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Sleep and wakefulness are no longer to be considered as discrete states. During

wakefulness brain regions can enter a sleep-like state (off-periods) in response to a

prolonged period of activity (local use-dependent sleep). Similarly, during nonREM sleep

the slow-wave activity, the hallmark of sleep plasticity, increases locally in brain regions

previously involved in a learning task. Recent studies have demonstrated that behavioral

performance may be impaired by off-periods in wake in task-related regions. However,

the relation between off-periods in wake, related performance errors and learning is still

untested in humans. Here, by employing high density electroencephalographic (hd-EEG)

recordings, we investigated local use-dependent sleep in wake, asking participants to

repeat continuously two intensive spatial navigation tasks. Critically, one task relied on

previous map learning (Wayfinding) while the other did not (Control). Behaviorally awake

participants, who were not sleep deprived, showed progressive increments of delta

activity only during the learning-based spatial navigation task. As shown by source

localization, delta activity was mainly localized in the left parietal and bilateral frontal

cortices, all regions known to be engaged in spatial navigation tasks. Moreover, during

the Wayfinding task, these increments of delta power were specifically associated with

errors, whose probability of occurrence was significantly higher compared to the Control

task. Unlike the Wayfinding task, during the Control task neither delta activity nor the

number of errors increased progressively. Furthermore, during the Wayfinding task, both

the number and the amplitude of individual delta waves, as indexes of neuronal silence in

wake (off-periods), were significantly higher during errors than hits. Finally, a path analysis

linked the use of the spatial navigation circuits undergone to learning plasticity to off

periods in wake. In conclusion, local sleep regulation in wakefulness, associated with

performance failures, could be functionally linked to learning-related cortical plasticity.
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INTRODUCTION

The local use-dependent sleep theory proposes that sleep and wakefulness might coexist in the
same time and in different areas of the brain (Krueger et al., 2008; Nobili et al., 2012; Siclari and
Tononi, 2017). Ultimately, sleep and wakefulness might be considered dynamic processes that
unfold through local brain changes from full wakefulness to global sleep and vice versa, as supported
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by growing data (Huber et al., 2004; Magnin et al., 2010; Ferrara
and De Gennaro, 2011; Marzano et al., 2011, 2013; Sarasso et al.,
2014).

Recently, it has been evidenced that during extended waking
the progressive slowing of brain rhythms was due to local use-
dependent sleep (Vyazovskiy et al., 2011; Hung et al., 2013;
Bernardi et al., 2015; Nir et al., 2017), namely a type of sleep
that occurs locally as the homeostatic consequence of a sustained
use of neuronal circuits (Krueger et al., 2008, 2013; Krueger and
Tononi, 2011). Specifically, it has been evidenced that in rats
and in epileptic patients, delta/theta (2–6Hz) waves progressively
increased, triggered locally from use-dependent factors, such
as synaptic overload in task-related circuits, and matched with
a progressive decrease in task performance (Vyazovskiy et al.,
2011; Nir et al., 2017). Similarly, in healthy subjects during
prolonged waking experiments (>24 h), local task-dependent
electroencephalographic (EEG) power changes in the 5–9Hz
range have been shown in task-related regions and associated
with a worsening in performance (Hung et al., 2013; Bernardi
et al., 2015).

The progressive decline in neurobehavioral performance,
known as time-on-task effect, has been claimed as an expression
of local use-dependent sleep, as homeostatic consequence of
a sustained use of neuronal circuits engaged in a given task
(Van Dongen et al., 2011). At biochemical level, the time-on-
task effect is based on the ATP-cytokine-adenosine mechanism,
that explains how the repeated and intense waking neuronal
activity promotes sleep locally through the enhancement of
sleep regulatory substances (Krueger et al., 2008, 2013), many
of which are involved in NREM synaptic plasticity, specifically
in the increase of slow wave activity (SWA, 0.5–4.5Hz). Since
SWA is homeostatically regulated at local level in those neuronal
circuits subjected to plastic changes due to learning tasks, it
has been considered as a specific index of use- and learning-
dependent plasticity (Huber et al., 2004, 2006; Vyazovskiy et al.,
2008). Specifically, the off-periods of SWA, namely periods of
neuronal silence, were associated in sleep to the renormalization
of synaptic strength, that allows memory consolidation processes
during NREM sleep (Vyazovskiy et al., 2008, 2009, 2011; Tononi
and Cirelli, 2014). In the aformentioned studies on local sleep in
wake, periods of neuronal silence (off-periods) of individual slow
waves were associated with performance errors (Vyazovskiy et al.,
2011; Nir et al., 2017). According to Tononi and Cirelli (2014),
local off periods in wake and sleep cannot be distinguished
from each other and both could be the result of synaptic
overload due to intense wake plasticity (Tononi and Cirelli, 2014;
Vyazovskiy and Faraguna, 2015). Therefore, during wakefulness,
local use-dependent sleep could be linked to learning-dependent
plasticity.

However, so far, human studies that investigated local sleep
in wakefulness (Hung et al., 2013; Bernardi et al., 2015; Muto
et al., 2016; Nir et al., 2017) did not focus on time-on-task
effects but rather on sleep restriction/deprivation effects on the
neurobehavioral performance and, above all, did not explicitly
manipulate learning.

In order to investigate whether performance impairments
could be the result of local sleep episodes induced by the

overload in learning-related circuits, in the absence of previous
sleep loss, in the present study we used a paradigm that
combined overlearning (Shibata et al., 2017) and time-on-task
effect, by focusing on delta activity and individual delta waves
as specific indices of use- and learning-dependent plasticity.
Specifically, we recorded high density electroencephalography
(hd-EEG) during an intensive learning-related spatial navigation
task, that consisted in the (hyper) use of a previously learned
cognitive map (i.e., the mental representation of an environment
with its landmarks) in order to reach different target locations
(Wayfinding) without rest breaks (Figure 1A). Moreover, we
compared the EEG changes of the Wayfinding experiment with
those induced by a Control experiment, in which participants
passively navigated within landmark-free environments by
following arrows (i.e., without using a learned cognitive map),
again unceasingly (Figure 1A).

We expected to observe, in brain regions involved in spatial
navigation, off-periods of local sleep in wake during the task
that required learning (Wayfinding experiment) but not during
the task without learning (Control experiment). Moreover, off-
periods were expected to be specifically linked to performance
errors, as previously observed (Vyazovskiy et al., 2011; Nir et al.,
2017).

MATERIALS AND METHODS

Subjects
Twenty healthy participants completed the Wayfinding
experiment (all right-handed nonsmoker males; age range =

20–30 years, mean ± SD: 23.7 ± 1.7 years). After a month, 9
out of 20 participants took part in a Control experiment. No
statistical methods were used to predetermine sample sizes, but
our sample size is similar to those reported in previous studies
(Hung et al., 2013; Bernardi et al., 2015). To avoid any kind
of sleep debt and alterations of the sleep-wake cycle: (1) all
selected participants reported no history of sleep, medical or
psychiatric disorders and a good sleep quality (sleep schedule
of 7–8 h/night), as assessed by self-rating questionnaires
(Supplementary Table 1, Horne and Ostberg, 1976; Spielberg
et al., 1983; Vignatelli et al., 2003; Violani et al., 2004; Sica et al.,
2006; Curcio et al., 2013) (2) exclusion criteria included shift
workers, athletes and participants that had traveled crossing time
zones in the 3 months before the study. All participants reported
experience with three-dimensional (3D) virtual environments,
good spatial orientation skills (Wolbers and Hegarty, 2010) as
assessed by a self-rating questionnaire (Pazzaglia et al., 2000,
Supplementary Table 1) and underwent a practical test in a
virtual environment to rule out inefficient motor skills during
navigation and dizziness. Moreover, males outside the specified
age range and females were excluded. The age and gender
selection criteria are due to the fact that both factors are known
to affect sleep, wayfinding and learning (Coluccia and Louse,
2004; Ohayon et al., 2004; Kurth et al., 2010). In particular,
SWS (slow wave sleep) changes markedly across the lifespan
(Ohayon et al., 2004; Kurth et al., 2010). Furthermore, males
outperform females on wayfinding tasks, especially within
complex environments (Coluccia and Louse, 2004). During
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FIGURE 1 | Experimental design and performance analysis of a representative retrieval. (A) In Wayfinding experiment (n = 20), participants woke up at ∼7:00 and

started the Learning phase (learning of the cognitive map with landmarks) at ∼08:30. At ∼11:00, participants performed the Test phase, retrievals to be completed,

for ∼2 h (example retrieval “Town Hall-Flower Shop”). Vertical bars refer to all retrievals presented (from 1 to 295): lilac bars = 8 baseline retrievals, green bars = the 8

retrievals of the baseline to be repeated, light green bars = the 8 retrievals of the baseline (light green) continuously repeated. The Control task (n = 9) was scheduled

as the Wayfinding experiment, except for the Learning phase, so at ∼11:00 participants performed the task (arrows to be followed) for ∼2 h. At the beginning

(∼10:00) and at the end (∼12:40) of each Test Phase, 10-min psychomotor vigilance task (PVT) and subjective sleepiness evaluation (Stanford Sleepiness Scale, SSS)

were scheduled. In each experiment, participants underwent a continuous video hd-EEG recording. (B) The performance of a single subject on “Town Hall – Flower

Shop” retrieval is showed through the relative graphic layouts: all repetitions traces; (1) the trace of the baseline retrieval (n = 13, repetition n = 1); (2) the trace of the

stable performance (n = 39, repetition n = 7); (3) the trace of the best hit (n = 209, repetition n = 40); (4) the trace of an Error (n = 262, repetition n = 49). Arrows

indicate the position of the relative trace along the Test phase, represented by a horizontal bar. Vertical bars refer to all retrievals of Wayfinding task (from 1 to 295): lilac

bars = baseline retrievals, light lilac bars = retrievals before the breakpoint (violet horizontal bar, n = 57), peach colored bars = hits (green bars = best hits), red bars

= outlier retrievals.
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recruitment, 12 subjects were discarded because they matched
one or more exclusion criteria (see below and Supplementary
Table 1). Two more subjects were discarded because they were
not able to perform the Learning phase of the Wayfinding task
(see next paragraph).

All participants underwent an afternoon experiment (Nap,
Quiet or Active Wake session), whose aims go beyond the
purpose of the present study. All participants signed an informed
consent in accordance with the Declaration of Helsinki and
were paid for their participation. The study was approved by
the ethics committee for biomedical research of “G. D’Annunzio
University” of Chieti-Pescara.

Wayfinding Experiment
Participants (n = 20) performed a spatial navigation task with
explicit learning, that is a Wayfinding task (Figure 1A). The task
was designed on the basis of the CognitiveMap Test (CMT) (Iaria
et al., 2007), that assesses specific aspects of human topographical
orientation. Briefly, the task required to orient oneself within
a virtual environment containing different landmarks by first
forming a mental representation of it, namely a cognitive map
(Learning phase), and then using that mental representation to
find the best way from one landmark location to another (Test
phase).

Participants arrived at ∼08:30 a.m. to check sleep
diaries/actigraphy logs (see section Vigilance Performance
and Subjective Sleepiness), and at∼9:00 a.m. began the Learning
phase of the task, to avoid the influence of sleep inertia on
learning (Ferrara and De Gennaro, 2000). The Learning phase of
the task required participants to explore the city (24 buildings)
to create its cognitive map, locating the 16 landmarks (shops and
public buildings), whose pictures were shown to participants
and named one by one by the experimenter before the learning
phase. All the participants started the task at the center of the
virtual environment facing the Pastry Shop and were first allowed
∼15min of free exploration (mean duration ± SD = 14.58min
± 3.02), based on the results of a pilot study (Supplementary
Table 2). The accuracy of the formed cognitive map was then
evaluated by asking the participants to indicate the respective
location of each landmark on a sheet of paper, on which the
top-view outline of the city map was depicted. Participants
explored the city for further sessions of ∼5min each (second
map: mean duration ± SD = 5.18min ± 3.07; third map:
4.92min ± 2.06) until they reached an accuracy of 100% for two
consecutive maps. The mean duration of the Learning phase was
24.69min (SD: 5.05).

At ∼11:00 a.m. participants performed the Test phase of the
Wayfinding task (Figure 1A) that required to travel through the
learned city from a landmark to another, following the shortest
pathway and as quickly as possible. This phase comprised 16
types of retrievals, each characterized by a different route (from
a landmark to another). In each of these retrievals, participants
started facing a landmark and a sign, which reported the
landmark they had to reach (Figure 1A). The Test phase was
scheduled as follows: participants were first asked to complete
the 16 retrievals type (EEG Baseline, see EEG Recording
and Analysis), then half of them (the last 8) were repeated

continuously in a randomized order, for a total of 279 retrievals
until the end of the task, in order to obtain an hyper-use of the
involved cerebral circuits and, at the level of each single repeated
retrieval, to reach a performance optimization/stabilization
useful to detect possible use-dependent errors. The Test phase
was performed without rest, namely the retrievals followed one
another without any kind of interruption (e.g., black screen),
according to the time-on-task effect model proposed by Van
Dongen and coworkers (Van Dongen et al., 2011). The Test phase
was measured continuously with video hd-EEG recordings (128
electrodes, Electrical Geodesics, version 1.1) and lasted for ∼2 h
(mean± SD: 1 h 44min± 8.00).

Control Experiment
After a month, we were able to collect further data on 9 out of
the 20 participants of the Wayfinding experiment, to perform
a Control task in order to distinguish effects of no interest
(motor, perceptual and mere vigilance effects) from the learning-
related effects. The Control task indeed required participants
to navigate within virtual environments that resembled that of
the Wayfinding task, with buildings with the same texture but
without landmarks, therefore participants had not to learn any
cognitive map. In fact, to complete the routes participants had
only to follow the directions indicated by the green arrows on
the walls along the routes, namely turn right, turn left, or move
forward until the next sign was reached (Figure 1A). Also in this
case virtual environments followed one each other without rest,
as during the Test phase of the Wayfinding task.

For the Control task (Figure 1A), that did not require a
learning phase, participants were asked to arrive at ∼9:30 a.m.
to check sleep diaries/actigraphy logs and caffeine’s questionnaire
(see Vigilance and Subjective Sleepiness), then participants were
prepared for continuous video hd-EEG recordings. Control
experiment lasted as long as the Test phase of the same
participants (n= 9) of the Wayfinding experiment (mean
duration ± SD: 1 h 41min ± 9.09 and 1 h 45min ± 6.20,
respectively).

Virtual Environments
The virtual environments have been created by a freely available
3D software, Maze Suite (Ayaz et al., 2008), which enables to
collect different qualitative and quantitative behavioral measures
of the navigational performance. Each element present in the
environment has a coordinate system: x z for what is placed on
the ground and a y coordinate for the axis perpendicular to the
floor. Participants navigated by using three different key-buttons
(the upward, leftward, and rightward arrows available on the
computer keyboard) to move in three different directions (left,
right, forward). The software enables to measure participant’s
path (graphic layout), time and spatial units to completion of
each path, to load multiple overlapping paths and to show a
video of the traveling activity of a participant during the specific
selected path.

Vigilance and Subjective Sleepiness
For 1 week before each experiment (Wayfinding and Control),
participants were asked to maintain a regular sleep-wake
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schedule, verified by detailed sleep diaries and a wrist-worn
actigraph [wActiSleep+, ActiGraph, Pensacola, FL; sleep/wake
algorithm (Cole et al., 1992; Sadeh et al., 1994)]; specifically,
a Sleep Efficiency greater than 85% was required for either
the week (average) and the night before each experiment to
proceed with both experiments, to avoid any kind of sleep
debt (for details, see Supplementary Table 3). Moreover, for 1
week before each experiment, the intake of caffeine-containing
beverages, alcohol, medications and food that could affect the
sleep-wake cycle was recorded by participants in a diary, based
on the Stanford Caffeine Questionnaire (Nova et al., 2012). Those
substances were forbidden from the day before and throughout
each experiment. The night before each experiment, participants
were asked to go to bed at their usual bedtime and to wake up
at ∼7:00 a.m. To evaluate vigilance at the beginning and at the
end of each experiment (Wayfinding and Control, Figure 1A),
participants performed a 10-min psychomotor vigilance task
(PVT) (Dinges and Powell, 1985; Basner and Dinges, 2011),
during which video hd-EEG was continuously recorded. Before
and after each PVT session, subjective sleepiness was rated using
the Stanford Sleepiness Scale (SSS) (Hoddes et al., 1973), a self-
rating questionnaire ranging from 1 (“feeling active, vital, alert
or wide awake”) to 7 (“no longer fighting sleep, sleep onset soon;
having dream-like thoughts”).

Sleep Analysis
Sleep-wake schedule data of the week before each experiment
were collected by actigraph and stored as the sum (activity) of
30 s intervals. These data were analyzed with Actilife (v.6.7.1,
Actigraph, Pensacola, FL), using a sleep/wake detection validated
algorithm (Cole et al., 1992; Sadeh et al., 1994). Bed and rise times
from the questionnaire helped to frame the time in bed during
which actigraphy data were analyzed.

Behavioral Analyses
In order to identify errors committed during the Wayfinding
task, we measured the participants’ paths (both as graphic layouts
and as video recordings), as well as the time and units to
completion. A performance analysis of a representative retrieval
was shown in Figure 1B. We classified as errors those retrievals
in which participants resulted as outliers in time and units respect
to their average performance or, as shown by the graphic layout,
the paths significantly deviated from the usual ones (detour),
after the achievement of a stable performance. The stability of
performance was evaluated with a trend analysis, carried out
using Strucchange R-package (Zeileis et al., 2002). Due to the
differences in the retrievals paths length, the trend analysis
was based on the standardized values of time and units of
the retrieval temporal series. This analysis allowed to estimate
the so-called breakpoints (change-points), which indicate an
interruption in the trend of a temporal series, in our case a
change in spatial navigation performance, which results in a
performance stabilization, likely due to the many repetitions
of the same path. For each participant the first breakpoint
was evaluated considering both time and units. To choose
the retrieval after which the Wayfinding task performance was
stabilized, the farthest retrieval between the two breakpoints (for

time and units) from the beginning of the relative temporal
series was chosen (Supplementary Figure 1). Only those outliers
that occurred after this retrieval have been classified as errors
for further analyses. To identify possible errors also during the
Control task, for each virtual environment we measured the
number of arrows in which participants made a mistake turning
in the wrong direction. Each potential error was checked in the
video recording before being included in the analyses to exclude
closure of eyelids and episodes of looking away from the screen
(distractions).

Performance improvement on each retrieval type was
calculated as the percentage of deviation units from the relative
optimal path, that corresponds to the Euclidean distance between
the start point (coordinates x1 z1) and the endpoint (coordinates
x2 z2) of each retrieval type, according to the subsequent formula:

Optimal path =

√

(x1 − x2)
2
+ (z1 − z2)

2 (1)

Since the Euclidean distance cannot be reached, the improvement
has a negative sign. The deviation from the optimal path was
calculated for each subject as the mean percentage change of the
mean deviation units from the relative optimal paths across the
retrievals, according to the subsequent formula:

Deviation =
1

N

∑N

i=1

(

Optimal Path Unitsi − Retrieval Unitsi
)

Optimal Path Unitsi
∗ 100

(2)
with N as the number of considered retrievals.

EEG Recording and Analysis
Analysis of wake EEG was carried out on both experiments
(Wayfinding and Control) and on PVT recordings. Hd-EEG
signals were collected continuously during both tasks, using a
sampling frequency of 250Hz, and referenced to the Cz electrode.
Skin/electrode impedances were kept <50 kΩ at the beginning
of each recording session. The position of each electrode and
anatomical landmarks (pre-auricolar points, nasion, vertex)
were digitized by a 3D digitizer (Polhemus, 3Space Fastrak).
EEG data were processed off-line. Data were band-pass
filtered (Butterworth second order filter, 0.5–45Hz) and each
recording was visually inspected to identify channels and epochs
containing artifacts. Rejected channels were then interpolated
using spherical splines (NetStation, Electrical Geodesic Inc.).
Analysis was carried out using Matlab (Mathworks Inc., Natick,
MA, v. 7.10 2012). Independent component analysis (ICA)
was used to remove ocular, muscle, and electrocardiographic
artifacts (Barbati et al., 2004). Only ICA components with
specific activity patterns and component maps characteristic of
artefactual activity were removed. After excluding electrodes
located on the neck/face region, the signal for each channel
was down-sampled to 125Hz and re-referenced to the average
of the remaining good channels, >100 channels per recording
(Lustenberger andHuber, 2012). For each EEG derivation, Power
Spectral Density (PSD) estimates were computed by the Welch
method, based on fast Fourier transform (FFT) in 4 s Hamming
nonoverlapping periods, which were obtained by EEG signals
for each retrieval starting from the landmark presentation. PSD
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estimates were thus performed with a 0.25Hz bin resolution.
In the Wayfinding experiment, EEG windows of retrievals were
differently grouped on the basis of behavioral performances, i.e.,
errors or hits, in the same two equal temporal intervals from
the breakpoint retrieval detected in the behavioral analysis. In
this way, four different PSD estimates were obtained: two for
retrievals in which errors occurred (one in the first and one in
the second temporal intervals) and two for hits (one in the first
and one in the second temporal intervals). The first 16 retrievals
were taken into account to estimate the Wayfinding baseline
PSD. To compare Wayfinding and Control experiments, EEG
windows were grouped in four equal temporal intervals from
the breakpoint time of the Wayfinding task for both tasks. As
for Wayfinding task, four different PSD estimates were obtained
from retrievals (errors and hits combined) of each temporal
interval. As for Control task, four different PSD estimates were
obtained from routes of each temporal interval. To make the
Baseline of the two tasks comparable, for each participant, PSD
estimate of Control Baseline was calculated in the same time
interval of the Wayfinding baseline. For all the experimental
conditions described above, power in delta and theta bands
for each EEG channel was then calculated as the average of
PSD values in the 1–4Hz and 4.25–7.5Hz frequency intervals
respectively. Delta and theta values were log transformed. As
for the Wayfinding experiment, delta and theta bands were
calculated for errors and hits in the first and second temporal
intervals and compared with the Wayfinding baseline (delta and
theta bands of the first 16 retrievals), see Statistical Analyses for
details. Moreover, for bothWayfinding and Control experiments,
delta and theta bands were calculated for each quartile and
contrasted with the delta and theta power of the Baseline of
Wayfinding and Control experiment, see Statistical Analysis for
details. On the basis of our experimental hypothesis, delta power
was chosen as specific index of use- and learning-dependent
plasticity in wake, as classically found in sleep (Huber et al.,
2004, 2006; Vyazovskiy et al., 2008), while theta power (5–
9Hz) was chosen as the wake EEG marker of sleepiness (Finelli
et al., 2000, 2001; Strijkstra et al., 2003; De Gennaro et al.,
2007). Moreover, both theta and delta activity are claimed as
the neural correlates of spatial navigation ability (Watrous et al.,
2011, 2013; Jacobs, 2013; Ekstrom andWatrous, 2014; Vass et al.,
2016).

Furthermore, an analysis of the individual delta waves was
performed on errors and hits of the Wayfinding task. In
fact, performance errors during wake are associated with the
negative peak of individual delta waves, that correspond to
periods of neuronal silence (Vyazovskiy et al., 2011). In detail,
EEG signals for each derivation were re-referenced to the
average of the 2 mastoids and low-pass filtered at 4Hz using a
Chebyshev type II filter. Filter parameters were selected in order
to achieve minimal wave shape and amplitude distortion. For
each channel, individual half-waves were detected on artifact-
free 4 s epochs. Half-waves were defined as negative deflections
between 2 consecutive zero crossings. The position of the
negative and positive peaks was determined based on the zero
crossings of the signal. To avoid possible confounding effects
due to spurious low amplitude deflection of the signal, all

1–4Hz detections were subdivided into 5 equal percentiles
based on their negative peak amplitude. The distribution
was determined by pooling all 1–4Hz detections across each
retrieval of the Wayfinding task, for each subject and channel
separately, standardizing for the length of each retrieval; only
the detections that exceeded the top 20% amplitude threshold
were considered delta waves and selected for further analysis.
This detection procedure was similar to those used in previous
studies (Riedner et al., 2007; Hung et al., 2013; Bernardi et al.,
2015).

Source Localization
To localize the sources of brain activity, a current density
analysis in 3D MNI space was performed, using the exact
low-resolution brain electromagnetic tomography, eLORETA,
in the frequency domain (Pascual-Marqui, 2007). The current
source density distribution of delta and theta frequency band
power was estimated on a grid of 6,239 voxels, with a
spatial resolution of 5mm for each experimental condition.
Specifically, for the Wayfinding experiment, delta and theta
power values of errors and hits in the first and second
temporal intervals (the two equal temporal intervals from
the breakpoint retrieval detected in the behavioral and EEG
analysis) were evaluated for each voxel and compared with
the corresponding values of Wayfinding baseline (the first
16 retrievals). For both Wayfinding and Control experiments,
delta and theta bands power values of the fourth temporal
interval (the fourth of the equal temporal intervals from the
breakpoint time of the Wayfinding task) were evaluated for
each voxel and compared with the relative Baseline (Wayfinding
and Control), calculated in the same time interval of the
Wayfinding baseline for each participant. Cortical maps of
the differences between the conditions described above were
finally obtained. Only the voxels whose values exceeded the
95% percentile of the value distribution were considered to
individuate cortical regions of significant activity. For each
region, the coordinate of the voxel corresponding to the
maximum value, as well as the coordinate of the baricenter was
found (Table 1).

Statistical Analyses
Data analysis was performed via R-coded scripts (R version
3.3.1), using R packages (R Core Team, 2013). Outliers were
defined as data points below Q1-1.5∗IQR (interquartile range)
or above Q3+1.5∗IQR. Outliers influence diagnostics were
performed (Mahalanobis distance, Leverage and Cook’s distance)
before data analysis. No subjects were excluded from the
statistical analysis. Outliers influence was not applied to data
known to be nonnormally distributed. Normality was formally
tested (nortest package), nonparametric analyses were applied
to nonnormally distributed data and to compare variables
between groups that included less than 10 subjects. For the
Wayfinding experiment (sample size = 20), variables of interest
(hits and errors, as well as SSS scores and PVT metrics)
were compared by parametric statistics (one-tailed t-tests, P
< 0.05, Bonferroni corrected). Nonparametric Spearman’s rho
correlations (Bonferroni corrected) were performed between

Frontiers in Human Neuroscience | www.frontiersin.org 6 April 2018 | Volume 12 | Article 122

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Quercia et al. Navigational Errors and Delta Activity

the Wayfinding experiment variables (number of hits and
errors) and delta/theta band (source estimation). As for SSS
score and PVT metrics of the Control experiment (sample size
= 9), Wilcoxon Signed-rank tests, available on coin package
(Hothorn et al., 2008), were performed. Finally, to test the
difference in SSS score and PVT metrics between Wayfinding
and Control experiments, we performed a nonparametric ranked
analysis of covariance, RANCOVA (Feys, 2016), that was
based on Residual rank scores, with residuals of the pre-test
measures as covariate, the Group variable as the predictor
in the regression with residuals of the post-test measures as
dependent variable. First, ignoring Groups (Wayfinding and
Control), the pre-test and post-test measures were ranked
separately, then a regression was run of the post-test ranks
on the pre-test ranks. Second, an ANOVA was carried out
on the residuals obtained from the regression (residual rank
scores).

Finally, effect size was computed (compute.es package) for
the significant Wayfinding results; to evaluate the effect size
of significant Wilcoxon Signed-rank tests, Exact Wilcoxon-Pratt
Signed-rank (coin package) tests were performed.

Differences in hd-EEG activity were assessed using a
cluster-based nonparametric randomization test, considering
multiple-comparisons (Maris and Oostenveld, 2007). The test
allowed to evaluate the topography of electrodes in which
the experimental conditions showed a significant difference
in delta or theta band. In detail, for each electrode the
difference between the experimental conditions was tested by
a dependent-sample t-value. All samples showing a t-value
greater than a threshold corresponding to p = 0.05 were
spatially clustered in connected sets on the basis of spatial
and spectral adjacency. Cluster-level statistics were calculated
by taking the sum of the t-values within every cluster. The
maximum of the cluster-level statistics was taken to calculate
the significance probability by Monte Carlo method: a reference
distribution of maximum cluster t-values was obtained by
randomizing data across two conditions for 5,000 repetitions
to evaluate the statistics of the data. The test is freely available
in FieldTrip (Oostenveld et al., 2011), an open-source Matlab
toolbox.

A formal path analysis was performed using a structural
equation modeling, implemented in Lavaan package (Rosseel,
2012), to examine interrelationships between the subsequent
variables: (a) repetition-dependent improvement, calculated as
deviation units from optimal path obtained before the first
error, weighting for both the number of best hits reached before
the first error (weighted average for each type of retrieval,
with frequency of best hits as weights) and the number of
retrieval repetitions before the first error (excluding the 16 test
phase retrievals); (b) use-dependent saturation, corresponding
to the temporal starting point of errors; (c) local sleep in
wake (delta source activity of the second temporal interval of
errors); (d) number of errors (number of errors of the second
temporal interval). Specifically, the structural equation model
tested was specified by three directional multiple regressions,
to test whether errors were directly induced by local sleep in
wake and indirectly influenced by use-dependent saturation and

repetition-dependent improvement, through its interaction with
use-dependent saturation (Figure 5):

Dependent variable ∼ Independent Variable

1 Use-dependent saturation ∼ Repetition-dependent improvement

2 Local Sleep ∼ Use-dependent saturation

3 Errors ∼ Local Sleep

Validated metrics were used to test model fit (Rosseel, 2012),
specifically: chi-square test statistic, that should not be significant
for a goodmodel; standardized root mean residuals (SRMR, good
model lower than 0.06); root mean square error of approximation
(RMSEA, good model lower than 0.05); comparative fit index
(CFI), an index to compare the fit model and the independence
model, that assumes uncorrelated variables and should be above
0.95 for a good model; Akaike’s information criterion (AIC), to
compare the model (the lowest is the best model) to a saturation
model. Moreover, individual path coefficients were examined for
significance.

RESULTS

Behavioral Data: Time-on-Task Selectively
Increases Both Errors and Hits During
Wayfinding Task
Performance analysis was mainly focused on errors that
occurred during the Test phase of the Wayfinding task. A
representative analysis of performance outcomes for a single
retrieval is shown in Figure 1B. Errors were those retrievals
in which participants resulted outliers and that occurred only
after the achievement of a stable performance, namely after a
breakpoint retrieval (Supplementary Figure 1; for details see
Behavioral analyses). On average, the first breakpoint retrieval
was reached at 22.87min (SD: ± 9.12min.), at retrieval number
62.5 (SD: ± 24.38), whereas the first error was made at
36.77min. (SD: ± 15.28min.), at retrieval number 104.80 (SD:
± 40.60). In general, participants made several errors (mean,
SD: 39.45 ± 18.53; see a representative Error in Figure 1B

and Supplementary Video 1). Errors were divided in two equal
temporal halves from the breakpoint retrieval. We found a
significant increase in the mean number of errors in the
second temporal interval compared to the first [one-tailed paired
t-test, t(19) = 3.55, p = 0.0010, d = 1.12, Figure 2A]. In the
same two temporal intervals of errors we then calculated the
number of best hits (mean, SD: 14.65 ± 1.27), namely the
minimum values—both in units and time—to complete each
retrieval. Like errors, also the number of best hits significantly
increased during the second temporal interval compared to
the first [one-tailed paired t-test, t(19) = 2.06, p = 0.0262,
d = 0.65, Figure 2A]. Differently from the Wayfinding task,
instead, the number of Errors during the Control task did
not differ from the two equal temporal halves, as shown by
Wilcoxon Signed-rank test (W = 42.0, p = 0.012, r = 0.54;
W = 15.5, p = 0.46, respectively). Accordingly, the probability
of making Errors during the Wayfinding task (total number
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TABLE 1 | Cortical regions of significant activity (differences between the conditions).

Anatomical region (MNI coordinatates)

Maximum (mm) Baricenter (mm)

x y z x y z

WAYFINDING TASK vs. BASELINE (SECOND HALF)

Delta power difference–errors

Left precuneus −30 −85 40 Left Superior Parietal Lobule −37 65 46

Left middle frontal gyrus −45 30 40 Left middle frontal gyrus −39 26 38

Right precentral gyrus 50 −5 55 Right precentral gyrus 48 −3 55

Delta power difference–hits

Left precuneus −38 85 40 Left Superior Parietal Lobule −39 −59 48

Left middle frontal gyrus −45 30 40 Left middle frontal gyrus −39 29 35

Right precentral gyrus 45 −5 53 Right precentral gyrus 47 −4 57

Theta power difference–errors

Left inferior parietal lobule −60 −39 41 Left inferior parietal lobule −54 −44 41

Right precentral gyrus 50 −5 55 Right Precentral Gyrus 49 −5 53

Theta power difference–hits

Left inferior parietal lobule −60 39 41 Left inferior parietal lobule −52 −46 39

Right Precentral Gyrus 50 −5 55 Right Precentral Gyrus 50 −11 49

Left inferior frontal gyrus −55 15 30 Left inferior frontal gyrus −51 4 38

WAYFINDING vs. CONTROL TASK (FOURTH QUARTILE)

Delta power difference

Left cuneus −25 −90 35 Left precuneus −30 −75 41

Right superior parietal lobule 32 −80 40 Right precuneus 32 −80 40

Right precentral gyrus 20 −20 70 Left Superior frontal gyrus −1 −7 68

Right primary sensory-motor cortex 35 −25 70 Right primary sensory-motor cortex 30 −32 67

of Errors/Numbers of Retrievals) was significantly higher than
the probability of making Errors during the Control task (total
number of Errors/total numbers of Arrows), as shown by
Exact Wilcoxon-Pratt Signed-rank test (z = 2.66, p = 0.039,
r = 0.61).

Local Increases of EEG Delta Power
During the Intensive Wayfinding Task Are
Positively Related to Errors and Negatively
Related to Hits
Given the recent association between increased EEG delta/theta
power and performance worsening during an extended task in
both rats and humans (Vyazovskiy et al., 2011; Hung et al., 2013;
Bernardi et al., 2015; Nir et al., 2017), we performed a topographic
analysis of the time course of the EEG power changes in the
same two equal temporal intervals from the breakpoint retrieval
detected in the behavioral analysis. In particular, absolute delta
(1–4Hz) and theta (4.5–7.5Hz) power during errors and hits
were compared with the baseline (first 16 retrievals) delta and
theta bands.

For both errors and hits, the nonparametric randomization
test (p <0.05, corrected) revealed a specific topography of EEG
delta power that significantly increased both in the first and
the second temporal interval with respect to baseline, with
a progressive enhancement in significant electrodes engaged

by the task (Figure 2B). Source localization showed that
delta power increase was focused in the left parietal cortex,
in the bilateral sensorimotor and premotor regions and in
the left frontal region. In particular, considering only the
voxels whose delta power difference values exceeded the 95%
percentile of the distribution of values of both conditions
(errors vs. baseline and hits vs. baseline), 3 cortical regions
were identified (Figure 2C and Table 1): (1) in the left parietal
cortex the delta power difference was spread out in the
precuneus, inferior parietal lobule and post-central regions;
(2) in the left frontal cortex the increase of delta power was
maximally located in the middle frontal gyrus; (3) in the right
frontal cortex the maximum was located in the precentral
gyrus. All these regions are engaged in spatial navigation
tasks (Boccia et al., 2014; Ekstrom et al., 2014; Slone et al.,
2016).

The mean power differences of the 3 cortical regions were
calculated and correlated with the mean number of errors
and hits in the second temporal interval. We found a positive
correlation (Bonferroni corrected) between the mean number of
errors and the delta power increase of errors localized in the left
parietal (rho = 0.49, p-corrected = 0.04128, d = 1.12) and right
frontal (rho = 0.58, p-corrected = 0.0109, d = 1.42) cortex. By
contrast, themean number of hits of the second temporal interval
was negatively correlated with the delta power increase of hits
in the left frontal (rho = −0.54, p-corrected =0.0204, d = 1.28)
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FIGURE 2 | Wayfinding analysis. (A) Box plots and dot plots show the distribution of the first and the second half of errors and best hits. The box plots show: the 25th

and 75th percentiles; the variability (whiskers); the median values (bold lines); the outliers (dots outside whiskers). Dot plots show the subjects paired values (colored

dots) connected by the colored lines. The mean number of errors and hits in the second half compared to the first half increases significantly (one-tailed paired t-test,

*p < 0.05; **p < 0.01). (B) Topographic distribution of absolute delta (1–4Hz) and theta power (4.5–7.5Hz), contrasting the first half (top) and the second half (bottom)

of Errors and Hits with Baseline during the Test phase, using a nonparametric statistical test for multiple comparisons (p < 0.05, black stars indicate significant

difference between conditions). (C) Brain sources of delta (top) and theta (bottom) power of the second half of Errors and Hits, compared with the respective brain

sources of the Baseline, at voxel level. Values of bands power at voxel level were obtained by eLORETA (threshold 95% of the maximum value).
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and right frontal cortex (rho = −0.49, p-corrected = 0.0405,
d = 1.12).

In contrast to delta power, theta power of errors and hits
significantly increased only in the second temporal interval
compared to baseline, as revealed by the nonparametric
randomization test (p < 0.05, corrected; Figure 2B). Source
localization showed a theta increase for both errors and hits with
respect to baseline in the left parietal and right frontal cortex
(Table 1). Moreover, a theta increase for hits was observed also
in the left frontal cortex (Table 1). The mean power differences
of the 3 cortical regions were calculated and correlated with the
mean number of errors and hits in the second temporal interval.
We found a positive correlation (Bonferroni corrected) between
the mean number of errors and the theta power increase of
errors only in the right frontal cortex (rho = 0.55, p-corrected
= 0.01080, d = 1.32). Moreover, the mean number of hits was
negatively correlated with the theta power increase of hits only
in the left parietal cortex (rho = −0.51, p-corrected =0.03138,
d = 1.19).

Individual Delta Waves Are Related to
Errors During Wayfinding Task
To investigate the possibility that task-related errors are the result
of periods of neuronal silence, reflected in individual delta waves
(Riedner et al., 2007; Nir et al., 2011, 2017; Vyazovskiy et al.,
2011; Hung et al., 2013; Bernardi et al., 2015), we compared the
number and the amplitude (negative peak) of individual delta
waves during errors and hits (for details see EEG Recording and
Analysis). For each electrode covering the 3 above mentioned
cortical regions (right and left frontal, left parietal), the number
of delta waves and the relative amplitude were averaged across
the electrodes of the cortical regions for both errors and hits and
then compared. Both number and amplitude of delta waves were
significantly higher during errors than hits [one-tailed paired
t-tests, respectively: t(19) = 5.1191, p = 0.00003, d = 1.62; t(19)
= −3.6765, p = 0.0008, d = 1.16; Figure 3A]. A representative
EEG raw signal, recorded from one subject on the same channel
(PO8), shows individual delta waves during an Error and a Hit of
the same retrieval (Figure 3B).

A Learning Dependent Increase of Delta
Power Differentiates Between Wayfinding
and Control Task
To assess the time course of delta and theta power during the
Wayfinding and the Control tasks, both tasks were divided into
four equal temporal intervals (quartiles) from the breakpoint
time of the Wayfinding task. We contrasted absolute delta and
theta power of each quartile with the corresponding Control
task baseline (see EEG Recording and Analysis for details).
The nonparametric randomization test (p < 0.05, corrected)
revealed that during the Wayfinding task, delta power increased
progressively across each quartile, specifically, from the first
to the last quartile (Figure 4A, first row). Instead, during the
Control task, delta power increased significantly only during
the last quartile (Figure 4A, second row). Furthermore, delta
power of the last quartile was higher during the Wayfinding

task compared to the Control one (Figure 4A, third row). Source
localization showed that this delta power difference was focused
on the parieto-occipital and centro-frontal regions. In particular,
considering only the voxels whose values exceeded the 95%
percentile of the value distribution, themain difference was found
in the left parieto-occipital cortex, as well as in the right parietal
areas, in the right primary sensory-motor cortex and bilaterally
in the frontal cortex (Figure 4C and Table 1).

For theta power, the nonparametric randomization test (p <

0.05, corrected) revealed a significant increase only during the last
quartile of both tasks (Figure 4B), which did not differ between
them.

Wayfinding and Control Tasks Did Not
Differ in Terms of Vigilance
Before and after each task, we measured vigilance both
subjectively by using the self-rating Stanford Sleepiness Scale
(SSS) (Hoddes et al., 1973) and objectively by using a 10-min
Psychomotor vigilance task (PVT) (Dinges and Powell, 1985).
The former increased both after the Wayfinding task [one-tailed
t-test: t(19) = 6.328, p-corrected = 0.000002, d = 2] and the
Control task (Exact Wilcoxon-Pratt Signed-rank test: z = 2.32,
p = 0.02784, r = 0.82). Instead, objective vigilance did not differ
before and after both tasks. In detail, the PVT metrics (Basner
andDinges, 2011), namely the number of lapses and themeasures
of psychomotor response speed (mean 1/RT and mean slowest
10% 1/RT) did not differ before and after the Wayfinding task,
as shown by one-tailed paired t-test on number of lapses [t(19) =
0.86, p= 0.1989], on mean 1/RT [t(19) = −2.05, p = 0.9733] and
on mean slowest 10% 1/RT [t(19) =−1.92, p= 0.9615]. The same
metrics did not differ also before and after the Control task, as
shown by Wilcoxon Signed-rank test on number of lapses (W =

3, p = 0.18), on mean 1/RT (W = 7, p = 0.9727) and on mean
slowest 10% 1/RT (W = 20; p= 0.6328).

Moreover, we assessed the difference betweenWayfinding and
Control task for SSS score and for PVT metrics. Pre-test scores
did not differ between the tasks, as shown by Wilcoxon Signed-
rank test on subjective sleepiness scores (W = 1.5, p = 0.18), on
number of lapses (W = 6, p = 0.78), on mean 1/RT (W = 20, p
= 0.82) and on mean slowest 10% 1/RT (W = 23; p = 1). More
importantly, post-test scores did not differ [subjective sleepiness
score: F(1, 16) = 1.1514, p = 0.2992; number of lapses: F(1, 16) =
0.8306, p= 0.3756; response speed: F(1, 16) = 0. 053, p= 0.82; and
mean slowest 10% 1/RT: F(1, 16) = 0.059, p = 0.81], as assessed
using a nonparametric ranked analysis of covariance (Feys, 2016)
(RANCOVA) with the post-test as dependent variable predicted
by group (Wayfinding and Control) and the pre-test as covariate
(for details see Materials and Methods).

Finally, also the comparison of topographical EEG changes of
absolute delta and theta power in the two PVT sessions following
the Wayfinding and Control tasks did not show any significant
difference.

Path Analysis: Learning-Related
Use-Dependency Predicts Local Sleep
As we have seen, the effect of time-on-task on delta power
was more prominent during the Wayfinding task than the
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FIGURE 3 | Individual delta waves and Wayfinding performance. (A) Box plots and dot plots show the distribution of number and amplitude of delta waves during

errors and hits. The box plots show: the 25th and 75th percentiles; the variability (whiskers); the median values (bold lines); the outliers (dots outside whiskers). Dot

plots show the subjects paired values (colored dots) connected by colored lines. The mean number and negative amplitude of delta waves during errors is significantly

higher compared to hits (one-tailed paired t-test, *p < 0.05; ***p < 0.001). (B) Representative examples of individual delta waves (raw traces) during an Error (top) and

a Hit (bottom) of the same retrieval (“Town Hall–Flower Shop”) of a subject. Red stars indicate the negative peaks of delta waves detected.

Control one. In detail, the increase of errors during the
wayfinding performance was specifically associated to delta
waves, and are not due to basic/motor perceptual aspects nor
to vigilance. However, these results did not explain how the
progressive improvement during the Wayfinding task could
lead to errors, as a consequence of local sleep in wake. To
investigate how performance improvement and local sleep in
wake interact to induce performance failures, we performed a
path analysis, testing direct and indirect relationships between
the subsequent factors (Figure 5, for details see Materials and
Methods): (a) repetition-dependent improvement, calculated
as deviation units from the optimal path (“equation 2,” see
Materials and Methods for details), weighted for the number
of best hits obtained before the first error and the number of
repetitions before the first error (see Materials and Methods
for details); (b) use-dependent saturation, namely the temporal

starting point of errors; (c) local sleep in wake, namely delta
source activity during the second temporal interval of errors,
and (d) errors (number of errors of the second temporal
interval). The path analysis, specified by three directional
multiple regressions, tested whether performance improvement
and its interaction with use-dependent saturation, that directly
influenced local sleep in wake, indirectly induced errors. The
model, called “learning-related use-dependent local sleep model,”
provided a good statistical fit (for details, see Materials and
Methods for details), specifically: nonsignificant chi-square test
statistic (χ2 = 1.02, p = 0.79); standardized root mean
residuals (SRMR) lower than 0.06 (SRMR = 0.041); root
mean square error of approximation (RMSEA) lower than
0.05 (RMSEA = 0.000); CFI, namely the comparison between
the fit model and the independence model (uncorrelated
variables assumed), above 0.95 (CFI = 1.00). Furthermore, as
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FIGURE 4 | Comparisons between Wayfinding and control task. (A) Topographic distribution of absolute delta power (1–4Hz), contrasting each quartile (T1–T4) of the

Wayfinding task (first row), the Control Task (second row) with the respective Baseline and the difference of each quartiles between the tasks (third row). (B)Topographic

distribution of absolute theta power (4.5–7.5Hz), contrasting the last quartile (T4) of the Wayfinding task (left) and the Control task (right) with the respective Baseline

and the difference between the task. Topographic distribution of bands power was obtained by nonparametric statistical test for multiple comparisons first line (p <

0.05, black stars indicate significant differences between conditions, 95% threshold) using a nonparametric statistical test for multiple comparisons (p < 0.05, black

stars indicate the clusters of electrodes showing a significant increase in delta and theta power). (C) Brain sources of delta power of the difference between the last

quartile (T4) of the tasks at voxel level. Values of bands power at voxel power were obtained by eLORETA (threshold 95% of the maximum value).

indicated by the AIC, the learning-related use-dependent local
sleep model resulted better than the saturated model (AIC
= 218.226, 213.247; respectively). As shown in Figure 5, the
three directional regressions demonstrated that: (1) repetition-
dependent performance improvement predicted the temporal
starting point of errors (β = 0.67, p = 0.000), (2) this use-
dependent improvement-related factor (saturation), in turn,
significantly predicted the amount of local sleep in wake

(β = 0.48, p = 0.014), which ultimately (3) determined the
number of errors (β = 0.45, p= 0.024).

DISCUSSION

In the present study, by using an overlearning paradigm
without rest breaks (Shibata et al., 2017) during wayfinding,
we induced off-periods of local sleep in wake indexed by the
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FIGURE 5 | Learning-related use-dependent local sleep model. Path analysis

model examining the contributions of repetition-dependent improvement and

use-dependent saturation to local sleep and errors in a hypothesized model.

Values represent standardized regression weights. The model fits were

estimated (χ2 = 1.02, p = 0.79, RSMR = 0.041, RMSEA = 0.000, CFI =

1.00). Learning-related use-dependent local sleep model was better than

saturated model (AIC = 213.247, AIC = 218.226, respectively). Solid line

indicated significant paths. ***p < 0.001, * p < 0.05.

occurrence of individual delta waves in task-related regions,
as shown by source localization. Interestingly, we found that
off-periods were strictly and specifically linked to performance
errors. By contrast, the intensive use of the same task-related
circuits during a control experiment, that did not require
learning, did not affect neither the behavioral performance
nor the local sleep in wake, although vigilance did not
differ between the tasks. Finally, by using a formal path
analysis, our findings could support a framework in which
performance failures are a consequence of the amount of local
sleep in wake, which in turn depends on the intensive and
repeated use of the spatial navigation circuits undergone to
learning-dependent plasticity processes. The present study shed
light on the factors triggering off periods of local sleep in
wake and their behavioral consequences, namely performance
errors, highlighting their tight relationship with use-dependent
learning-related plasticity. These findings are discussed in detail
below.

Difference Between Wayfinding and
Control Task
Although episodes of local sleep in wake could seem a
maladaptive response inasmuch they have been linked to
performance impairments, both in rats and humans (Vyazovskiy
et al., 2011; Bernardi et al., 2015; Nir et al., 2017), it is likely
that they could be involved in the initiation of local restorative
processes, including synaptic homeostasis (Vyazovskiy et al.,
2011; Tononi and Cirelli, 2014; Rodriguez et al., 2016). Indeed,
Vyazovskiy et al. (2011) found that local use-dependent sleep
(i.e., periods of neuronal silence) during wakefulness could be
promoted by a repeated and intensive neuronal activity that,
according to the ATP-cytokine-adenosine mechanism (Krueger
et al., 2008, 2013), leads to an increased production of sleep
regulatory substances. Many of these substances are involved in
the homeostatic regulation of SWA, the most prominent local
and use-dependent component of NREM sleep plasticity, as
proposed by the synaptic homeostasis hypothesis (SHY) (Tononi
and Cirelli, 2014). SHY claims that sleep would be necessary
to reset the capacity to learn, saturated at neuronal level by
waking-learning plasticity, so that the fundamental function of
sleep may be the consolidation of memory. Moreover, SHY
assumes that memory consolidation cannot be provided by
wakefulness because it requires environmental disconnection
(Tononi and Cirelli, 2014). Our findings indicate that specific
networks, directly involved in learning-dependent plasticity
processes and saturated by overlearning, may go off-line also
during wakefulness.

At variance with previous human studies on local sleep in
wake, in which the task merely involved visuomotor, attentional
or categorization functions (Hung et al., 2013; Bernardi et al.,
2015; Nir et al., 2017), in the present work we differentiated
local use-dependent hd-EEG changes during an intensive
spatial navigation task, that required a previous learning phase
(formation and use of a cognitive map of a virtual city for
wayfinding), from those of a control task without learning,
that involved only the motor and procedural components
of spatial navigation (directional arrows to be followed in
different virtual environments without landmarks). This wake
manipulation induced the increase of a specific index of learning-
dependent plasticity, namely delta activity (Huber et al., 2004,
2006; Vyazovskiy et al., 2008) rather than theta (5–9Hz), the
typical EEG marker of sleepiness (Finelli et al., 2000). Theta and
delta activity are claimed as the neural correlates of good spatial
navigation ability (Watrous et al., 2011, 2013), however in the
present study only delta activity was specifically associated to
the spatial navigation task (wayfinding) that required learning,
during which delta activity gradually became more intense across
time, evidence of its use-dependent nature. During the control
task, instead, delta and theta activity were prominent exclusively
at the end (last quartile), possibly due to sleepiness (Finelli
et al., 2000). While for theta no topographical differences were
found between tasks, delta activity of the Wayfinding task was
significantly higher than that of the Control task, as highlighted
by source reconstruction analysis, that showed that delta activity
was localized in a larger number of spatial navigation-related
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regions duringWayfinding than Control task, further supporting
the relationship between delta activity and spatial navigation
learning.

Difference Between Local Sleep in Wake
and Sleepiness
The specificity of these effects of wayfinding on local sleep in
wake is further highlighted by the subjective sleepiness and
objective vigilance measures (psychomotor vigilance task, PVT).
Although after both tasks (Wayfinding and Control) participants
became more sleepy, subjective sleepiness did not differ between
them at the end of the protocols. Therefore, the local increase of
delta activity during Wayfinding cannot be merely accounted for
by the increase of sleepiness over time. Moreover, PVT metrics
not only resulted unaffected by the execution of both tasks,
but these also did not differ between them at the end of the
experimental protocols, as well as the relative delta and theta EEG
activity. This is probably due to the fact that our experimental
design did not employ sleep restriction/deprivation, at variance
with recent studies on local sleep in wake (Hung et al., 2013;
Bernardi et al., 2015; Nir et al., 2017), in which visuomotor and
attentional performance was profoundly affected. Our approach
was rather based on the manipulation of the task characteristics
(with/without learning), maintaining the same (long) time-on-
task, in order to induce local sleep processes during wake even
in a circadian phase favorable to alertness. In fact, according to
recent evidence, not only homeostatic sleep pressure (Tononi
and Cirelli, 2014) but also circadian rhythms affect brain locally
(Muto et al., 2016). To avoid both the circadian influence on
sleep pressure and the restriction of sleep duration imposed by
extended wakefulness protocols on neurobehavioral performance
(Hung et al., 2013; Bernardi et al., 2015; Nir et al., 2017),
both experimental tasks were scheduled in the morning and
performed in a proper vigilance window, namely from ∼9:00 to
∼13:00 (Van Dongen and Dinges, 2005; Muto et al., 2016).

Relation Between Delta Activity, Time on
Task-Effect and Performance Failures
Time-on-task effect, namely the decline in performance that
increases as a function of the duration of a cognitive task, should
be the result of an intensive repeated use of specific neuronal
groups engaged in the task at hand (Van Dongen et al., 2011).
For this purpose, we explicitly manipulated the Wayfinding task
that, beyond the learning phase (formation of the cognitive map
of a virtual city), was scheduled to run continuously, without
any kind of rest breaks, and required the repetition of the same
pool of retrievals (overlearning, Shibata et al., 2017). Despite
the achievement of a stable performance after ∼20min (in line
with Shibata et al., 2017) and many repetitions of the same
retrievals, after about 40min subjects began to make several
errors that increased in the course of time. At the same time
delta activity associated to errors and hits, at variance with theta
activity, increased locally and progressively during this task.
Errors occurred during well-learned retrievals and they were
preceded and followed by hits. Therefore, we can exclude that
errors could depend on a wrong or inadequate learning.

According to literature, low-frequency oscillations during
spatial navigation are related to memory processing (Jacobs,
2013; Ekstrom and Watrous, 2014; Vass et al., 2016). As
previously pointed out, the progressive increase of delta activity
differentiates between Wayfinding and Control task: the increase
of delta activity across time was specifically associated to the
former, that is the spatial navigation task that required learning.
These findings are further supported by source reconstruction,
revealing that delta activity was mainly localized in the left
parietal and bilateral frontal cortices, all regions engaged in
memory-based spatial navigation tasks (Kravitz et al., 2011;
Boccia et al., 2014; Ekstrom et al., 2014; Slone et al., 2016).
Interestingly, the regions detected by source reconstruction have
been recently linked to navigation in simple virtual environments
(Slone et al., 2016), as if the intensive repetitions of the same
retrievals had made the complex virtual city progressively more
familiar. We cannot rule out the involvement of subcortical
regions, as hippocampus, during both tasks, however they cannot
be detected by hd-EEG. Although also theta was localized in the
left parietal and bilateral frontal cortices, this occurred only at
the end of the Wayfinding task. Thus, as mentioned above, theta
source activity could be interpreted as an index of sleepiness.

As for delta activity, although hits and errors showed similar
source activation, the correlations between delta source activity
and behavioral outcomes allowed us to differentiate hits from
errors. Indeed, only errors positively correlated with delta activity
of the left parietal and right frontal cortices, whereas hits
negatively correlated with delta activity in the bilateral frontal
cortex. In other words, the higher the errors, the higher the
delta in brain regions critically involved in navigation within
recently learned environments like the precuneus and the inferior
parietal lobule within the posterior parietal cortex (Boccia et al.,
2014) as well as the right prefrontal cortex (e.g., Slone et al.,
2016); moreover, the smaller the hits, the higher the delta in the
bilateral frontal cortex, whichmight be congruent with top-down
executive control of visuospatial processing by the prefrontal
cortices (Kravitz et al., 2011).

Given that, we decided to investigate in the aforementioned
brain regions (left parietal, right and left frontal) the individual
delta waves of errors and hits, as the sign of local sleep in wake,
according to our experimental hypothesis. In fact, performance
errors during wake are associated with the negative peak of
individual slow waves, that correspond to periods of neuronal
silence (off-periods) of the detected waves (Vyazovskiy et al.,
2011; Nir et al., 2017).

Individual Delta Waves as Indexes of Local
Sleep in Wake
From the analysis of the individual delta waves in wakefulness
a core finding of the current study emerged, namely that
performance impairments are specifically associated to periods of
neuronal silence, possibly as the results of the synaptic saturation
of spatial navigation circuits. Indeed, during the Wayfinding
task, we found that off-periods of individual delta waves were
higher, in terms of number, and deeper, in terms of negative
amplitude, during errors than hits. Thereby, these errors might
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be considered the behavioral counterpart of periods of neuronal
silence due to use-dependent processes, a sign of learning-
dependent plasticity, only apparently maladaptive. In other
words, these off-periods may allow a brief rest to the overloaded
networks, and they could be related to the first steps of the
memory consolidation processes. As a (negative) consequence,
it is possible that in these moments subjects could not retrieve
the best path they learned and reached previously, choosing
instead old (used before performance stabilization) and unusual
alternative paths because of the synaptic overload in the specific
spatial navigation circuits. Thereby, it would be interesting to
investigate changes of dynamic functional connectivity in the
time window between errors and the subsequent hits. Successful
spatial navigation in recently learned environments indeed
engages a complex network (Boccia et al., 2014), and errors could
represent the behavioral output of the shutdown of the functional
connectivity within this network.

CONCLUSIONS

The proposed “learning-related use-dependent local sleep
model” suggests a pathway in which even performance failures
(errors) could be functionally linked to learning-related plasticity,
when they result from local use-dependent sleep periods (off
periods) in wake. Local sleep in wake can lead to errors, which
may be the dangerous but necessary consequence of learning-
dependent synaptic overload, possibly initiating local recovery
and consolidation processes. In a similar way, even if sleep
represents a significant danger to survival from an evolutionary
perspective, memory consolidation attributes to it a universal and
essential function. However, future studies are needed to further
elucidate the functional implications of the described off periods
in wake for performance recovery or memory consolidation.
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