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Existence and uniqueness of
reflecting diffusions in cusps

Cristina Costantini* Thomas G. Kurtz†

Abstract

We consider stochastic differential equations with (oblique) reflection in a 2-dimen-
sional domain that has a cusp at the origin, i.e. in a neighborhood of the origin has
the form {(x1, x2) : 0 < x1 ≤ δ0, ψ1(x1) < x2 < ψ2(x1)}, with ψ1(0) = ψ2(0) = 0,
ψ′

1(0) = ψ′
2(0) = 0.

Given a vector field g of directions of reflection at the boundary points other than
the origin, defining directions of reflection at the origin gi(0) := limx1→0+ g(x1, ψi(x1)),
i = 1, 2, and assuming there exists a vector e∗ such that 〈e∗, gi(0)〉 > 0, i = 1, 2, and
e∗1 > 0, we prove weak existence and uniqueness of the solution starting at the origin
and strong existence and uniqueness starting away from the origin.

Our proof uses a new scaling result and a coupling argument.
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1 Introduction

In this work we prove existence and uniqueness of reflecting diffusions in 2- dimen-
sional domains with cusps. By saying that the domain has a cusp, we mean that in a
neighborhood of some point, which we take to be the origin, the domain, O, has the form

{(x1, x2) ∈ O : 0 < x1 ≤ δ0} = {(x1, x2) : 0 < x1 ≤ δ0, ψ1(x1) < x2 < ψ2(x1)},

where we assume ψ1 and ψ2 are C1 with

ψ1(0) = ψ2(0) = 0, ψ′
1(0) = ψ′

2(0) = 0,
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Reflecting diffusions in cusps

and, in general, the boundary is C1 away from the origin.
The direction of reflection, g, is assumed Lipschitz continuous on the smooth part of

the boundary, with a uniformly positive scalar product with the inward normal. At the
tip,

gi(0) := lim
x1→0+

g(x1, ψi(x1)), i = 1, 2,

is assumed to exist, and for some e∗ ∈ R2,

〈e∗, g〉 > 0, ∀g ∈
{[

1

0

]
, g1(0), g2(0)

}
.

See Section 2 for the complete formulation of our assumptions.
In the case of a domain O of the form

O := {(x1, x2) : 0 < x1, ψ1(x1) := −xβ1

1 < x2 < ψ2(x1) := xβ2

1 },

(where either β1 = β2 > 1 or β1 > 2β2 − 1, β2 > 1), under the assumption that on each of
{(x1, x2) : 0 < x1, x2 = −xβ1

1 } and {(x1, x2) : 0 < x1, x2 = xβ2

1 } the direction of reflection
forms a constant angle with the inward normal, weak existence and uniqueness of
reflecting Brownian motions have been exhaustively studied by [8]. [7] gives a complete
characterization of the cases in which, in the above setup, the reflecting Brownian motion
is a semimartingale. For general continuous ψ1, ψ2 (ψ1(0) = ψ2(0) = 0, ψ2(x1) > ψ1(x1)

for every x1 > 0), the case when the direction of reflection on {(x1, x2) : 0 < x1, x2 =

ψ1(x1)} and {(x1, x2) : 0 < x1, x2 = ψ2(x1)} is given by constant, opposite vertical
vectors - a case when the process is not a semimartingale - has been studied by [2] and
[1]. In higher dimension, normally reflecting diffusions in domains with Hölder cusps
have been studied by [10] by analytical techniques.

Here we characterize the reflecting diffusion as the solution of a stochastic differential
equation with reflection (SDER), which will always be a semimartingale. In particular,
we recover the results by [8] and [7] for the cases when the process is a semimartingale,
except for the case when g1(0) and g2(0) point at each other and β2 < 2.

First, we show that our conditions imply that, starting away from the origin, the
origin is never reached. Therefore we easily obtain strong existence and uniqueness of
the reflecting diffusion starting away from the origin from known results on existence
and uniqueness in smooth domains (Section 3).

Moreover, the fact that, starting away from the origin, the reflecting diffusion is well
defined for all times allows us to obtain a weak solution of the SDER starting at the
origin as the limit of solutions starting away from the origin (Section 4.1). To this end,
we employ a random time change of the SDER (the same that is used in [13] to obtain
a solution of a patchwork martingale problem from a solution of the corresponding
constrained martingale problem) that makes it particularly simple to prove relative
compactness of the processes.

The main result of this paper, however, is weak uniqueness of the solution to the
SDER starting at the origin (Section 4.3). Our assumptions on the direction of reflection
guarantee that any solution starting at the origin immediately leaves it. Since the
distribution of a solution starting away from the origin is uniquely determined, the
distribution of a solution starting at the origin is determined by its exit distribution from
an arbitrarily small neighborhood of the origin. The crucial ingredient that allows us
to understand the behavior of the process near the origin is a scaling result (Section
4.2). Combined with an adaptation of [16], this scaling result allows us to use a coupling
argument to show that indeed all solutions starting at the origin must have the same
exit distribution from every neighborhood of the origin. For a more detailed discussion

EJP 23 (2018), paper 84.
Page 2/21

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP204
http://www.imstat.org/ejp/


Reflecting diffusions in cusps

of our approach, see the beginning of Section 4. Some technical lemmas that are needed
in our argument are proved in Section 5. The Feller property is proved in Section 4.4.

The most general uniqueness result for SDER in piecewise C1 domains can be found
in [9]. Reflecting diffusions in piecewise smooth domains are characterized as solutions
of constrained martingale problems in [13], and [4] reduces the problem of proving
uniqueness for the solution of a constrained martingale problem (as well as of a mar-
tingale problem in a general Polish space) to that of proving a comparison principle for
viscosity semisolutions of the corresponding resolvent equation. None of these results
applies to the situation we are considering here. In particular, [9] makes the assumption
that the convex cone generated by the normal vectors at each point does not contain any
straight line, which is violated at the tip of the cusp.

Finally, we wish to mention that our work was partly motivated by diffusion approxi-
mations for some queueing models where domains with cusplike singularities appear
(see e.g. [11] and [12]). These models are in higher dimension, but this paper is intended
as a first contribution in the direction of understanding reflecting diffusions in such
domains.

1.1 Notation

〈·, ·〉 denotes the scalar product of two vectors.
For any matrixM (or vector v),MT (vT ) denotes its transpose.
trM denotes the trace of a matrix.

1E is the indicator function of a set E.
Br(x) ⊆ Rd is the ball of radius r centered at x and Sr(x) ⊆ Rd is the sphere of radius r
centered at x.

| · | denotes indifferently the absolute value of a number, the norm of a vector or of a
matrix, while ‖ · ‖ denotes the supremum norm of a bounded, real valued function.

For f : Rd1 → Rd2 with first order partial derivatives, Df denotes the Jacobian matrix
of f .
For f : Rd → R with second order partial derivatives D2f denotes the Hessian matrix.

For an open set E ⊆ Rd, Ci(E) denotes the set of real valued functions defined on E
with continuous partial derivatives up to the order i. For E closed, Ci(E) denotes the set
of real valued functions defined on an open neighborhood of E that admit continuous
partial derivatives up to the order i.

For a complete, separable, metric space E, CE [0,∞) is the space of E valued, contin-
uous functions on [0,∞).

L(·) denotes the law (distribution) of a random variable or a stochastic process.
The total variation distance between two probability measures µ1, µ2 ∈ P(E) on a
measurable space (E,B) is denoted ‖µ1 − µ2‖TV , that is

‖µ1 − µ2‖TV = sup
A∈B

|µ1(A)− µ2(A)|.

Throughout the paper c and C denote positive constants depending only on the data of
the problem. When necessary, they are indexed c0, c1, ..., C0, C1, ... and the dependence
on the data or other parameters is explicitly pointed out.

2 Formulation of the problem and assumptions

We are interested in studying diffusion processes with oblique reflection in the closure
of a simply connected 2-dimensional domain O ⊂ [0,∞)×R with a boundary ∂O that is
C1 except at a single point (which we will take to be the origin 0), where the domain has
a cusp. More precisely O satisfies the following.
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Reflecting diffusions in cusps

Condition 2.1.

(a) O is a bounded, simply connected domain in [0,∞)×R with 0 ∈ ∂O.

(b) ∂O is C1except at 0.

(c) There exists a δ0 > 0 and ψ1, ψ2 ∈ C1(R) with ψ1 ≤ ψ2 and

ψ1(0) = ψ2(0) = 0, ψ′
1(0) = ψ′

2(0) = 0

such that

{(x1, x2) ∈ O : x1 ≤ δ0} = {(x1, x2) : 0 < x1 ≤ δ0, ψ1(x1) < x2 < ψ2(x1)},

and

lim
x1→0+

ψ1(x1)

ψ2(x1)− ψ1(x1)
= L ∈ (−∞,∞).

Remark 2.2. The last requirement in Condition 2.1(c) is used in the scaling of Section
4.2, specifically in (4.13) and (4.14). Heuristically, it ensures that the cusp is not “too
narrow”.

For x ∈ ∂O − {0}, let n(x) denote the unit inward normal vector at x. The direction
of reflection is assigned at all points of the boundary except the origin and is given by a
unit vector field g verifying the following condition.

Condition 2.3.

(a) g : ∂O − {0} → R2 is locally Lipschitz continuous and satisfies

inf
x∈∂O−{0}

〈g(x), n(x)〉 > 0.

The mappings
x1 ∈ (0, δ0] → gi(x1) := g(x1, ψi(x1)), i = 1, 2,

are Lipschitz continuous and hence the limits

gi(0) := lim
x1→0+

g(x1, ψi(x1)), i = 1, 2,

exist.

(b) Let G(0) be the convex cone generated by{[
1

0

]
, g1(0), g2(0)

}
.

There exists e∗ ∈ R2 such that

〈e∗, g〉 > 0, ∀g ∈ G(0).

Of course, without loss of generality, we can suppose that |e∗| = 1.

Remark 2.4. Condition 2.3(b) can be reformulated as follows. In a neighborhood of the
origin, we can view O as being the intersection of three C1 domains,

{x : x2 > ψ1(x1)}, {x : x2 < ψ2(x1)}, {x : x1 > 0},

with unit inward normal vectors at the origin, respectively,

n1(0) =

[
0

1

]
, n2(0) =

[
0

−1

]
, n0(0) =

[
1

0

]
.

EJP 23 (2018), paper 84.
Page 4/21

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP204
http://www.imstat.org/ejp/


Reflecting diffusions in cusps

Then, letting the normal cone at the origin, N(0), be the closed, convex cone generated
by {n1(0), n2(0), n0(0)}, Condition 2.3(b) is equivalent to requiring that there exists
e∗ ∈ N(0) such that

〈e∗, g〉 > 0, ∀g ∈ G(0),

where we can think of G(0) as the closed, convex cone generated by the directions of
reflection at the origin for each of the three domains (letting the direction of reflection
for the domain {x : x1 > 0} be g0(0) := n0(0)). In other terms, Condition 2.3(b) is the
analog of the condition usually assumed in the literature for polyhedral domains (see e.g.
[18], [17] or [6]). Note that, in contrast, the condition that there exists e∗∗ ∈ G(0) such
that

〈e∗∗, n〉 > 0, ∀n ∈ N(0),

can never be satisfied at a cusp, because n2(0) = −n1(0).
As in the literature on polyhedral domains, Condition 2.3(b) ensures existence of a

semimartingale reflecting diffusion starting at the origin (see the proof of Theorem 4.1).

Remark 2.5. Note that, under Condition 2.3,

[
1

0

]
can be expressed as a positive linear

combination of g1(0) and g2(0), so that G(0) coincides with the closed, convex cone
generated by {

g1(0), g2(0)
}
.

We seek to characterize the diffusion process with direction of reflection g as the
solution of a stochastic differential equation driven by a standard Brownian motion W :

X(t) = X(0) +

∫ t

0

b(X(s))ds +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

γ(s)dΛ(s), t ≥ 0,

γ(t) ∈ G1(X(t)), dΛ− a.e., t ≥ 0, (2.1)

X(t) ∈ O,
∫ t

0

1∂O(X(s))dΛ(s) = Λ(t), t ≥ 0,

where Λ is nondecreasing, G1(0) is the convex hull of g1(0) and g2(0) and for x ∈ ∂O−{0}
G1(x) := {g(x)}, and γ is almost surely measurable.

We make the following assumptions on the coefficients.

Condition 2.6.

a) σ and b are Lipschitz continuous on O.

b) (σσT )(0) is nonsingular.

We will denote

Af(x) := Df(x)b(x) +
1

2
tr((σσT )(x)D2f(x)). (2.2)

Definition 2.7. A stochastic process X is compatible with a Brownian motion W if for
each t ≥ 0, W (t + ·) − W (t) is independent of FW,X

t , where {FW,X
t } is the filtration

generated by W and X.

Definition 2.8. Given a standard Brownian motion W and X(0) ∈ O independent of W ,
X is a strong solution of (2.1) if X is adapted to the filtration generated by X(0) and W
and the equation is satisfied for some γ and Λ. (Note that (2.1) immediately implies that∫ t
0
γ(s)dΛ(s) is adapted to {FW,X

t } although γ and Λ need not be.)
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Reflecting diffusions in cusps

(X,W ), defined on some probability space, is a weak solution of (2.1) if W is a
standard Brownian motion, X is compatible with W , and the equation is satisfied for
some γ and Λ.

Given an initial distribution µ ∈ P(O), weak uniqueness or uniqueness in distribution
holds if for all weak solutions with P{X(0) ∈ ·} = µ, X has the same distribution on
CO[0,∞).

Strong uniqueness holds if for any standard Brownian motion W and weak solutions
(X,W ), (X̃,W ) such that X(0) = X̃(0) a.s. and (X, X̃) is compatible with W , X = X̃ a.s.

Remark 2.9. Of course, any strong solution is a weak solution. Existence of a weak
solution and strong uniqueness imply that the weak solution is a strong solution (cf. [19]
and [14]).

For processes starting away from the tip, strong existence and uniqueness follows
from results of [9] and the fact that, under our conditions, the solution never hits the tip.
For processes starting at the tip, we only prove weak existence and uniqueness.

3 Strong existence and uniqueness starting at x0 6= 0

Our first result is that, for every x0 ∈ O − {0}, (2.1) has a unique strong solution with
X(0) = x0, well-defined for all times. In fact, by [9], for each n > 0, the solution, X, is
well-defined up to

τn := inf{t ≥ 0 : X1(t) ≤
1

n
}, (3.1)

so the proof consists in showing that, almost surely,

lim
n→+∞

τn = +∞. (3.2)

We will do this by means of a modification of the Lyapunov function used in Section 2.2
of [18].

Theorem 3.1. Let W be a standard Brownian motion. Then, for every x0 ∈ O − {0},
there is a unique strong solution to (2.1) with X(0) = x0.

Proof. As anticipated above, by [9] there is one and only one stochastic process X that
satisfies (2.1) for t < limn→+∞ τn, where τn is defined by (3.1). Therefore, we only have
to prove (3.2). Define

V (x) := |(σσT )(0)−1/2x|−p cos(ϑ((σσT )(0)−1/2x) + ξ),

where ϑ(z) ∈ (−π, π] is the angular polar coordinate of z, p ∈ (0, 1) and

ξ := ϑ((σσT )(0)1/2e∗)− 2ϑ0, ϑ0 := lim
x∈O−{0}, x→0

ϑ((σσT )(0)−1/2x),

(notice that −π
2 < ϑ0 <

π
2 ). Then one can check that, if p is taken sufficiently close to 1,

lim
x∈O−{0},x→0

V (x) = +∞

lim
x∈O−{0},x→0

AV (x) = −∞,

lim
x∈∂O−{0},x→0

DV (x)g(x) = −∞.

Therefore there exists 0 < δ ≤ δ0 such that

inf
x∈O−{0},x1≤δ

V (x) > 0,
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Reflecting diffusions in cusps

sup
x∈O−{0},x1≤δ

AV (x) < 0

and
sup

x∈∂O−{0},x1≤δ
DV (x)g(x) < 0.

Let
αδ = inf{t ≥ 0 : X1(t) ≤ δ/2}

and
βδ = inf{t ≥ αδ : X1(t) ≥ δ}.

Without loss of generality, we can assume that x01 > δ.
By Itô’s formula, for n−1 < δ/2,

V (X(t ∧ τn ∧ βδ) = V (X(t ∧ αδ)) +
∫ t∧τn∧βδ

t∧αδ

AV (X(s))ds

+

∫ t∧τn∧βδ

t∧αδ

DV (X(s))σ(X(s))dW (s) +

∫ t∧τn∧βδ

t∧αδ

DV (X(s))g(s)dΛ(s)

≤ V (X(t ∧ αδ)) +
∫ t∧τn∧βδ

t∧αδ

DV ((X(s))σ(X(s))dW (s).

Hence, by multiplying by 1{αδ<∞}, taking expectations and letting t go to infinity,

E[V (X(τn ∧ βδ))1{αδ<∞}] ≤ E[V (X(αδ))1{αδ<∞}].

Thus,

inf
x∈O, x1=1/n

V (x)P{τn < βδ|αδ <∞} + inf
x∈O,x1=δ

V (x)P{βδ < τn|αδ <∞}

≤ sup
x∈O,x1=δ/2

V (x).

Consequently, if X1 hits δ/2, then, with probability one, it hits δ before it hits 0. In
particular, with probability one, X1 never hits 0.

Remark 3.2. Theorem 3.1 implies existence and uniqueness of a strong solution to
(2.1) for every initial condition such that P(X(0) ∈ O − {0}) = 1 which in turn implies
existence and uniqueness in distribution of a weak solution to (2.1) for every initial
distribution µ such that µ(O − {0}) = 1.

4 Weak existence and uniqueness starting at x0 = 0

In this section we prove weak existence and uniqueness for the solution of (2.1)
starting at the origin.

In order to prove existence (Theorem 4.1), we start with a sequence of solutions
to (2.1) starting at xn ∈ O − {0}, where {xn} converges to the origin. For every n, we
consider a random time change of the solution, the same time change that is used in
[13] to construct a solution to a patchwork martingale problem from a solution to the
corresponding constrained martingale problem. The time changed processes and the
time changes are relatively compact, and any limit point satisfies the time changed
version of (2.1) with X(0) = 0. The key point of the proof is to show that the limit time
change is invertible. The process obtained by the inverse limit time change is a weak
solution to (2.1) defined for all times.

Weak uniqueness of the solution of (2.1) starting at the origin (Theorem 4.7 below)
is the main result of this paper. Our proof takes inspiration from the one used in
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Reflecting diffusions in cusps

[17] for reflecting Brownian motion in the nonnegative orthant. The argument of that
paper, in the case when, starting away from the origin, the origin is not reached, can
essentially be reformulated as follows: First, it is shown that, for any solution of the
SDER starting at the origin, the exit time from Bδ(0), δ > 0, is finite and tends to
zero as δ → 0, almost surely, and that any two solutions of the SDER, starting at
the origin, that have the same exit distributions from Bδ(0) for all δ > 0 sufficiently
small, have the same distribution; next it is proved that, for any ξ ∈ ∂B1(0), ξ in the
nonnegative orthant, O, letting Xδξ be the solution of the SDER starting at δξ and τ2δ be
its exit time from B2δ(0), P

(
Xδξ(τ2δ)/(2δ) ∈ ·

)
is independent of δ and hence defines the

transition kernel of a Markov chain on O ∩ (∂B1(0)). This Markov chain is shown to be
ergodic and that in turn ensures that, for any initial distribution on O ∩

(
∂Bδ/2n(0)

)
, the

exit distribution from Bδ(0) converges, as n goes to infinity, to a uniquely determined
distribution. Consequently, any two solutions of the SDER starting at the origin have the
same exit distributions from Bδ(0).

The first part of our argument is the same as in [17], except that we find it more
convenient to use the exit distribution from {x : x1 < δ} rather than from Bδ(0). We
prove that, for any solution of (2.1) starting at the origin, the exit time from {x : x1 < δ},
δ > 0, is finite and tends to zero as δ → 0, almost surely (Lemma 4.2), and we construct
a sequence, {δn}, of positive numbers decreasing to zero such that any two solutions of
(2.1) starting at the origin have the same exit distributions from {x : x1 < δn} which in
turn implies the solutions have the same distribution (Lemma 4.6). This construction
cannot be obtained by the arguments used in [17]. Instead, it is achieved by a coupling
argument based on the rescaling result of Section 4.2, together with an adaptation of
[16] (Lemma 5.3).

4.1 Existence

Theorem 4.1. There exists a weak solution to (2.1) starting at x0 = 0.

Proof. Consider a sequence {xn} ⊆ O−{0} that converges to the origin. Let (Xn, γn,Λn)

satisfy (2.1) starting at xn. Define

Kn
0 (t) := inf{s ≥ 0 : s+ Λn(s) > t},

and set

Y n(t) := Xn(Kn
0 (t)), Mn(t) :=W (Kn

0 (t)), Kn
1 (t) := Λn(Kn

0 (t)), ηn(t) := γn(Kn
0 (t)).

Then Kn
0 ,K

n
1 are nonnegative and nondecreasing,

Kn
0 (t) +Kn

1 (t) = t, t ≥ 0,

and, by (2.1),

Y n(t) = xn +

∫ t

0

σ(Y n(s))dMn(s) +

∫ t

0

b(Y n(s))dKn
0 (s) +

∫ t

0

ηn(s)dKn
1 (s),

(4.1)

Y n(t) ∈ O, ηn(t) ∈ G1(Y
n(t)), dKn

1 − a.e.,

∫ t

0

1∂O(Y
n(s))dKn

1 (s) = Kn
1 (t),

whereMn is a continuous, square integrable martingale with quadratic variation

[Mn](t) = Kn
0 (t)I, t ≥ 0.

EJP 23 (2018), paper 84.
Page 8/21

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP204
http://www.imstat.org/ejp/


Reflecting diffusions in cusps

With reference to Theorem 5.4 in [15], let

Un(t) =

∫ t

0

ηn(s)dKn
1 (s).

Since Un, Kn
0 , and K

n
1 are all Lipschitz continuous with Lipschitz constants bounded by

1, {(Y n, Un,Mn,Kn
0 ,K

n
1 )} is relatively compact in distribution in the appropriate space

of continuous functions. Taking a convergent subsequence with limit (Y, U,M,K0,K1),
Y satisfies

Y (t) = Y (0) +

∫ t

0

σ(Y (s))dM(s) +

∫ t

0

b(Y (s))dK0(s) + U(t),

where M(t) = W (K0(t)) for a standard Brownian motion W . Since |Un(s) − Un(t)| ≤
|Kn

1 (s)−Kn
1 (t)|, the same inequality holds for U and K1 and hence

U(t) =

∫ t

0

η(s)dK1(s).

It remains only to characterize η.
Invoking the Skorohod representation theorem, we assume that (Y n, Un,Mn,Kn

0 ,K
n
1 )

→ (Y, U,M,K0,K1) uniformly over compact time intervals, almost surely. Then the
argument of Theorem 3.1 of [3] yields that

η(t) ∈ G1(Y (t)), dK1 − a.e.,

∫ t

0

1∂O(Y (s))dK1(s) = K1(t). (4.2)

Finally, let us show that K0 is invertible and K−1
0 is defined on all [0,∞). Suppose, by

contradiction, that K0 is constant on some time interval [t1, t2], 0 ≤ t1 < t2. Then, since

K0(t) +K1(t) = t, (4.3)

we have
K1(s)−K1(t) = s− t, for t1 ≤ t < s ≤ t2. (4.4)

In particular, by (4.2), Y (t) ∈ ∂O for all t ∈ [t1, t2). If, for some t ∈ [t1, t2), Y (t) ∈ ∂O−{0},
then for s > t close enough to t, we have Y (r) ∈ ∂O − {0}, r ∈ [t, s] and, by Condition
2.3(a),

inf
r∈[t,s]

〈g(Y (r)), n(Y (t))〉 > 0.

Hence

〈Y (s)− Y (t), n(Y (t))〉 =
∫ s

t

〈g(Y (r)), n(Y (t))〉dK1(r) > 0,

which implies, for s close enough to t,

Y (s) ∈ O,

and this contradicts (4.4). On the other hand, if Y (t) = 0 for all t ∈ [t1, t2), then,∫ t

t1

η(r)dK1(r) = 0,

while Condition 2.3(b) gives

〈
∫ t

t1

η(r)dK1(r), e
∗〉 ≥ inf

G1(0)
〈g, e∗〉(t− t1) > 0.
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Therefore K0 is strictly increasing.
In order to see that K0 diverges as t goes to infinity, we can use the argument of

Lemma 1.9 of [13], provided there is a C2 function ϕ such that

inf
x∈∂O

inf
g∈G1(x)

Dϕ(x)g > 0. (4.5)

Let e∗ be the vector in Condition 2.3(b), and let r∗ > 0 be such that

inf
x∈∂O, 〈e∗,x〉≤2r∗

inf
g∈G1(x)

〈e∗, g〉 > 0.

By Condition 2.1(b),

{x ∈ O : 〈e∗, x〉 ≥ r∗} = {x : Ψ(x) > 0, 〈e∗, x〉 ≥ r∗},

for some C1 function Ψ such that infx: Ψ(x)=0 |DΨ(x)| > 0. Then (see, e.g., [5], Lemma
7.6) there exists a C2 function Φ such that

inf
x∈∂O, 〈e∗,x〉≥r∗

DΦ(x)g(x) > 0.

Of course we can always assume

inf
x∈∂O, 〈e∗,x〉≥r∗

Φ(x) ≥ 2r∗.

Therefore the function

ϕ(x) := 〈e∗, x〉χ( 〈e
∗, x〉 − r∗

r∗
) + [1− χ(

〈e∗, x〉 − r∗

r∗
)]Φ(x),

where χ : R → [0, 1] is a smooth, nonincreasing function such that χ(r) = 1 for r ≤ 0,
χ(r) = 0 for r ≥ 1, satisfies (4.5).

We conclude our proof by setting

X(t) := Y (K−1
0 (t)), Λ(t) := K1(K

−1
0 (t)), γ(t) := η(K−1

0 (t)).

It can be easily checked that X, Λ and γ verify (2.1) with x0 = 0.

The above argument shows that the solution leaves the tip immediately and the
results of the previous section show that the solution never returns. We can say more
about the initial behavior of a solution.

For every solution X of (2.1), let

τXδ = inf{t ≥ 0 : X1(t) ≥ δ}, δ > 0. (4.6)

Lemma 4.2. There exists C > 0 such that for all δ sufficiently small and all solutions, X,
of (2.1) starting at the origin,

E[τXδ ] ≤ Cδ2.

Proof. Here X is fixed, so we will omit the superscript X. Let e∗ be the vector in
Condition 2.3(b) and

f(x) =
1

2
〈e∗, x〉2.

Then, by Ito’s formula,

E[f(X(t ∧ τδ))] = E
[ ∫ t∧τδ

0

Af(X(s))ds+

∫ t∧τδ

0

〈e∗, X(s)〉〈e∗, γ(s)〉dΛ(s)
]
.
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Observe that

lim
x∈O−{0}, x→0

|x|
x1

= 1, lim
x∈O−{0}, x→0

〈e∗, x〉
e∗1x1

= 1,

and hence, for δ sufficiently small,

|X(t ∧ τδ)|2 ≤ 4δ2,∫ t∧τδ

0

〈e∗, X(s)〉〈e∗, γ(s)〉dΛ(s) ≥ 1

2

∫ t∧τδ

0

e∗1X1(s)〈e∗, γ(s)〉dΛ(s) ≥ 0,

where the last inequality follows from Condition 2.3(b). In addition

lim
x∈O−{0}, x→0

Af(x) = lim
x∈O−{0}, x→0

(
〈e∗, x〉〈e∗, b(x)〉+ 1

2
(e∗)T (σσT )(x)e∗

)
=

1

2
(e∗)T (σσT )(0)e∗.

Therefore, for δ sufficiently small,

2δ2 ≥ E[f(X(t ∧ τδ))] ≥
1

4
(e∗)T (σσT )(0)e∗E[t ∧ τδ],

which yields the assertion by taking the limit as t goes to infinity.

Remark 4.3. By looking at the proof of Lemma 4.2, we see that we have proved, more
generally, that, for every x0 ∈ O with x01 < δ, for every solution X of (2.1) starting at x0,

E[τXδ ] ≤ C
(
4δ2 − 〈e∗, x0〉2

)
.

With reference to Condition 2.1(c) and Lemma 4.2, without loss of generality, in what
follows we will assume that δ0 satisfies the following:

Condition 4.4.

(a)

sup
0≤x1≤δ0

|ψ′
1(x1)|+ |ψ′

2(x1)| <
1

2
, (4.7)

(b) For x1 ≤ δ0, (σσT )(x) is strictly positive definite and

sup
x∈O, x1≤δ0

|σ(x)−1| < 2|σ(0)−1|, sup
x∈O, x1≤δ0

|σ(x)− σ(0)| < 1

2
|σ(0)−1|−1. (4.8)

(c) There exists C > 0 such that for 0 < δ ≤ δ0 and all solutions of (2.1) starting at 0,

E[τXδ ] ≤ Cδ2.

4.2 Scaling near the tip

The following scaling result is central to our argument.
Let δ0 satisfy Condition 4.4, and define {δn} recursively by

qn := (ψ2 − ψ1)(δn), δn+1 := δn − qn, n ≥ 0. (4.9)

Then δn > 0 for all n, and {δn} is decreasing and converges to zero. In addition,

lim
n→∞

qn
δn

= 0. (4.10)
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Lemma 4.5. Let {xn} ⊆ O − {0}, be such that {x̄n} :=
{
q−1
n (xn1 − δn+1, x

n
2 )
}
converges

to a point x̄0, and, for each n, let Xn be a solution of (2.1) starting at xn.
Then the sequence of processes{

X̄n
}
:=

{
q−1
n

(
Xn

1 (q
2
n·)− δn+1, X

n
2 (q

2
n·)

)}
(4.11)

converges in distribution to the reflecting Brownian motion in (−∞,∞) × [L,L + 1]

with directions of reflection g1(0) on (−∞,∞) × {L} and g2(0) on (−∞,∞) × {L + 1},
respectively, covariance matrix (σσT )(0) and initial condition x̄0 (L being the constant in
Condition 2.1(c)).

Proof. X̄n is a solution of the rescaled SDER

X̄n(t) = x̄n + qn

∫ t

0

b((qnX̄
n
1 (s) + δn+1, qnX̄

n
2 (s)))ds (4.12)

+

∫ t

0

σ((qnX̄
n
1 (s) + δn+1, qnX̄

n
2 (s)))dW (s)

+

∫ t

0

γ̄n(s)dΛ̄n(s), t ≥ 0,

and

X̄n(t) ∈ Ōn, γ̄n(t) ∈ G1(X̄
n(t)), dΛ̄n − a.e., Λ̄n(t) =

∫ t

0

1∂Ōn(X̄n(s))dΛ̄n(s), t ≥ 0,

where

Ōn := {x : (qnx1 + δn+1, qnx2) ∈ O}, ∂Ōn = {x : (qnx1 + δn+1, qnx2) ∈ ∂O}.

Observe that, by the last requirement in Condition 2.1(c),

Ōn → ∆ := (−∞,∞)× [L,L+ 1]

in the sense that the boundaries converge uniformly on compact subsets of (−∞,∞),
that is,

lim
n→∞

ψ1(qnx1 + δn+1)

qn
= lim
n→∞

ψ1(qn(x1 − 1) + δn)

qn
= lim
n→∞

ψ1(δn)

qn
= L, (4.13)

(notice that for n sufficiently large, 0 < qn(x1 − 1) + δn < δ0), and analogously

lim
n→∞

ψ2(qnx1 + δn+1)

qn
= lim
n→∞

ψ2(δn)

qn
= L+ 1. (4.14)

The second term on the right of (4.12) converges to zero. By applying the same
time-change argument as in Theorem 4.1, we see that

{
X̄n

}
is relatively compact and

(qnX̄
n
1 (s) + δn+1, qnX̄

n
2 (s)) → 0.

Consequently,
{
X̄n

}
converges in distribution to X̄ satisfying

X̄(t) = x̄0 + σ(0)W̄ (t) + g1(0)ΛL(t) + g2(0)ΛL+1(t), (4.15)

where W̄ is a standard Brownian motion, X̄(t) ∈ ∆, ΛL is nondecreasing and increases
only when X̄2 = L, and ΛL+1 is nondecreasing and increases only when X̄2 = L + 1,
that is, X̄ is a reflecting Brownian motion in (−∞,∞) × [L,L + 1] with directions of
reflection g1(0) on (−∞,∞)×{L} and g2(0) on (−∞,∞)×{L+1}, respectively, covariance
matrix (σσT )(0) and initial condition x̄0. Then the thesis follows from the fact that the
distribution of X̄ is uniquely determined.
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4.3 Uniqueness

Lemma 4.6. Suppose any two weak solutions, X, X̃, of (2.1) starting at the origin satisfy

L(X(τXδn)) = L(X̃(τ X̃δn)), (4.16)

for all n sufficiently large. Then the solution of (2.1) starting at the origin is unique in
distribution.

Proof. For each n, consider the stochastic processes defined pathwise as

X(τXδn + ·), X̃(τ X̃δn + ·).

Since, starting away from 0, we have strong and weak uniqueness, if (4.16) holds, we
have

L(X(τXδn + ·)) = L(X̃(τ X̃δn + ·)).

On the other hand, τXδn and τ X̃δn converge to zero, as n→ ∞, almost surely. Therefore we

have X(τXδn + ·) → X and X̃(τ X̃δn + ·) → X̃, uniformly over compact time intervals, almost

surely. Consequently, L(X) = L(X̃).

Theorem 4.7. The solution of (2.1) starting at x0 = 0 is unique in distribution.

Proof. In the sequel, X and X̃ will be weak solutions of (2.1) starting at the origin. Let
{δn} = {δn}n≥0 be given by (4.9). We want to show that for n sufficiently large

‖L(X2(τ
X
δn))− L(X̃2(τ

X̃
δn))‖TV ≤ (1− κ)‖L(X2(τ

X
δn+2

))− L(X̃2(τ
X̃
δn+2

))‖TV , (4.17)

where κ ∈ (0, 1) is defined below. Then by iterating (4.17), we obtain

‖L(X2(τ
X
δn))− L(X̃2(τ

X̃
δn))‖TV = 0,

for n sufficiently large (and hence for all n). The theorem then follows from Lemma 4.6.
To obtain κ, we construct below two solutions of (2.1), χ, starting at (δn+2, χ2(0)) ∈ O,

and χ̃, starting at (δn+2, χ̃2(0)) ∈ O, that are coupled in such a way that, letting

τ2 := inf{t ≥ 0 : χ1(t) ≥ δn}, τ̃2 := inf{t ≥ 0 : χ̃1(t) ≥ δn}, (4.18)

we have
P
(
χ(τ2) = χ̃(τ̃2)

)
≥ κ > 0, (4.19)

where κ is independent of χ2(0) and χ̃2(0) and of n sufficiently large.
Then (4.19) implies

‖L(χ(τ2))− L(χ̃(τ̃2))‖TV ≤ (1− κ),

Consequently, with the notation of Lemma 5.4, denoting by P the transition function
from [ψ1(δn+2), ψ2(δn+2)] to [ψ1(δn), ψ2(δn)] defined by

P (x2, ·) : = P
(
χ2(τ2) ∈ ·

∣∣χ2(0) = x2
)
= P

(
X2(τ

X
δn) ∈ ·

∣∣X2(τ
X
δn+2

) = x2
)
,

= P
(
χ̃2(τ̃2) ∈ ·

∣∣χ̃2(0) = x2
)
= P

(
X̃2(τ

X̃
δn) ∈ ·

∣∣X̃2(τ
X̃
δn+2

) = x2
)
,

we have
‖Pν − P ν̃‖TV ≤ (1− κ),

for any two probability distributions ν and ν̃ on [ψ1(δn+2), ψ2(δn+2)]. Therefore (4.17)

follows from Lemma 5.4.
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We conclude the proof with the construction of the coupled solutions χ and χ̃. We
start χ and χ̃ as two independent solutions of (2.1), with initial conditions (δn+2, χ2(0))

and (δn+2, χ̃2(0)), respectively, and we run them until the times

τ1 := inf{t ≥ 0 : χ1(t) ≥ δn+1}, τ̃1 := inf{t ≥ 0 : χ̃1(t) ≥ δn+1}.

We then consider the solution, (Z, Z̃), with initial distribution (χ(τ1), χ̃(τ̃1)), of the coupled
SDE (5.6) with β = b, ς = σ and B independent of (χ(τ1), χ̃(τ̃1)), until the times

Θ := inf{t ≥ 0 : Z(t) /∈ Q}, Θ̃ := inf{t ≥ 0 : Z̃(t) /∈ Q},

where Q is the rectangle

Q := (δn+1 −
1

4
qn+1, δn+1 +

1

4
qn+1)× I

ε0+1/2
n+1 ,

and Iε0+1/2
n+1 is the interval in Lemma 5.2 for a value of ε0 to be chosen later. We set

χ(τ1 + t) := Z(t), χ̃(τ̃1 + t) := Z̃(t), for t ≤ Θ ∧ Θ̃.

For ε0 ≤ 1/4 , by (4.7),
Q ⊆ O,

therefore χ and χ̃ are solutions of (2.1) up to τ1 + Θ ∧ Θ̃ and τ̃1 + Θ ∧ Θ̃ respectively.
Moreover, by (4.8), the assumptions of Lemma 5.3 are satisfied. Fix p0 ∈ (0, 14 ), let C0 be
the constant in Lemma 5.3, and choose ε0 ≤ C0/4. Then, for x2, x̃2 ∈ Iε0n+1, it holds

|x2 − x̃2| ≤ C0
qn+1

4
, Bqn+1/4(δn+1, x2), Bqn+1/4(δn+1, x̃2) ⊆ Q.

Therefore Lemma 5.3 yields that

P
(
Z(Θ ∧ Θ̃) = Z̃(Θ ∧ Θ̃)

∣∣Z2(0) ∈ Iε0n+1, Z̃2(0) ∈ Iε0n+1

)
≥ p0.

Combining this with Lemma 5.2, we get,

P
(
χ(τ1 +Θ ∧ Θ̃) = χ̃(τ̃1 +Θ ∧ Θ̃)

)
≥ P

(
χ(τ1 +Θ ∧ Θ̃) = χ̃(τ̃1 +Θ ∧ Θ̃)

∣∣χ2(τ1) ∈ Iε0n+1, χ̃2(τ̃1) ∈ Iε0n+1

)
(4.20)

P
(
χ2(τ1) ∈ Iε0n+1, χ̃2(τ̃1) ∈ Iε0n+1

)
≥ P

(
Z(Θ ∧ Θ̃) = Z̃(Θ ∧ Θ̃)

∣∣Z2(0) ∈ Iε0n+1, Z̃2(0) ∈ Iε0n+1

)
η2ε0

≥ p0η
2
ε0 := κ.

Finally, we define χ(τ1 +Θ ∧ Θ̃ + ·) as the solution of (2.1) starting at χ(τ1 +Θ ∧ Θ̃) and
χ̃(τ̃1 +Θ∧ Θ̃+ ·) = χ(τ1 +Θ∧ Θ̃+ ·), if χ(τ1 +Θ∧ Θ̃) = χ̃(τ̃1 +Θ∧ Θ̃), and as the solution
of (2.1) starting at χ̃(τ̃1 +Θ ∧ Θ̃) otherwise. Since, with Q as above, by (4.7),

τ1 +Θ ∧ Θ̃ < τ2, τ̃1 +Θ ∧ Θ̃ < τ̃2,

χ and χ̃ have the desired property.

4.4 The Feller property

We conclude with the observation that the family of distributions
{
P x

}
x∈O, where

P x is the distribution of the unique weak solution of (2.1) starting at x, enjoys the Feller
property.

Proposition 4.8. Let Xx be the unique weak solution of (2.1) starting at x. Then the
mapping x ∈ O → Xx is continuous in distribution.

Proof. The proof is exactly the same as that of Theorem 4.1. In fact, once it is known
that the weak solution of (2.1) starting at the origin is unique, the proof of Proposition
4.8 amounts to showing that Xx is continuous in distribution at the origin.
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5 Technical lemmas

Lemma 5.1. Let X̄(0,x2) satisfy (4.15) with X̄(0,x2)(0) = (0, x2), x2 ∈ [L,L+ 1], and let

τ̄1 := inf{t ≥ 0 : X̄
(0,x2)
1 (t) ≥ 1}.

Then

(i) τ̄1 is a.s. finite.

(ii) For every 0 < ε < 1/2,

inf
L≤x2≤L+1

P
(
X̄

(0,x2)
2 (τ̄1) ∈ (L+

1

2
− ε, L+

1

2
+ ε)

)
> 0. (5.1)

Proof. To simplify notation, whenever possible without loss of clarity, we will omit the
superscript on X̄.

(i) Let e∗ be the vector in Condition 2.3(b). Then, for all N > 0,

inf{t ≥ 0 : 〈X̄(t), e∗〉 ≥ N + x2e
∗
2} ≤ inf{t ≥ 0 : 〈σ(0)W (t), e∗〉 ≥ N} < +∞ a.s..

On the other hand

X̄1(t) =
1

e∗1

(
〈X̄(t), e∗〉 − X̄2(t)e

∗
2

)
≥ 1

e∗1

(
〈X̄(t), e∗〉 − (|L|+ 1)

)
.

Therefore, for N large enough,

τ̄1 ≤ inf{t ≥ 0 : 〈X̄(t), e∗〉 ≥ N + x2e
∗
2}.

(ii) Let f : R2 → [0, 1] be a smooth function such that

f(1, L+
1

2
) = 1, f(x) = 0 for x /∈ Bε((1, L+

1

2
)).

We can estimate the probability in the left hand side of (5.1) by

P
(
X̄2(τ̄1) ∈ (L+

1

2
− ε, L+

1

2
+ ε)

)
≥ E

[
f(X̄(τ̄1))

]
.

For x ∈ (−∞, 1] × [L,L + 1], let X̄x satisfy (4.15) with x̄0 = x, τ̄1(X̄x) := inf{t ≥ 0 :

X̄x
1 (t) ≥ 1} and set

u(x) := E
[
f(X̄x(τ̄1(X̄

x)))
]
.

u is continuous on (−∞, 1]× [L,L+1] by the continuous mapping theorem, because X̄ is
a Feller process and τ̄1 is a functional on C(−∞,1]×[L,L+1][0,∞) almost surely continuous
under the law of X̄x, for every x. For any bounded, smooth domain Q such that
Q ⊆ (−∞, 1)× (L,L+1), u is the classical solution of the Dirichlet problem with itself as
boundary datum. Therefore u ∈ C2((−∞, 1)× (L,L+ 1)) and

tr((σσT )(0)D2u(x)) = 0, ∀x ∈ (−∞, 1)× (L,L+ 1).

For 0 < η < 1/2, let

Qη := (−1 + η, 1− η)× (L+ η, L+ 1− η).

By the Harnack inequality,
inf
x∈Qη

u(x) ≥ cη sup
x∈Qη

u(x), (5.2)
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for some cη > 0. For η small enough the right hand side of (5.2) is strictly positive and
hence

u(0, x2) > 0, ∀x2 ∈ (L,L+ 1).

Now let
τ̄
(0,L+1)
Qη

:= inf{t ≥ 0 : X̄(0,L+1)(t) ∈ Qη},
and fix η small enough that the right hand side of (5.2) is strictly positive and that

P
(
τ̄
(0,L+1)
Qη

< τ̄
(0,L+1)
1

)
> 0.

Then

u(0, L+ 1) = E
[
f(X̄(0,L+1)(τ̄

(0,L+1)
1 ))

]
≥ E

[
1{τ̄(0,L+1)

Qη
<τ̄

(0,L+1)
1 }f(X̄

(0,L+1)(τ̄
(0,L+1)
1 ))

]
= E

[
1{τ̄(0,L+1)

Qη
<τ̄

(0,L+1)
1 }u(X̄

(0,L+1)(τ̄
(0,L+1)
Qη

))
]

≥ inf
x∈Qη

u(x) P
(
τ̄
(0,L+1)
Qη

< τ̄
(0,L+1)
1 )

)
> 0.

Analogously
u(0, L) > 0,

and the assertion follows by the continuity of u on {0} × [L,L+ 1].

Lemma 5.2. Let {δn} be defined by (4.9), Xx0

be the solution of (2.1) starting at x0 ∈
O−{0}, τx0

δn
:= inf{t ≥ 0 : Xx0

1 (t) ≥ δn}, n ≥ 0, and, for 0 < ε < 1, Iεn be the open interval

of length ε(ψ2 −ψ1)(δn) centered at (ψ1+ψ2)(δn)
2 . Then there exists nε ≥ 0 and ηε > 0 such

that
inf
n≥nε

inf
x2: (δn+1,x2)∈O

P
(
X

(δn+1,x2)
2 (τ

(δn+1,x2)
δn

) ∈ Iεn
)
= ηε. (5.3)

Proof. Let {xn2}, ψ1(δn+1) ≤ xn2 ≤ ψ2(δn+1) be such that q−1
n xn2 converges to x̄02 ∈ [L,L+1],

and let Xn denote the solution of (2.1) starting at (δn+1, x
n
2 ). Let X̄

n denote the scaled
process (4.11) with initial condition (0, q−1

n xn2 ), and let X̄ denote the limiting reflecting
Brownian motion satisfying (4.15) starting at (0, x̄02). Define

τn = τ
(δn+1,x

n
2 )

δn
:= inf{t ≥ 0 : Xn

1 (t) ≥ δn}
τ̄n1 := inf{t ≥ 0 : X̄n

1 (t) ≥ 1}
τ̄1 := inf{t ≥ 0 : X̄1(t) ≥ 1}

Notice that τn is a.s. finite by Remark 4.3 and that

τn = q−2
n τ̄n1 .

Since the first exit time from (−∞, 1) × R is a continuous functional on a set of paths
that has probability one under the distribution of X̄, by the continuous mapping theorem
we may assume that X̄n

2 (τ̄
n
1 ) converges in distribution to X̄2(τ̄1). Then

lim inf
n

P (Xn
2 (τ

n) ∈ Iεn) ≥ lim inf
n

P

(
Xn

2 (τ
n) ∈ (qn(L+

1

2
− ε

4
), qn(L+

1

2
+
ε

4
))

)
= lim inf

n
P

(
X̄n

2 (τ̄
n
1 ) ∈ (L+

1

2
− ε

4
, L+

1

2
+
ε

4
)

)
≥ P

(
X̄2(τ̄1) ∈ (L+

1

2
− ε

4
, L+

1

2
+
ε

4
)

)
≥ inf

L≤x2≤L+1
P
(
X̄

(0,x2)
2 (τ̄

(0,x2)
1 ) ∈ (L+

1

2
− ε

4
, L+

1

2
+
ε

4
)
)
,
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and the assertion follows by (5.1) and by the arbitrariness of {xn2}.

The following lemma, which uses the coupling of [16], may be of independent interest.

Lemma 5.3. Let β : Rd → Rd and ς : Rd → Rd×Rd be Lipschitz continuous and bounded
and let ςςT be uniformly positive definite. Suppose that

supx,x̃ |ς(x)− ς(x̃)| < 2(supx |ς(x)−1|)−1. (5.4)

Define

K(x, x̃) := I − 2
ς(x̃)−1(x− x̃)(x− x̃)T (ς(x̃)−1)T

|ς(x̃)−1(x− x̃)|2
, (5.5)

Let B be a standard Brownian motion on a probability space (Ω,F ,P) and (Z, Z̃) be the
solution of the system of stochastic differential equations

dZ(t) = β(Z(t))dt+ ς(Z(t))dB(t), Z(0) = x0, (5.6)

dZ̃(t) = β(Z̃(t))dt+ ς(Z̃(t))K(Z(t), Z̃(t))dB(t), Z̃(0) = x̃0 6= x0

for t < ζ, where
ζ := lim

ε→0
ζε, ζε := inf{t ≥ 0 : |Z(t)− Z̃(t)| ≤ ε}, (5.7)

and Z̃(t) = Z(t) for t ≥ ζ, on the set {ζ < ∞}. (Notice that K is locally Lipschitz
continuous on Rd ×Rd − {(x, x), x ∈ Rd}.)

Then Z̃ is a diffusion process with generator Df(x)β(x) + 1
2 tr(ς(x)ς(x)

TD2f(x)) and,
for every p0, 0 < p0 <

1
4 , there exists a positive constant C0 < 1, depending only on p0, β

and ς, such that, setting

ϑρ := inf{t ≥ 0 : |Z(t)− x0| ≥ ρ}, ϑ̃ρ := inf{t ≥ 0 : |Z̃(t)− x̃0| ≥ ρ},

for ρ ≤ 1,
|x0 − x̃0| ≤ C0ρ implies P(ζ ≤ ϑρ ∧ ϑ̃ρ) ≥ p0.

Proof. The fact that Z̃ has generator Df(x)β(x)+ 1
2 tr(ς(x)ς(x)

TD2f(x)) follows from the
fact that K(x, x̃) is an orthogonal matrix.

As in [16], consider
U(t) := |Z(t)− Z̃(t)|.

For t < ζ, U satisfies
dU(t) = a(t)dt+ α(t)dW (t),

where

a(t) :=
〈Z(t)− Z̃(t), β(Z(t))− β(Z̃(t))〉

|Z(t)− Z̃(t)|
+

tr
((
ς(Z(t))− ς(Z̃(t))

)(
ς(Z(t))− ς(Z̃(t))

)T )
2|Z(t)− Z̃(t)|

−

∣∣(ς(Z(t))− ς(Z̃(t)))T Z(t)−Z̃(t)

|Z(t)−Z̃(t)|

∣∣2
2|Z(t)− Z̃(t)|

α(t) :=

∣∣∣∣∣(ς(Z(t))− ς(Z̃(t))K(Z(t), Z̃(t))
)T Z(t)− Z̃(t)

|Z(t)− Z̃(t)|

∣∣∣∣∣ ,
and W is a standard Brownian motion. Then, as in [16], setting, for u > 0,

h(u) := sup
|x−x̃|=u

{∣∣(ς(x)− ς(x̃)K(x, x̃)
)T x− x̃

|x− x̃|
∣∣−2

×
[
〈x− x̃, β(x)− β(x̃)〉

|x− x̃|
+

tr
(
(ς(x)− ς(x̃))(ς(x)− ς(x̃))T

)
−

∣∣(ς(x)− ς(x̃))T x−x̃
|x−x̃|

∣∣2
2|x− x̃|

]}
,
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we have
a(t) ≤ α(t)2h(U(t)).

In addition, by (5.4), the Lipschitz property of β and ς and the boundedness of ς,

α := inf
t
α(t) > 0

α := sup
t
α(t) ≤ 2‖ς‖ (5.8)

|a(t)| ≤ aU(t), a.s.

|h(u)| ≤ C u

(See the computations on page 866 of [16].) In particular, setting h(0) := 0, h is
continuous at 0 and locally square integrable on [0,∞). Therefore, applying Itô’s formula
to the process U and the function

H(u) :=

∫ u

1

dv exp
(
− 2

∫ v

1

h(z)dz
)
, u ≥ 0, (5.9)

we see that, for u := |x0 − x̃0|, θ2u := inf{t ≥ 0 : U(t) ≥ 2u}, ε < 2u,

P(ζε < θ2u) ≥
H(2u)−H(u)

H(2u)−H(ε)
.

On the other hand, we have, for any 0 < t ≤ 1,

P(ζε < ϑρ ∧ ϑ̃ρ) ≥ P(ζε ≤ t, t < ϑρ ∧ ϑ̃ρ)
≥ P(ζε ≤ t)− P(ϑρ ∧ ϑ̃ρ ≤ t)

≥ P(ζε < θ2u, ζε ∧ θ2u ≤ t)− P(ϑρ ∧ ϑ̃ρ ≤ t)

≥ P(ζε < θ2u)− P(ζε ∧ θ2u > t)− P(ϑρ ∧ ϑ̃ρ ≤ t)

≥ H(2u)−H(u)

H(2u)−H(ε)
− P

(
sup
s≤t

∣∣U(s)− u
∣∣ < u

)
− P(ϑρ ∧ ϑ̃ρ ≤ t).

Then, noting that P(ϑρ ∧ ϑ̃ρ <∞) = 1, taking the limit as ε goes to zero, we obtain

P(ζ ≤ ϑρ ∧ ϑ̃ρ) ≥ H(2u)−H(u)

H(2u)−H(0)
− P

(
sup
s≤t

∣∣U(s)− u
∣∣ < u

)
−P(ϑρ ∧ ϑ̃ρ ≤ t).

Now, we can easily see (for instance applying Itô’s formula to the function f(x) = |x−x0|2)
that

P(ϑρ ∧ ϑ̃ρ ≤ t) ≤ C1t

ρ2
,

where C1 depends only on β and ς. Of course we can suppose, without loss of generality,
that C1 ≥ 1. We will take, for ρ ≤ 1,

t =
1

C1
(
1

4
− p0) ρ

2 ≤ 1. (5.10)

We have, for u ≤ C0ρ, where C0 ≤ 1 is a constant to be chosen later,

P

(
sup
s≤t

∣∣U(s)− u
∣∣ < u

)
= P

(
sup
s≤t

∣∣ ∫ s

01

a(r)dr +

∫ s

0

α(r)dW (r)
∣∣ < u, sup

s≤t
U(s) < 2u

)

≤ P

(
sup
s≤t

∣∣ ∫ s

0

α(r)dW (r)
∣∣ < C0(1 + 2a)

√
4C1

1− 4p0

√
t

)
,
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where in the last inequality we have used the fact that |a(t)| ≤ aU(t) and (5.10). We take
C0 small enough that

C := C0(1 + 2a)

√
4C1

1− 4p0
< α. (5.11)

Then setting θα
C
√
t
:= inf{s ≥ 0 :

∣∣ ∫ s
0
α(r)dW (r)

∣∣ ≥ C
√
t},

P

(
sup
s≤t

∣∣ ∫ s

0

α(r)dW (r)
∣∣ < C

√
t

)
= P

(
θα
C
√
t
> t,

( ∫ t

0

α(s)dW (s)
)2
< C2t

)
= P

(
θα
C
√
t
> t, 2

∫ t

0

( ∫ s

0

α(r)dW (r)
)
α(s)dW (s) +

∫ t

0

α(s)2ds < C2t

)
≤ P

(∫ t∧θα
C

√
t

0

( ∫ s

0

α(r)dW (r)
)
α(s)dW (s) <

1

2
(C2 − α2)t

)
,

where the last inequality uses (5.8). Since C < α, the above chain of inequalities can be
continued as

≤ P

(∣∣∣∣ ∫ t∧θα
C

√
t

0

( ∫ s

0

α(r)dW (r)
)
α(s)dW (s)

∣∣∣∣ > 1

2
(α2 − C2)t

)
≤ 4

(α2 − C2)2 t2
E

[ ∫ t∧θα
C

√
t

0

( ∫ s

0

α(r)dW (r)
)2
α(s)2ds

]
≤ 4C2t

(α2 − C2)2 t2
E

[ ∫ t

0

α(s)2ds

]
≤ 4C2ᾱ 2t2

(α2 − C2)2 t2
.

Finally, observe that, by (5.9) and the fact that h is locally integrable on [0,∞), H is
differentiable on [0,∞) so that

lim
u→0+

H(2u)−H(u)

H(2u)−H(0)
= lim
u→0+

2H ′(2u)−H ′(u)

2H ′(2u)
=

1

2
.

Then, by choosing C0 in (5.11) small enough that C satisfies

4C2ᾱ2

(α2 − C2)2
≤ 1

4
− p0,

and that, for u ≤ C0,
H(2u)−H(u)

H(2u)−H(0)
≥ 1

2
− p0,

the assertion is proved.

Lemma 5.4. Let E be a complete, separable metric space, and for µ1, µ2 ∈ P(E), define

‖µ1 − µ2‖TV = sup
A∈B(E)

|µ1(A)− µ2(A)|.

(i) For µ1, µ2 ∈ P(E), there exist ν0, ν1, ν2 ∈ P(E) such that

µ1 = (1− ρ)ν0 + ρν1, µ2 = (1− ρ)ν0 + ρν2, (5.12)

EJP 23 (2018), paper 84.
Page 19/21

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP204
http://www.imstat.org/ejp/


Reflecting diffusions in cusps

where
ρ = ‖µ1 − µ2‖TV .

(ii) Let E1 and E2 be complete separable metric spaces and P be a transition function
from E1 to E2, and let

Pµ(dy) =

∫
E1

P (x, dy)µ(dx), µ ∈ P(E1).

Then, for µ1, µ2 ∈ P(E1) and ν1, ν2 as in (i),

‖Pµ1 − Pµ2‖TV = ‖µ1 − µ2‖TV ‖Pν1 − Pν2‖TV .

Proof. (i) Let

li :=
dµi

d(µ1 + µ2)
, i = 1, 2,

ν0(A) :=
1∫

E

(
l1(x) ∧ l2(x)

)
(µ1 + µ2)(dx)

∫
A

(
l1(x) ∧ l2(x)

)
(µ1 + µ2)(dx),

νi(A) :=
1

1−
∫
E

(
l1(x) ∧ l2(x)

)
(µ1 + µ2)(dx)

∫
A

(
li(x)− l1(x) ∧ l2(x)

)
(µ1 + µ2)(dx),

i = 1, 2, and

ρ := 1−
∫
E

(
l1(x) ∧ l2(x)

)
(µ1 + µ2)(dx).

Then (5.12) holds. In addition

‖µ1 − µ2‖TV = ρ‖ν1 − ν2‖TV = ρ,

because ν1 and ν2 are mutually singular.
(ii) By (i),

‖Pµ1 − Pµ2‖TV = ‖(1− ρ)Pν0 + ρPν1 − (1− ρ)Pν0 − ρPν2‖TV = ρ‖Pν1 − Pν2‖TV .
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