficient prices (Joskow

and Wolfram, 2012).

We answer to the question above by extending Fershtman and Kamiem’s differential game

for an oligopolistic market with sticky prices and a non-storable good to a formulation with

uncertainty and risk-aversion. We derive the optimal (sub-game perfect) production strat-

egy, and the corresponding equilibrium price, and compare it to the Nash equilibria ob-

tained by Fershtman and Kamien (1987). In our extension we show how uncertainty and

risk-aversion affect the steady state market equilibrium: as uncertainty or risk-aversion in-

creases, oligopolistic firms are forced to produce more and consequently the equilibrium

price falls. Indeed, we see that risk-averse entrepreneurs find it optimal to increase pro-

duction vis-à-vis their risk-neutral counterparts, as this leads to a smaller variability for

their future payoffs and hence reduces their risk-exposure. However, the impact of uncer-

tainty and risk-aversion crucially depends on price stickiness, as we show that the stationary

equilibrium collapses to Fershtman and Kamien’s analogue when prices can adjust instan-

taneously.

Our paper contributes to the literature dealing with oligopolistic differential games. Ap-

plications of differential games are widespread and span across macroeconomics, interna-

tional trade and environment economics (see Turnovsky, Basar, and D’Orey (1988), Dockner

and Haug (1990), van der Ploeg and De Zeeuw (1992) and Dockner and Long (1993) among

the others). In industrial organization differential games have been fruitfully employed to

investigate oligopolies characterized by adjustment costs (Driskill and McCafferty (1989),

Karp and Perloff (1989), Karp and Perloff (1993) and Wirl (2010), among the others) and

the first applications to an oligopoly problem with sticky prices are Simaan and Takayama

(1978) and Fershtman and Kamien (1987). Both papers employ the same continuous-time
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model with identical firms, a linear demand function, quadratic production costs and where

price stickiness is modeled by assuming that prices evolve according to a differential equa-

tion that is function of the difference between the actual price and the price that would clear

the market at the current level of production.

Fershtman and Kamien (1987) derive the equilibrium production and the corresponding

equilibrium price under both the hypotheses that firms employ open- and closed-loop (i.e.

feedback) strategies. Under the hypothesis of open-loop strategies firms decide a production

plan at time zero and stick to it forever while under the alternative hypothesis of feedback

strategies firms optimize their production decisions instant-by-instant, taking into account

the current price. Therefore, if a price reduction occurs under the feedback hypothesis, no

commitment is possible or credible and each firm increases its production. What emerges is

that the stationary level of production arising in a (symmetric) feedback Nash equilibrium

is greater than the stationary level of production arising in a (symmetric) open-loop equi-

librium and both are greater than the equilibrium level of production of the corresponding

static Cournot game. Consequently the feedback equilibrium is characterized by a station-

ary price which is lower than the stationary price of the open-loop equilibrium that, in turn,

is lower than the equilibrium price of static Cournot game. Fershtman and Kamien (1987)

show also that, when price adjusts instantaneously, the stationary equilibrium price con-

verges to the static Cournot equilibrium price if firms use open-loop strategies, while it

converges to a lower value if firms follow feedback strategies. Therefore, removing price

stickiness would not result in a dynamic oligopoly converging to its static counterpart as

this requires also that firms can pre-commit to their initial output strategies. This is intrigu-

ing since open-loop strategies are judged less interesting than feedback ones in the study of

dynamic games (Tsutsui and Mino, 1990) because they are generally not subgame perfect1.

The model developed by Fershtman and Kamien (1987) has been extended in several di-

rections. Dockner (1988), for instance, generalizes it to the case of more than two firms2

showing that the dynamic oligopoly price converges to the long run (zero profit) competitive

price when the number of firms goes to infinity, independent of the assumption of open-loop

or feedback strategies. Tsutsui and Mino (1990) introduce the possibility of price ceilings to

consider the case of nonlinear feedback strategies finding that, when the price ceiling is not

too high, feedback equilibrium prices can be higher than the equilibrium price that arises

under the linear feedback strategy assumed by Fershtman and Kamien (1987). Piga (2000)

shows that when firms can invest in advertising the nonlinear feedback equilibrium price

may be greater than the open-loop equilibrium price, while the latter is above the linear

1See Cellini and Lambertini (2004) for a short review of the papers showing under what conditions open-
loop strategies can be subgame perfect.

2A similar extension is also developed by Cellini and Lambertini (2004).
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feedback equilibrium price. Other extensions include Dockner and Gaunerdorfer (2001) and

Benchekroun (2003) who analyze the profitability of horizontal mergers, Cellini and Lam-

bertini (2007) dealing with the case of firms selling differentiated products, Wiszniewska-

Matyszkiel, Bodnar, and Mirota (2015) focusing on firms’ behavior off the steady state price

path, and the recent paper by Xin and Sun (2018) who deal with production planning and

water savings.

Our model nests the classical dynamic oligopoly with sticky prices of Fershtman and

Kamien (1987) that can be viewed as its continuous-time limit with no uncertainty and no

risk aversion. Our analysis starts from a discrete-time formulation of a dynamic oligopolis-

tic market with sticky prices which allows to introduce uncertainty and risk-aversion in

a tractable manner by means of a special form of the recursive preferences proposed by

Hansen and Sargent (1995). Thus, we derive the optimal (sub-game perfect) production

strategy for symmetric firms and, focusing on the continuous-time limit of the infinite time

formulation, we obtain several results. Notably, in presence of demand volatility risk-averse

entrepreneurs choose to produce larger quantities of the non-storable good, vis-à-vis their

risk-neutral counterparts, since this reduces the variability of their payoffs. Such behavior is

exacerbated when demand shocks are more volatile and, as a result, the steady state value

of the equilibrium price results to be decreasing in both uncertainty and risk-aversion. The

same result applies when the number of firms rises as they are induced to sacrifice their

marginal revenues in the attempt to protect their market share.

Other interesting results are derived from the analysis of specific limit cases:

1. As it happens for the case without uncertainty and risk-aversion analyzed by Dockner

(1988), when the number of firms goes to infinity the steady state price converges to

the marginal cost. This is interesting because it shows that his result is robust with

respect to the introduction of uncertainty and risk-aversion.

2. When the time-discounting factor goes to zero the steady state price converges to the

value that would prevail in a static equilibrium with price-taker firms. In this case

firms behave as price-takers because they do not take their future profits into account

and, given the characterization of price stickiness, their production choices do not af-

fect the current price level either.

3. The steady state price converges to the equilibrium value of a perfectly competitive

static market also when prices tend to be infinitely sticky. Obviously, here the result

arises because firms’ production choices can affect neither present nor future prices.

4. When prices become infinitely flexible the steady state price converges to a limit value

which is higher than the price of the static equilibrium with price-taker firms and
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lower than that of the static Cournot oligopoly. Since in a duopoly such limit case

coincides with the deterministic analogue discussed in Fershtman and Kamien (1987),

we see that the impact of uncertainty and risk-aversion on a dynamic oligopoly where

firms compete over the production of a homogeneous and non-storable good crucially

hinges on the presence of price-stickiness.

5. When we instead consider the special case of a unique firm in the market, we observe

that an infinitely flexible price brings about the convergence of the stationary price

towards the static Cournot price (coinciding in this case with the monopoly price).

In oligopoly, both in Fershtman and Kamien (1987) and in our paper, under the hypothesis

of perfectly flexible prices, the steady state price converges to a level which is lower than

the static Cournot equilibrium price because of the assumption of feedback strategies. Only

by removing this assumption, either by imposing open-loop strategies - as in Fershtman

and Kamien (1987) - or by eliminating the necessity of behaving strategically - as it is in our

paper when we consider the special case with only one firm - we allow the firms to pre-

commit to an initial production strategy and the dynamic oligopoly to converge to its static

counterpart.

The rest of the paper is organized as follows. In Section 2 we first introduce uncertainty

and risk-aversion in a discrete-time formulation of a market for a non-storable good with

sticky prices, then we consider its continuous-time limit and characterize the equilibrium

solutions. In Section 3 we concentrate on the stationary solution for the infinite horizon for-

mulation and derive important comparative statics results pertaining to the impact of risk-

aversion, uncertainty and the number of firms. Finally, Section 4 investigates what happens

to the stationary equilibrium of the infinite horizon formulation when time-discounting col-

lapses to zero and when prices become either infinitely sticky or perfectly flexible. The

proofs of all results discussed in the paper relegated in a separate Appendix.

2 A Market for a Non-storable Good with Sticky Prices

We start from a discrete-time formulation of a market for a non-storable good with sticky

prices which allows to introduce uncertainty and risk-aversion in a simple, intuitive and

tractable manner. We then consider its continuous-time limit and derive several theoretical

results. The discrete-time formulation is set out so that its continuous-time limit is consis-

tent with that of Fershtman and Kamien (1987). In this way we can unveil the impact of

uncertainty and risk-aversion on a market for a non-storable good with sticky prices, com-

paring our analysis vis-à-vis the existing literature on differential games for markets with
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price-inertia and imperfect competition.

2.1 A Discrete-time formulation

Let us assume that production and consumption take place at equally spaced in time mo-

ments between time 0 and time T. These moments are t1, . . .,tn, tn+1, . . ., tN, where tn+1 =

tn + ∆, with ∆ some positive interval of time, while tN coincides with the final date T in

which production is interrupted. This value can easily be pushed towards infinity to con-

sider an infinite horizon formulation and consequently study a stationary equilibrium. Pe-

riod n will correspond to time tn. The continuous-time limit will be reached when ∆ con-

verges to zero. The discrete-time counterpart of the continuous-time formulation for the

dynamics of the price of the non-storable consumption good is as follows

pn+1 = α s ∆ + (1 − s∆) pn − s∆xn + ϵn+1 , (1)

where pn is the price of the non-storable good at time tn, ∆xn is the corresponding quantity

produced and brought to the market, ϵn+1 is an idiosyncratic shock to its demand function,

with ϵn+1 ∼ N(0, σ2
ϵ ∆), while α and s are positive constants with s representing a measure

of the speed of price adjustment.

The quantity produced and brought to the market ∆xn is the product of the time interval

∆ and the output rate/intensity xn for period n.3 In oligopoly, where M identical firms

produce the non-storable good, ∆xn = ∆u1,n + ∆u2,n . . . + ∆uM,n, where ∆um,n corresponds

to the quantity produced by firm m in period n. This is the product of ∆ and firm m’s output

rate/intensity um,n.

The dynamics of the price described by the first-order difference equation (1) represents

the discrete time counterpart of that employed by Fershtman and Kamien (1987) and most

of the papers dealing with dynamic oligopolies and sticky prices. Equation (1) can be refor-

mulated as

pn+1 − pn = s∆ ( p̂n − pn) + ϵn+1 , (2)

where p̂n = α − xn is the inverse demand function which prevails in a market in which

prices adjust immediately to the level determined by the demand function for a given level

of output. Equation (2) shows that in our formulation the price does not adjust instanta-

neously to reach this static equilibrium price. Because of price stickiness the adjustment

process takes time and in fact equation (2) indicates that the price variation from period n to

3Fershtman and Kamien refer to ui as firm i’s output rate.
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period n + 1 is a linear function of the of the gap between the price indicated by the demand

function for the currently produced quantity and the current market price. The degree of

price stickiness depends on the constant parameter s that measures how much of the dif-

ference between p̂n and pn is corrected in a period of time. Thus, a larger s would allow a

faster convergence of the price to its static equilibrium level with immediate convergence

when s goes to infinity. On the other hand, when s = 0 we have maximum stickiness and a

limit case is reached in which changes in the production level do not provoke any variation

in prices. Moreover, it is worthwhile to note that what firms produce today has an effect on

tomorrow price but it does not affect the current price pn whose level depends, in turn, on

production decisions occurred at tn−1. As it will be clearer later, this assumption is crucial

for the results that we derive.

In order to concentrate on symmetric equilibria we assume the M firms are perfectly sym-

metrical in that they share the same cost function, while the entrepreneurs which own and

run them share the same degree of risk-aversion.4

Now, without loss of generality, let us analyze the optimal production strategy of firm 1.

As in Fershtman and Kamien (1987) firm 1 is characterized by quadratic production costs.

Specifically, in n the intensity of these costs is 1
2 u2

n, where for simplicity we write u1,n = un.

The sale of the non-storable good generates a revenue which is linear in the quantity brought

to the market. This implies that the intensity of the firm’s revenue in n is pnun, while that of

the corresponding profits is pnun − 1
2 u2

n.

In Fershtman and Kamien (1987) the entrepreneur maximizes the discounted value of all

the profits her firm generates. In our formulation, as the future prices at which the firm will

be able to sell the quantity of the non-storable good it produces are subject to idiosyncratic

shocks, this discounted value is uncertain. Therefore, we assume the entrepreneur is risk-

averse and is endowed with a special form of recursive preferences proposed by Hansen

and Sargent (Hansen and Sargent, 1995). In particular in period n, with n = 1, 2, . . . , N, the

entrepreneur solves the following recursive optimization

Vn = min
un

{
∆cn +

2
ρ

ln
(

En

[
exp

(
δ∆ ρ

2
Vn+1

)])}
, (3)

where ρ (with ρ > 0) is a risk-enhancement coefficient, δ (with 0 < δ < 1) is a time-

discounting factor, ∆cn is the (per-period) loss function, with cn = 1
2 u2

n − pnun, and Vn

is the value function (with final condition VN+1 = 0).

The optimization criterion in (3) accommodates risk-aversion through the curvature of

4With different degrees of risk-aversion on the part of the M entrepreneurs we would not be able to con-
centrate on symmetric equilibria.
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the exponential function. As the convexity of ln(E[exp(δ∆ ρ
2 Vn+1)]) increases with ρ, this

coefficient determines the entrepreneur’s degree of risk-aversion. Importantly, for ρ ↓ 0,

the recursive optimization in (3) converges to Vn = minun En[∆cn + δ∆Vn+1].5 As this is

the Bellman equation a risk-neutral entrepreneur will solve in our formulation, we conclude

that our formulation subsumes that of Fershtman and Kamien, when ρ = 0, and extends it

by allowing for risk-sensitive preferences, when ρ > 0.

Exploiting results by Vitale (2017) the following Lemma can be established.

Lemma 1 When M identical firms operate in the oligopolistic market for the production of the non-

storable good, in period n the optimal production strategy of a generic firm is

un = κp,n pn + κe,n(αs∆π̃n+1 − ϑ̃n+1) , with (4)

κp,n =
1
2 + s(1 − s∆)π̃n+1

1
2 + M s2∆π̃n+1

, κe,n =
s

1
2 + Ms2∆π̃n+1

, (5)

π̃n+1 = δ∆πn+1(1 − δ∆ρ σ2
ϵ ∆ πn+1)

−1 , ϑ̃n+1 = δ∆ϑn+1(1 − δ∆ρ σ2
ϵ ∆ πn+1)

−1 , (6)

πn =
1
2

∆ κ2
p,n − ∆ κp,n +

[
(1 − s∆) − M s ∆ κp,n

]2
π̃n+1 , (7)

ϑn = [1 − (M − 1)sπ̃n+1 ∆ κe,n][−Ms ∆ κp,n + (1 − s∆)](ϑ̃n+1 − αs∆π̃n+1) (8)

and boundary conditions πN+1 = 0 and ϑN+1 = 0.

Proof. See the Appendix.

Solving the recursive system of equations (5), (6), (7) and (8) for n = 1, 2, . . . , N, with the

boundary conditions πN+1 = 0 and ϑN+1 = 0 is fairly cumbersome and can be achieved

only numerically. However, we are interested in investigating what happens when we con-

sider the continuous-time limit, for ∆ ↓ 0.

2.2 The Continuous-time Limit

For ∆ ↓ 0 this discrete-time formulation converges to a continuous-time limit. In particular,

the continuous-time analogue of equation (1) is given by the following expression

dp(t)
dt

= s(α − x(t) − p(t)) + ϵ(t) , (9)

where x(t) = u1(t) + . . . + uM(t). Importantly, for M = 2 and ϵ(t) ≡ 0 we have equation

(1.2) in Fershtman and Kamien (1987). Given our formulation the condition that no variation
5The proof of these and other results are available on request. See also Vitale (2017).
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in the price is expected is

Et

[
dp(t)

dt

]
= 0 .

It can be said that if this condition is met the good market is in steady state in that the good

price p(t) adjusts instantaneously to the equilibrium level that would prevail in a static

model. In our dynamic model prices are sticky. When a production decision is taken, the

good price does not reach immediately its static equilibrium value. However, let p∗(t) ≡
α − x(t) be such a price. Substituting it out in equation (9) we find that

dp(t)
dt

= − s (p(t) − p∗(t)) + ϵ(t) , (10)

which is the continuous-time correspondent of equation (2) unveiling mean-reverting dy-

namics toward the static equilibrium price.

Using Lemma 1 it is possible to prove the following Proposition, which characterizes the

optimal production strategy of the generic firm in the continuous-time limit.

Proposition 1 When M identical firms operate in the oligopolistic market for the production of the

non-storable good, in t the optimal production strategy of the generic firm is

u(t) = κ(t) p(t) − 2 s ϑ(t), with κ(t) = (1 + 2 sπ(t)) (11)

and π(t) and ϑ(t) satisfying the following differential equations

dπ(t)
dt

− 2
(

sπ(t) +
1
2

)(
(2M − 1)sπ(t) +

1
2

)
+ (ln δ − 2s)π(t) + ρσ2

ϵ π(t)2 = 0 , (12)

dϑ(t)
dt

+

(
ln δ − (1 + M)s

)
ϑ(t) −

(
2(2M − 1)s2 − ρσ2

ϵ

)
π(t)ϑ(t) − αs π(t) = 0 , (13)

with boundary conditions π(T) = 0 and ϑ(T) = 0.

Proof. See the Appendix.

Solving the two differential equations in Proposition 1 is involved. In particular, an ex-

plicit solution exists only for the former and hence numerical procedures are called for to

describe the dynamics of the equilibrium presented in Proposition 1. However, in the in-

finite horizon formulation, where the final date T is pushed forward to infinite, we easily

characterize the stationary equilibrium. Indeed, using the differential equations (12) and

(13), we can establish that in such stationary equilibrium

κ(t) = κ̄ , π(t) = π̄ and ϑ(t) = ϑ̄ , where
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κ̄ = 1 + 2sπ̄ , π̄ = −1
2

λ

γ
+

1
2
D
γ

and ϑ̄ =
απ̄s

ln δ − s (1 + M) − γ π̄
,

with λ =
(
2(1 + M)s − ln δ

)
, γ = 2(2M − 1)s2 − ρσ2

ϵ and D = [λ2 − 2γ]1/2.

The characteristics of κ̄, π̄ and ϑ̄ are discussed in the Appendix. In particular, by in-

vestigating the sign of κ̄, π̄ and ϑ̄ we will establish also the required positiveness of the

equilibrium price and the expected quantity produced by any oligopolistic firm.

3 Comparative Statics

As we concentrate on the stationary solution for the infinite horizon formulation, we have

several important results pertaining to the impact of risk-aversion, the volatility of the de-

mand shocks and the number of firms operating in the market.

3.1 Risk-aversion and Uncertainty

The following Lemma provides a first hint on the relationship between risk-aversion, uncer-

tainty and firms’ production strategies.

Lemma 2 In the stationary equilibrium, the production strategy of an oligopolistic firm is more

aggressive for a larger ρ and/or larger σϵ, in that κ̄ is larger.

Proof. See the Appendix.

This Lemma posits that the firm will select a more aggressive production strategy when

more risk-averse and when more uncertain about future shocks to the demand function.

Indeed, in a stationary equilibrium the price of the homogeneous non-storable good fluc-

tuates around a steady state value p∗. Correspondingly, the quantity produced by a firm

in a stationary equilibrium, u(t) = κ̄p(t) − 2sϑ̄, fluctuates around the steady state value

u∗ = κ̄p∗ − 2sϑ̄. Since κ̄ depends positively on both ρ and σϵ, the first term of u∗ is also

increasing in ρ and σϵ. Therefore firms react aggressively to a greater uncertainty by increas-

ing their productions for any given level of price and such behavior is further amplified by

higher degrees of risk-aversion. However, if all firms increase their production, in steady

state, the price will be smaller, so that the term κ̄p∗ could either increase or decrease. More-

over, ϑ̄ depends on ρ and σϵ too. This suggests that establishing the overall effect of risk-

aversion and uncertainty on the optimal production strategy and on the equilibrium price

is a complicated endeavor.
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However, the following two Propositions confirm the intuition suggested by Lemma 2 as

they show that the steady state price is decreasing in the risk-adjustment coefficient and in

the volatility of demand shocks and that, ceteris paribus, the M firms produce larger quanti-

ties of the non-storable good.

Proposition 2 For any parametric constellation, the steady state price, p∗, of the stationary equilib-

rium is decreasing in ρ, the coefficient of risk-aversion, and σϵ, the volatility of demand shocks.

Proof. See the Appendix.

Proposition 3 For any parametric constellation, in a stationary equilibrium, the expected quantity

produced by an oligopolistic firm in steady state, u∗, is increasing in ρ, the coefficient of risk-aversion,

and σϵ, the volatility of demand shocks.

Proof. See the Appendix.

Summing up we conclude that uncertainty and risk aversion affect the strategies of firms

producing a homogeneous non-storable good in a dynamic oligopoly market with sticky

prices. In particular, we observe that the optimal firms’ reaction to a higher degree of uncer-

tainty is to increase their production in order to reduce the variability of their payoffs. This

behavior is exacerbated when firms exhibit a higher degree of risk-aversion and it is driven

by the positive impact of ρ and σϵ on κ̄ that brings about an increase in the aggregate supply

of the good with a consequent reduction in its steady state price. This result is driven by the

Epstein and Zins recursive preferences employed in this paper. In fact, as it is discussed in

Vitale (2017) and Valentini and Vitale (2019), ρ > 0 implies that the relative risk-aversion is

greater than the inverse of the inter-temporal elasticity of substitution. Kreps and Porteus

(1978) show that under these circumstances agents are pushed towards an earlier resolution

of uncertainty vis-a-vis the standard case of expected utility.

3.2 The Number of Firms

Another interesting and apparently counterintuitive result pertains to the impact of the

number of firms in the oligopolistic market. This is introduced by the following Lemma.

Lemma 3 For any parametric choice κ̄ is increasing in M, the number of firms in the market.

Proof. See the Appendix.
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Lemma 3 shows that when the number of firms augments risk-averse entrepreneurs react

aggressively and indeed the increase in κ̄ captures their incentive to produce larger quan-

tities of the non-storable good. This behavior suggests that firms prefer to sacrifice part of

their marginal revenues in order to protect their market share from the greater competitive

pressure due to an increase of M.

This result is in contradiction with the static Cournot oligopoly where the impact of the

number of firms on the production strategy of single firms is negative. However, Lemma 3

captures only part of the effect that M has on the production strategy as the overall effect

depends also on how the number of firms affect p∗ and ϑ̄. In fact, when the number of firms

raises to infinite, the steady state price converges to the firms’ marginal production cost, as

established in the following Proposition.

Proposition 4 When the number of firms goes to infinity the steady state price p∗ converges to the

firms’ per period marginal production cost.

Proof. See the Appendix.

This result is important in that it suggests that in the limit the strategic interaction be-

tween firms leads to a competitive equilibrium. The convergence of the steady state price

p∗ towards firms’ marginal cost in the limit case of M going to infinity was firstly showed

by Dockner (1988) in a dynamic oligopoly without uncertainty. Therefore, Proposition 4 re-

veals that i) Dockner’s result is robust to the introduction of uncertainty and risk-aversion

and ii) the degree of uncertainty and risk aversion do not affect the steady state price when

the number of firms producing a homogeneous non-storable good in the dynamic market

with sticky prices becomes infinity.

4 The Nexus Between Static and Dynamic Formulations

In order to deepen our understanding of the impact of risk-aversion and price stickiness on

a oligopoly, we now compare our dynamic formulation with a static one in which prices are

always equal to the level dictated by the demand schedule, while entrepreneurs are risk-

neutral. In such a static formulation two alternative scenarios can prevail. In the former

firms are price-takers and act competitively, while in the latter they act strategically as they

take into account the impact that their output has on the equilibrium price.

It is relatively simple to establish that in the former scenario the expected equilibrium

price for the homogeneous good, E[pt], is equal to pcomp = α
1+M , while the production strat-

egy of the individual firm implies that ut = κcomp pt, where κcomp = 1. When firms act strate-
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gically, instead, the expected equilibrium price is equal to pstra = 2α
2+M , while ut = κstrat pt

with κstrat =
1
2 .

We conjecture that the steady state of the stationary equilibrium of our dynamic formula-

tion with sticky prices and risk-averse entrepreneurs lies in between the two extremes of the

strategic and competitive static equilibria. More precisely, we conjecture that the following

inequalities hold

pcomp ≤ p∗ ≤ pstra , (14)

κcomp ≥ κ̄ ≥ κstra . (15)

These conjectures are substantiated by some numerical analysis alongside some analytical

results for special limit cases. In particular, we are able to determine what happens to the

steady steady of our dynamic formulation when time-discounting collapses to zero (δ ↓
0) and when prices become either infinitely sticky or perfectly flexible (s ↓ 0 and s ↑ ∞

respectively). Investigating these limit scenarios is interesting per se but also because they

help unveiling how risk-aversion, time-discounting and price stickiness interact.

Thus, for δ ↓ 0 the steady state of our dynamic formulation converges to the equilibrium

of the static model with price-taker firms, as suggested by the following Proposition.

Proposition 5 When the time-discounting factor falls to zero the steady state price of the stationary

equilibrium with M firms converges to the expected price, E[pt], of the static equilibrium with price-

taker firms, in that

lim
δ↓0

p∗ = pcomp .

Proof. See the Appendix.

This result is not surprising. In fact, as δ collapses to zero firms do not take into account

future profit opportunities when selecting their production policies. Moreover, since prices

are sticky firms’ current output only affects future prices. Consequently, as current prices

are not affected by their current production choices, firms just behave as price-taker agents.

A second implication of Proposition 5 is that for δ ↓ 0 the steady state of our dynamic for-

mulation coincides with the competitive equilibrium of the static formulation of the model

presented by Fershtman and Kamien (1987).6 Indeed, in our formulation firms, when choos-

ing their output, know the current price for the homogeneous good, but are uncertain about

its future values. Thus, their risk-aversion affects their production strategies insofar they

6More precisely, this happens for M = 2 when in their formulation the linear cost coefficient is set equal to
zero, ie. c = 0.

12



care for future profits. When δ ↓ 0 they no take into account future profits and hence their

uncertainty about future prices and their risk-aversion become irrelevant.

The steady state of our dynamic formulation manifests similar properties when prices

become infinitely sticky. In fact, also when s collapses to zero our steady state converges

to the equilibrium of the static model with price-taker firms. This result is posited in the

following Proposition.

Proposition 6 When prices become infinitely sticky (s ↓ 0), the steady state price of the stationary

equilibrium converges to the expected price, E[pt], of the static equilibrium with M price-taker firms,

in that

lim
s↓0

p∗ = pcomp .

Proof. See the Appendix.

In this extreme scenario firms are aware that their output does not affect prices. In ad-

dition, while they care for future profit opportunities they also know that their current de-

cisions will not bear upon the future. Consequently, firms act as price-taker agents which

maximize their expected current profits exactly as in Fershtman and Kamien’s original for-

mulation.

When prices become perfectly flexible the properties of the steady state of our formulation

change dramatically, as shown in the following Proposition.

Proposition 7 When prices become perfectly flexible (s ↑ ∞), the steady state price of the stationary

equilibrium converges to a limit value which for M ≥ 2 lies between the expected price, E[pt], of

the static equilibrium with price-taker firms and that of the static equilibrium with strategic firms, in

that

pcomp < lim
s↑∞

p∗ < pstrat ,

while for M = 1 coincides with the expected price, E[pt], of the static equilibrium with a strategic

monopolist, in that

lim
s↑∞

p∗ = pstrat .

Proof. See the Appendix.

When prices become perfectly flexible they immediately adjust to the level determined by

the demand for the homogeneous good. This means that the management of a monopolis-

tic firm will choose its production policy taking into account the immediate and complete

impact that this will have on the the price of the homogeneous good. More precisely, in t

it will select the optimal production quantity u(t) considering its effect through the inverse

13



demand schedule p(t) = α − u(t). In this way the monopolist acts as a single strategic agent

and the steady state of the stationary equilibrium converges to the corresponding static equi-

librium.

Interestingly, in oligopoly the steady state of the stationary equilibrium does not converge

to the corresponding static equilibrium with strategic firms. The steady state price is in fact

smaller. This is because in oligopoly firms not only consider the impact that their output

has on the equilibrium price, but also on the output of their competitors. Thus, a firm’s

management knows that if it increases its output not only it will depress the price of the

homogeneous good, but it will also induce the other firms to produce less. Firms find it

optimal to eat into their competitors’ market shares and hence choose to increase output

above the level consistent with the static equilibrium with strategic firms.

Proposition 7 shows that with perfectly flexible prices, for M ≥ 2, the limit steady state

price of the stationary equilibrium can be considered a weighted average of the expected

equilibrium prices which prevail in the static equilibrium under competitive and strategic

behavior, in that

lim
s↑∞

p∗ = ω pstrat + (1 − ω) pcomp .

In particular, for M = 2 pstrat =
1
2 α and pcomp = 1

3 α, while ω = 2
√

2/3
1+2

√
2/3

which coincides

with the corresponding formula presented by Fershtman and Kamien (1987) when produc-

tion costs do not include a linear component, ie. for c = 0 in their formulation,

lim
s↑∞

p∗ =
pcomp + 2

√
2√
3

pstrat

1 + 2
√

2√
3

.

Indeed, for M = 2, when s ↑ ∞ our formulation collapses to the stochastic analogue

of the static model discussed by Fershtman and Kamien (1987). This suggests that when

prices become perfectly flexible the impact of uncertainty and risk-aversion on the firms’

production strategies and the market equilibrium in our dynamic formulation dissipates.

Indeed, this is a general result which we posit in the following Proposition.

Proposition 8 When prices become perfectly flexible (s ↑ ∞), the production strategies of the risk-

averse entrepreneurs collapse to those of their risk-neutral counterparts.

Proof. See the Appendix.

The intuition for this result is immediate. In fact, as prices become perfectly flexible they

immediately converge to the level determined by the demand for the homogeneous good.
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This implies that uncertainty over future prices vanquishes and the optimal production

strategy of the oligopolistic firms is unaffected by the entrepreneurs’ degree of risk-aversion.

We conclude that the impact of risk-aversion and uncertainty on the optimal production

strategies of oligopolistic firms crucially hinges on the stickiness of the good price. Only

when prices adjust slowly the attitude of the firms’ management and their uncertainty on

the dynamics of future prices affect their production decisions.

The results illustrated in Propositions 5 to 7 pertain to limit scenarios. However, numerical

analysis conducted for other parametric constellations comforts the main conclusions we

have drawn so far. Thus, in Figure 1 we plot the steady-state price, p∗, and the production

coefficient, κ̄, against the time discounting factor δ and compare them to the corresponding

reference values for the static formulation both when M = 1 and M = 2. In Figure 2 we

repeat the same exercise with respect to the degree of price stickiness, 1/s.

Figure 1 reveals that, both when M = 1 and M = 2, for δ > 0 the coefficient κ̄ is smaller in

the dynamic version and hence that, as firms produce more slowly, the equilibrium price is

larger. The difference stems from the fact that in the dynamic model firms take into account

the impact of their current production choice on future prices and profits and optimally

decide to restrain their production. However, consistently with Propositions 5 when δ ↓ 0,

as concern for future profits vanquishes, the optimal production policy collapses to that of

the static formulation with price-taking behavior. In fact, both when M = 1 and M = 2, for

δ ↓ 0 κ̄ ↑ κcomp, where κcomp is the coefficient κ of the static formulation with price-taking

behavior. Interestingly, Figure 1 also shows that convergence to this limit case is fairly slow,

in that for δ close to zero there is some sizable difference between the static equilibrium and

the steady-state of the dynamic one.

Figure 2 confirms our conjecture that the steady state price of the dynamic formulation lies

between the expected equilibrium prices that prevail in the static formulation when firms

act as price-taker agents and strategic ones. In fact, for any value of 1/s, pcomp ≤ p∗ ≤ pstrat.

Similarly we see that, as conjectured, κcomp ≥ κ̄ ≥ κstrat. Moreover, from the Figure we see

that as 1/s increases, both when M = 1 and M = 2, the steady state price, p∗, decreases,

while the corresponding production coefficient, κ̄ increases. This unveils a clear monotonic

relationship between the degree of price stickiness and the characteristics of the dynamic

equilibrium. In particular, as prices adjust more slowly, firms find it optimal to produce

more so that the steady state price drops.

In addition, consistently with Proposition 6, we see that as 1/s rises to infinity, and hence

prices become infinitely sticky, the steady state of the dynamic formulation converges to the

corresponding static equilibrium with price-taker firms both when M = 1 and M = 2. On

the contrary, coherently with Proposition 7, when 1/s drops to zero, and prices become per-
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fectly flexible, while for M = 1 the steady state of the dynamic formulation approaches the

corresponding static equilibrium with a strategic monopolist, for M = 2 it does not converge

to the corresponding static equilibrium with strategic firms. Indeed, in the latter scenario the

limit steady state price is smaller than the equilibrium price of the static formulation with

strategic firms, while the corresponding production coefficient is larger.

Concluding Remarks

This paper has shown how price stickiness, uncertainty and risk aversion interact in oligopolis-

tic markets of homogeneous and non-storable goods. Such markets are not just a theoretical

curiosity. Electricity, for instance, is perfectly homogeneous, difficult to store and typically

provided by few firms in retail markets which are characterized by demand uncertainty and

prices adjusting very slowly to changes in the wholesale electricity prices.

To analyze these markets we have extended a classical dynamic oligopoly game with

sticky prices by developing a discrete-time formulation that allows to introduce uncertainty

and risk-aversion via recursive preferences à la Hansen and Sargent (1995). Starting from

a discrete-time formulation allows both to move easily to the continuous-time counterpart

and to put in evidence the role of price stickiness and uncertainty in our results. In fact,

focusing on the infinite horizon limit of the continuous- time formulation, we have obtain

several results that we can compare to those already known in the extant literature. Thus,

we have seen that as uncertainty and risk-aversion increase, firms produce more and, con-

sequently, the equilibrium price falls. However, the effect of uncertainty and risk-aversion

on production and price levels crucially depends on the presence of price stickiness as it

is greater when price stickiness increases and disappears when prices can adjust instanta-

neously. Indeed, since uncertainty on price dynamics pertains solely to next periods, the

strategic behavior of risk-averse firms collapses that of risk-neutral ones when the current

price can converge instantaneously to its equilibrium value. Therefore, the introduction of

uncertainty and risk aversion does not help to cope with the Fershtman and Kamien’s issue

of non-convergence towards the static Cournot equilibrium price when we remove price

stickiness and firms use feedback strategies.

This paper provides a preliminary analysis of the impact of uncertainty and risk-aversion

within a dynamic oligopoly game with stick prices. Such analysis could be extended in sev-

eral directions. In particular, consumption decisions could be incorporated by introducing

financial assets. Similarly, a storable good would allow to smooth production and reduce

profit variability. However, despite its possible limitations, the model we presented per-
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mits immediate comparison with Fershtman and Kamien (1987) and the related literature

on dynamic oligopoly games with sticky prices within a deterministic context.
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Appendix

Proof of Lemma 1

Suppose firm 1’s entrepreneur conjectures that in n firms 2, 3, . . ., M will all choose to produce the

same quantity ∆yn. In addition, assume that Vn+1 = πn+1 p2
n+1 − 2ϑn+1 + νn+1, where πn+1 and

ϑn+1 are some time-variant coefficients. Under this assumption, Lemma 4 in Vitale (2017) shows that

solving the recursion in (3) is equivalent to solving the double recursion

Fn(pn) = L L̃ Fn+1(pn+1) , where Fn+1 ≡ πn+1 p2
n+1 − 2ϑn+1 ,

L̃ ϕ(p) = max
ϵ

[
δπ(p + ϵ)2 − 2δϑ(p + ϵ) − 1

ρ

1
σ2

ϵ ∆
ϵ2
]

and

L ϕ(p) = min
u

[
∆c + ϕ

(
αs∆ + (1 − s∆) p − s∆ [u + (M − 1)y ]

)]
.

Applying the L̃ operator to Fn+1 we find that L̃Fn+1(pn+1) = π̃n+1 p2
n+1 − 2ϑ̃n+1 pn+1 with π̃n+1 =

δ∆πn+1(1 − δ∆ρ σ2
ϵ ∆ πn+1)

−1, ϑ̃n+1 = δ∆ϑn+1(1 − δ∆ρ σ2
ϵ ∆ πn+1)

−1 and the second order condition

that δ∆πn+1 − 1
ρ

1
σ2

ϵ
< 0, which will always be satisfied insofar πn+1 < 0.

In applying the L operator to Fn+1(pn+1) = π̃n+1 p2
n+1 − 2ϑ̃n+1 pn+1 we find the following first

order condition(
1
2
+ s2∆π̃n+1

)
un −

(
s(1 − s∆)π̃n+1 +

1
2

)
pn + (M − 1)s2∆π̃n+1yn − s(αs∆π̃n+1 − ϑ̃n+1) = 0

and hence the optimal production is

un =
1
2 + s(1 − s∆)π̃n+1

1
2 + (M − 1)s2∆π̃n+1

pn +
(M − 1)s∆π̃n+1

1
2 + (M − 1)s2∆π̃n+1

yn +
s(αs∆π̃n+1 − ϑ̃n+1)

1
2 + (M − 1)s2∆π̃n+1

.

Crucially, firm 1’s conjecture will need to be verified in equilibrium. This is trivially achieved by

assuming a symmetric equilibrium in that we posit that un = yn. Under such restriction we find that

un = κp,n pn + κe,n(αs∆π̃n+1 − ϑ̃n+1) , with

κp,n =
1
2 + s(1 − s∆)π̃n+1

1
2 + M s2∆π̃n+1

and κe,n =
s

1
2 + Ms2∆π̃n+1

.

Inserting this expression into the argument of the L operator it is found that

πn =
1
2

∆ κ2
p,n − ∆ κp,n +

[
(1 − s∆) − M s ∆ κp,n

]2
π̃n+1 ,

ϑn = [1 − (M − 1)sπ̃n+1 ∆ κe,n][−Ms ∆ κp,n + (1 − s∆)](ϑ̃n+1 − αs∆π̃n+1) . 2
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Proof of Proposition 1

Reconsider the optimal production strategy described in Lemma 1. In the limit, for ∆ converging to

zero (M−1)s∆π̃n+1
1
2+(M−1)s2∆π̃n+1

→ 0. In addition, for ∆ ↓ 0, as π̃n+1 → π(t) (while ϑ̃n+1 → ϑ(t)),
1
2+s(1−s∆)π̃n+1

1
2+(M−1)s2∆π̃n+1

converges to 1 + 2sπ(t), while s(αs∆π̃n+1−ϑ̃n+1)
1
2 + (M−1)s2∆π̃n+1

converges to −2sϑ(t).

Hence, in the limit, the optimal demand function for firm 1 in t is

u(t) = κ(t) p(t) − 2 s ϑ(t) , with κ(t) = 1 + 2 s π(t) ,

where κ(t) = lim∆↓0 κp,n, 2s = lim∆↓0 κe,n, π(t) = lim∆↓0 πn and ϑ(t) = lim∆↓0 ϑn. To identify the limit

functions π(t) and ϑ(t), firstly consider that since [(1 − s∆) − M s∆ κn]
2 = (1 − 2s∆) − 2 M s ∆ κn +

o(∆2), it follows that equation (7) can also be written as

πn = π̃n+1 + ∆
(

1
2

κ2
p,n − κp,n − 2s π̃n+1 − 2 M s κp,n π̃n+1

)
+ o(∆2) ,

where o(∆) indicates a term of order ∆ or superior. This implies that

πn − πn+1

∆
=

π̃n+1 − πn+1

∆
− 2s π̃n+1 + κp,n

(
1
2

κp,n − 1 − 2 M s π̃n+1

)
+ o(∆) .

Notice, that it can be established that

κn

(
1
2

κp,n − 1 − 2 M s π̃n+1

)
=

1
2

(
1
2 + sπ̃n+1

1
2 + M s2∆π̃n+1

) (
1
2 + (2M − 1) sπ̃n+1

1
2 + M s2∆π̃n+1

)
+ o(∆) .

Now, lim∆↓0
πn −πn+1

∆ = − dπ(t)
dt , lim∆↓0

π̃n+1 −πn+1
∆ = ln δ π(t)+ ρσ2

ϵ π(t)2 and lim∆↓0 π̃n+1 = lim∆↓0 πn+1 =

π(t). Given the expression above we also see that lim∆↓0 κp,n
( 1

2 κp,n − 1 − 2 M s π̃n+1
)
= −2 ( 1

2 +

sπ(t))( 1
2 + (2M − 1) sπ(t)). We conclude that in the limit π(t) solves the following differential

equation

dπ(t)
dt

− 2
(

sπ(t) +
1
2

)(
(2M − 1)sπ(t) +

1
2

)
− 2s π(t) + ln δ π(t) + ρσ2

ϵ π(t)2 = 0 .

Similarly, equation (8) can also be written as follows

ϑn = ϑ̃n+1 − ∆
(

s + M s κp,n + (M − 1) s κe,n π̃n+1 + o(∆)
)

ϑ̃n+1 − ∆(α s + o(∆)) π̃n+1 ,

so that

ϑn − ϑn+1

∆
=

ϑ̃n+1 − ϑn+1

∆
−
(

s + M s κp,n + (M − 1) s κe,n π̃n+1

)
ϑ̃n+1 − α sπ̃n+1 + o(∆)) .

Considering that lim∆↓0
ϑn − ϑn+1

∆ = − dϑ(t)
dt , lim∆↓0

ϑ̃n+1 − ϑn+1
∆ = ln δ ϑ(t) + ρσ2

ϵ π(t)ϑ(t), lim∆↓0 ϑ̃n+1 =

lim∆↓0 ϑn+1 = ϑ(t) and that lim∆↓0 κp,n = 1+ 2sπ(t)) and lim∆↓0 κe,nπ̃n+1 = 2s π(t), we conclude that
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in the limit ϑ(t) solves the second differential equation

dϑ(t)
dt

+

(
ln δ − (1 + M)s

)
ϑ(t) −

(
2(2M − 1)s2 − ρσ2

ϵ

)
π(t)ϑ(t) − απ(t) = 0 . 2

Before we prove Lemma 2 and the various Propositions we presented in Sections 2.2 to 4, we

establish a few preliminary results.

Lemma 4 In a stationary equilibrium limt↓−∞ π(t) = π̄ where

π̄ = −1
2

λ

γ
+

1
2
D
γ

with λ =
(
2(1 + M)s − ln δ

)
and γ = 2(2M − 1)s2 − ρσ2

ϵ .

Proof. Consider the differential equation for π(t). We can write it as d π(t)
d t = 1

2 +λπ(t)+γπ(t)2. This

can be transformed into a homogeneous ordinary differential equation of order two, d2 z(t)
d2 t − λ d z(t)

d t +

1
2 γz(t) = 0, with π(t) = − 1

γ

d z(t)
d t

z(t) . Assume then that z(t) = m exp(ζ t). We have a solution of the

ODE iff ζ2m exp(ζ t)− ζλm exp(ζ t) + 1
2 γm, exp(ζ t) = 0 , ie. iff mζ2 − mλζ + m 1

2 γ = 0. This admits

two roots equal to ζ =

{
ζ1 = 1

2 λ + 1
2 D

ζ2 = 1
2 λ − 1

2 D
, with D = [λ2 − 2γ]1/2. Thus, z(t) = m1 exp(ζ1 t) +

m2 exp(ζ2 t). Given that π(t) = − 1
γ

d z(t)
d t

z(t) , we can write that π(t) = −m1ζ1 exp(ζ1t)+m2ζ2 exp(ζ2t)
γ(m1 exp(ζ1t)+m2 exp(ζ2 t)) .

We can impose the terminal condition π(T) = 0 to find that

m1 ζ1 exp(ζ1 T) + m2 ζ2 exp(ζ2 T) = 0 ⇔ m2 = − ζ1

ζ2
m1 exp((ζ1 − ζ2) T) = − ζ1

ζ2
m1 exp(D T) .

Re-inserting this expression in that for π(t) we find that

π(t) = − 1
γ

(
ζ1 exp(ζ1 t) − ζ1 exp(D T) exp(ζ2 t)

exp(ζ1 t) − ζ1
ζ2

exp(D T) exp(ζ2 t)

)
= − ζ1

γ

(
1 − exp(D T) exp(−(ζ1 − ζ2) t)

1 − ζ1
ζ2

exp(D T) exp(−(ζ1 − ζ2) t)

)

= − ζ1

γ

(
1 − exp(−D (t − T))

1 − ζ1
ζ2

exp(−D (t − T))

)
= − ζ1

γ

(
exp(D (T − t)) − 1

ζ1
ζ2

exp(D (T − t)) − 1

)
,

as ζ1 − ζ2 = D. Importantly, we can find the stationary value of π pushing t to −∞,

lim
t↓−∞

π(t) = π̄ = − ξ2

γ
. 2

Notice also that π̄ corresponds to the root π̄+ = − 1
2

λ
γ + 1

2
D
γ of the following quadratic equation

γπ̄2 + λπ̄ + 1
2 = 0, which is obtained from the differential equation (12) by imposing that π(t) = π̄

and dp(t)/dt = 0.
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Lemma 5 For any parametric constellation κ̄ is positive

Proof. Let w denote sπ̄ with w. From the expression solved by π̄ we see that w is a root of the

quadratic equation Aw2 − Bw + 1
2 = 0, where A =

(
2(2M − 1)− ρ σ2

ϵ

s2

)
and B =

(
2(1 + M)− ln δ

s

)
.

Now w > −1/2. To verify this inequality notice that it is equivalent to the condition that B−
√

B2−2A
A >

−1. This is equivalent to B + A >
√

B2 − 2A for A > 0 and B + A <
√

B2 − 2A for A < 0. In the

former case, as we take squared values, we see that B + A >
√

B2 − 2A corresponds to A2 + 2A +

AB > 0. This is inequality is obviously satisfied as both A and B are positive. In the latter case, as

A < 0 we notice that
√

B2 − 2A > B > B + A. Because w > − 1
2 we conclude that κ̄ = 1 + 2w is

positive. 2

Lemma 6 For any parametric constellation p∗ is positive

Proof. In a stationary symmetric equilibrium, dp(t)
dt = αs − sp(t) − sMu(t) + ϵ(t) and u(t) =

κ̄p(t) − 2sϑ̄. It follows that dp(t)
dt = αs − Ap(t) + 2s2Mϑ̄ + ϵ(t), with A = s (1 + M κ̄). From this

it is immediately to derive that the steady state price is p∗ = A−1 (αs + 2Ms2ϑ̄). Consider that from

the differential equation (13) it can be concluded that in a stationary equilibrium ϑ̄ = απ̄s
ln δ−s(1+M)−γ π̄

.

Substituting the expression for ϑ̄ into that for p∗ we conclude that p∗ = αs
A

(
1 + 2Ms2π̄

ln δ−s (1+M)−γπ̄

)
.

Then, notice that we can write ln δ − s(1 + M)− γπ̄ = ln δ − s(1 + M) + s(1 + M)− 1
2 ln δ − 1

2D =
1
2 (ln δ −D) ≡ Q. Since both Q and π̄ are negative, while A = s(1 + Mκ̄) is positive we conclude

that p∗ is positive. 2

Lemma 7 In a stationary equilibrium, for any parametric constellation, the expected quantity produced by an

oligopolistic firm in is positive.

Proof. In a stationary symmetric equilibrium, the expected quantity produced by a generic firm is

u∗ = κ̄p∗ − 2sϑ̄. Hence, consider that p∗ = 1
(1+Mκ̄)

(
α + 2Msϑ̄

)
. Therefore, u∗ = 1

1+Mκ̄

(
κ̄α − 2sϑ̄

)
,

which will be positive if κ̄α − 2sϑ̄ > 0. Then, consider the expressions for κ̄ = 1 + 2sπ̄ and ϑ̄ = απ̄s
Q .

Substituting the expressions for κ̄ and ϑ̄ into that for u∗, we find that u∗ = α
[

1
2 +

(
Q−1

Q

)
sπ̄
]
. Because

0 < Q−1
Q < 1. Then, since sπ̄ > − 1

2 , as seen in the proof of Lemma 5, we see that u∗ is positive. 2

Proof of Lemma 2.

As indicated π̄ corresponds to a particular root of the equation γπ̄2 + λπ̄ + 1
2 = 0. Then, we rely on

a graphical argument. In Figures A.1 and A.2 we show how the determination of π̄+ changes when

either ρ or σ2
ϵ augments. In Figure A.1 we consider the case in which γ is positive, while in Figure

A.2 that in which it is negative.

Both Figures allow to determine what happens when an increase in ρ and/or in σ2
ϵ brings about

a reduction inγ. In both cases graphical inspection shows that for a larger degree of risk-aversion

and/or a larger volatility of the demand shocks the stationary value π̄, which is always negative,
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−1
2 − λπ

γ′ π2γ π2

π̄
π̄′b
b

π
−1

2

Figure A.1: The determination of π̄ for γ > 0. For any choice of ρ and σ2
ϵ there are two interceptions between

the straight line (− 1
2 − λπ) and the parabola (γπ2). That closer to the origin corresponds to π̄+ = − 1

2
λ
γ +

1
2

D
γ . When either ρ or σ2

ϵ rises, so that γ falls to γ′, the parabola moves downward (while the straight line is
unaffected given that λ is independent of these two parameters) and the stationary value moves up to π̄′.

rises. Then, since κ̄ = 1 + 2s π̄ and s is positive we see that κ̄ is increasing in π̄. Then, we conclude

that for a larger ρ and/or a larger σ2
ϵ κ̄ is larger. 2

Proof of Proposition 2.

We have seen in the proof of Lemma 6 that p∗ = αs
A

(
1 + 2M s2 π̄

ln δ− s (1+ M)− γ π̄

)
. Then, we notice that in

Lemma 2 we proved that π̄ and κ̄ are increasing in ρ and σϵ. In addition, we notice that A = s(1+ Mκ̄)

is positive and increasing in κ̄. This implies that s(1 + Mκ̄) is increasing in ρ and σϵ. This means that

to establish our result we need to prove that the derivatives of the ratio 2M s2 π̄
ln δ− s(1+ M)− γ π̄

with respect

to ρ and with respect to σϵ are negative, so that this ratio is proved to be decreasing in these two

parameters. Consider that this ratio can also be written as Gπ̄
H − Iπ̄ , where G > 0 and H < 0. The

derivative of this ratio wrt ρ (equivalently with respect to σϵ) is

1
(H − Iπ̄)2

[
G(H − Iπ̄)

dπ̄

dρ
− Gπ̄

(
−I

dπ̄

dρ
− dI

dρ
π̄

)]
=

G
(H − Iπ̄)2

[
H

dπ̄

dρ
+ π̄2 dI

dρ

]
.

This expression is negative. In fact, G
(H − Iπ̄)2 is positive, while H dπ̄

dρ is negative, since H is negative

and dπ̄
dρ is positive. Finally, π̄2 dI

dρ is negative because clearly dI
dρ is negative. An identical argument

applies to σϵ. This proves that p∗ is decreasing in both ρ and σϵ. □
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−1
2 − λπ

γ π2

γ′ π2

π̄

π̄′
b
b π
−1

2

Figure A.2: The stationary value π̄ for γ < 0. For any choice of ρ and σ2
ϵ there are two interceptions between

the straight line (− 1
2 − λπ) and the parabola (γπ2). That smaller one corresponds to π̄+ = − 1

2
λ
γ + 1

2
D
γ . When

either ρ or σ2
ϵ rises, so that γ falls to γ′, the parabola moves downward, while the straight line is unaffected

since λ does not depend on either of these two parameters, and the stationary value moves up to π̄′.
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Proof of Proposition 3.

In the proof of Lemma 7 we have seen that u∗ = α
[

1
2 +

(
Q−1

Q

)
sπ̄
]
, where 0 < Q−1

Q < 1 and − 1
2 <

sπ̄ < 0. Notice that
(

Q−1
Q

)
sπ̄ is negative. However, in the proof of Lemma 2 we have established

that π̄, while negative, is increasing in ρ and σ2
ϵ . In addition, Q is negative and decreasing in both ρ

and σ2
ϵ , while Q−1

Q is positive and increasing in Q. Combining these results we conclude that when

either ρ or σ2
ϵ rises u∗ augments. 2

Proof of Lemma 3.

In the proof of Lemma 2 we have seen that π̄ corresponds to π̄+ = − 1
2

λ
γ + 1

2
D
γ . This can be found

considering the intersection between the parabola γ π̄2 and the straight line − 1
2 − λπ̄. In Figure A.3

we have a graphical representation of two functions for γ positive. In this case π̄+ corresponds to the

larger of the two negative roots. When M augments graphical inspection shows that π̄ rises.

−1
2 − λπ

γ′ π2 γ π2

−1
2 − λ′π

π̄ π̄′b b

π
−1

2

Figure A.3: The stationary value π̄ for γ positive. For any choice of M there are two interceptions between the
straight line and the parabola. That closer to the origin corresponds to π̄+ = − 1

2
λ
γ + 1

2
D
γ . When M increases

λ rises to λ′ and γ to γ′. This means that the straight line rotates clockwise, while the parabola moves upward.
The stationary value moves up to π̄′.

For γ negative, when M rises, graphical inspection does not allow to determine the direction in

which π̄ changes in that the shifts in the straight line and parabola push π̄ in opposite directions

as illustrated by Figure A.4. To determine the prevailing effect on π̄ we need to apply an implicit

function argument.

Given that the equation γ π̄2 + λ π̄ + 1
2 = 0, can be written as F(M, π̄) = 0, so that dF = ∂F

∂M dM +
∂F
∂π̄ dπ̄ = 0, which implies that dπ̄

dM = − ∂F
∂M / ∂F

∂π̄ . Now, dF
dπ̄ = 2γ π̄ + λ and ∂F

∂M = 2s π̄ (2sπ̄ + 1).

We consider the sign of such derivative for π̄ = π̄+. Since λ > 0, for γ negative γπ̄+ > 0 and hence
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−1
2 − λπ

−1
2 − λ′π

γ π2

γ′ π2

π̄′

π̄
b
b π
−1

2

Figure A.4: The stationary value π̄ for γ negative. For any choice of M there are two interceptions between
the straight line and the parabola. One is negative and the other positive. The former corresponds to π̄+ =

− 1
2

λ
γ + 1

2
D
γ . When M increases λ rises to λ′ and γ to γ′. This means that the straight line rotates clockwise,

while the parabola moves upward. The stationary value moves to π̄′.

dF
dπ̄ is positive. In addition, since 2sπ̄+ < 0, ∂F

∂π̄ is negative iff 2sπ̄+ + 1 > 0. If this is established then
dπ̄
dM > 0. To see that 2sπ̄+ + 1 > 0 consider that when γ is negative π̄+ > − 1

2λ , so that −sπ̄+ < s
2

1
λ .

Then, if s
2

1
λ is smaller than 1/2 at fortiori −2sπ̄+ < 1 and hence 2sπ̄+ + 1 > 0. To see that s

2
1
λ < 1/2

consider that this is equivalent to 1
2 s < 1

2 λ ⇔ 1
2 s < 2(1 + M) s − ln δ , which is really the case

as ln δ is negative. 2

Proof of Proposition 4.

Consider π̄, which solves the equation γπ̄2 + λπ̄ + 1
2 = 0. As M ↑ ∞ both λ and γ tend to infinity

(just recall their definitions) and hence π̄ converges to zero (just consider the graphical inspection of

Figure A.1. for λ and γ raising to infinity). From this it follows that κ̄ = 1 + 2sπ̄ → 1.

Now recall that p∗ = αs
A

(
1 + 2M s2 π̄

ln δ− s (1+ M)− γ π̄

)
, where A = s(1 + Mκ̄). Using the latter result

we see that for M ↑ ∞ A converges to ∞. In addition the ratio 2M s2 π̄
ln δ− s (1+ M)− γ π̄

can also be written as
2s2 π̄

ln δ− s− γ π̄
M − s

which clearly converges to zero for M ↑ ∞. From this we conclude that p∗ converges to

zero for M ↑ ∞.

Notice also that for M ↑ ∞ ϑ̄ converges to zero too. To see this consider that in an infinite horizon

formulation π(t) and ϑ(t) become invariant values, respectively π̄ and ϑ̄. This implies that dϑ(t)
dt = 0

and equation (13) simplifies to the following
(

ln δ− (1+ M)s
)

ϑ̄−
(
2(2M − 1)s2 − ρσ2

ϵ

)
π̄ϑ̄− αs π̄ =

0.
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We have seen that for M ↑ ∞ π̄ ↓ 0. Then, assume that ϑ̄ converges to a value different from

zero, say ϑ, for M ↑ ∞. Thence, the first term in the equation rises with M at the same rate (for

M large it will be proportional to M). The second term cannot rise with M at the same rate, as π̄

converges to zero when M ↑ ∞ (and hence for M large the second term in the equation will be less

than proportional to M). The third term converges to zero. Then, for M large the equation cannot be

satisfied. Consequently, we conclude that ϑ̄ must also converge to zero.

Now, recall from Proposition 1 that u(t) = κ̄ p(t) − 2 s ϑ̄. As we have just proved that for M ↑
∞, p∗ converges to zero, κ̄ converges to 1 and ϑ̄ converges to zero, we conclude that the quantity

produced in a steady state by a single firm is zero. As we have quadratic costs the marginal cost for

a production level equal to zero is also zero. In brief, we conclude that the marginal cost and the

steady state price coincide for M ↑ ∞. 2

Proof of Proposition 5.

It is sufficient to prove that for δ ↓ 0 both π̄ and ϑ̄ converge to zero, so that the optimal production

strategy for the M firms is u(t) = p(t), that is that in the static formulation when the firms’ manage-

ment takes the good price as given. In addition, the steady state price, p∗, converges to p∗ = α
1+M ,

which corresponds to the expected good price, Et[pt], in the static formulation when the firms’ man-

agement takes such price as given.

In order to prove that δ ↓ 0 π̄ converges to zero, once again, a graphical argument would suffice.

In particular, consider Figure A.5, which, without loss of generality, is drawn under the assumption

that γ > 0 (a similar analysis would apply for γ < 0).

Notice that as δ falls λ (λ = 2(1 + M)s − ln δ) increases, while γ (γ = 2(2M − 1)s − ρσ2
ϵ ) is

unaffected. This implies that as δ falls the straight line − 1
2 − λπ̄ rotates clock-wise and in the

limit becomes vertical. This implies that for δ ↓ 0 π̄ converges to zero. In the expression for ϑ̄

(ϑ̄ = απ̄s
ln δ− s (1+ M)− γ π̄

) for δ ↓ 0 the denominator converges to −∞, while the numerator converges

to 0. 2

Proof of Proposition 6.

As before notice that for s ↓ 0 γ (γ = 2(2M − 1)s − ρσ2
ϵ ) converge to −ρσ2

ϵ , while λ (λ = 2(1+ M)s −
ln δ) converges to − ln δ. Thus, π̄ becomes the negative root of −ρσ2

ϵ π̄2 − ln δπ̄ + 1
2 = 0. This

implies that both sπ̄ and ϑ̄ converge to zero for s ↓ 0 and hence that u(t) = p(t), while the stationary

price converges to p∗ = α
1+M . 2

Proof of Proposition 7.

Recall from the Proof of Proposition 5 that in the static formulation, if the M firms are price takers,

then pcom = α
1+M . In addition, it is immediate to see that if they are strategic pstrat = 2α

1+M .

This implies that pstrat = (1 + S)pcom, with S = M
2+M . We have seen in the proof of Lemma 5 that

w = sπ̄ solves equation Aw2 + Bw + 1
2 = 0. Given the expressions for A and B, it is immediate

to see that for s ↑ ∞ this equation converges to 2(2M − 1)x2 + 2(1 + M)x + 1
2 = 0, which implies

that lims↑∞ w = x ≡ − 1+M−Γ
2(2M−1) , with Γ = [(1 + M)2 − (2M − 1)]1/2 = [M2 + 2]1/2. In the proof of
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−1
2 − λπ

γ π2

−1
2 − λ′π

π̄ π̄′b b

π
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2

Figure A.5: The stationary value π̄ for γ positive. For any choice of M there are two interceptions between the
straight line and the parabola. That closer to the origin corresponds to π̄+ = − 1

2
λ
γ + 1

2
D
γ . When δ falls λ rises

to λ′, while γ is unaffected. This means that the straight line rotates clockwise, while the parabola does not
move. The stationary value moves up to π̄′. For δ ↓ 0 λ ↑ ∞ and the straight line becomes infinitely steep.

Proposition 2 we have seen that

p∗ =
α

1 + Mκ̄

(
1 +

2Ms w
ln δ − s(1 + M) − 2(2M − 1)sw + ρσ2

ϵ

)
.

For s ↑ ∞ it converges to

lim
s↑∞

p∗ =
α

lims↑∞ 1 + Mκ̄

(
1 + M + 2(M − 1)x
(1 + M) + 2(2M − 1)x

)
.

Consider that κ̄ = 1 + 2sπ̄ = 1 + 2w. Then lims↑∞ κ̄ = 1 + 2x. This implies that lims↑∞ 1 + Mκ̄ =
(1+M)(M−1)

2M−1 + M
2M−1 Γ. In addition, 1 + M + 2(2M − 1)x = Γ and 1 + M + 2(M − 1)x = (1+M)M

2M−1 +
M−1

2M−1 Γ. Substituting in the expression for lims↑∞ p∗ we find that

lim
s↑∞

p∗ =
α

Γ

(
(1 + M)M + (M − 1)Γ
(1 + M)(M − 1) + MΓ

)
=

α

(1 + M)Λ

(
M + (M − 1)Λ
(M − 1) + MΛ

)
, where Λ =

Γ
1 + M

.

This implies that lims↑∞ p∗ = pcomp

(
M+(M−1)Λ

Λ[(M−1) + MΛ]

)
= pcomp(1 + R) with R = M(1−Λ2)

Λ[M+(M−1)Λ]
. Notice

that 0 < Λ < 1 so that 0 < R. Now for M = 1 R = 1
3 = S, so that lims↑∞ p∗ = 2

3 α = pstrat, while

for M ≥ 2 0 < R < S, so that pcomp < lims↑∞ p∗ < pstrat. In fact, the condition R ≤ S corresponds

to the inequality 2M2 + M − 2 ≤ M3. For M = 1 left and right hand sides are equal, so that R = S,

while for M ≥ 2 the left hand side is smaller than the right hand side, so that R < S. 2
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Proof of Proposition 8.

It is sufficient to notice that for s ↑ ∞ κ̄ → 1 + 2x, where as shown in the proof of Proposition 7 x is

function only of the number of firms, M, while ϑ̄ → 0. To prove the latter notice that ϑ̄ = αw
Q and that

when s ↑ ∞, w → x, while Q ↑ ∞. In fact, Q = 1
2D with D = [λ2 − 2γ]1/2. Given the expression for

λ and γ for s very large D ≈ 2s(2 + M2)1/2. 2
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Supplementary Material

B.1 Stability of the Steady State.

It is interesting to determine the properties of the dynamics of the price of the non-storable good. In

this respect we have the following result.

Lemma 8 For any parametric constellation the steady state price p∗ is stable.

Proof. In the equation for the price dynamics, dp(t)
dt = αs − Ap(t) + 2s2Mϑ̄ + ϵ(t), the coefficient A =

s(1+ Mκ̄) is positive. Then, for ϵ(t) ≡ 0 this dynamic system, dp(t)
dt = α s − A p(t) + 2 s2 M ϑ̄ + ϵ(t),

possesses a stable steady state for p∗ = αs+ 2M s2ϑ̄
A . In fact, we can define p̂(t) ≡ p(t)− p∗, which

equivalently can be written as p(t) = p̂(t) + p∗. Given that −Ap∗ + 2M s2 ϑ̄ + αs = 0, this implies

that
dp(t)

dt
= − A ( p̂(t) + p∗) + 2M s2 ϑ̄ + αs + ϵ(t) = − A p̂(t) + ϵ(t)) .

In the end, we conclude that as A > 0

Et

[
dp(t)

dt

]
> (< ) 0 ⇐⇒ p̂(t) < (> ) 0 ,

so that the steady state is stable. This is because when p̂(t) is positive, so that the price is above its

steady state value, Et

[
dp(t)

dt

]
is negative, that is the price is expected to fall (and viceversa if p̂(t) is

negative). This entails mean reversion of the price to the steady state value. 2
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