Ferguson et al. BMC Medical Research Methodology (2019) 19:186

https://doi.org/10.1186/512874-019-0827-4

BMC Medical Research
Methodology

RESEARCH ARTICLE Open Access

Graphical comparisons of relative disease
burden across multiple risk factors

Check for
updates

John Ferguson' ®, Neil O'Leary’, Fabrizio Maturo', Salim Yusuf* and Martin O'Donnell’

Abstract

factors for stroke.

Background: Population attributable fractions (PAF) measure the proportion of disease prevalence that would be
avoided in a hypothetical population, similar to the population of interest, but where a particular risk factor is eliminated.
They are extensively used in epidemiology to quantify and compare disease burden due to various risk factors,
and directly influence public policy regarding possible health interventions. In contrast to individual specific metrics such
as relative risks and odds ratios, attributable fractions depend jointly on both risk factor prevalence and relative risk. The
relative contributions of these two components is important, and usually needs to be presented in summary tables that
are presented together with the attributable fraction calculation. However, representing PAF in an accessible graphical
format, that captures both prevalence and relative risk, may assist interpretation.

Methods: Taylor-series approximations to PAF in terms of risk factor prevalence and log-odds ratio are derived that
facilitate simultaneous representation of PAF, risk factor prevalence and risk-factor/disease log-odds ratios on a single
co-ordinate axis. Methods are developed for binary, multi-category and continuous exposure variables.

Results: The methods are demonstrated using INTERSTROKE, a large international case control dataset focused on risk

Conclusions: The described methods could be used as a complement to tables summarizing prevalence, odds ratios
and PAF, and may convey the same information in a more intuitive and visually appealing manner. The suggested
nomogram can also be used to visually estimate the effects of health interventions which only partially reduce risk
factor prevalence. Finally, in the binary risk factor case, the approximations can also be used to quickly convert logistic
regression coefficients for a risk factor into approximate PAFs.

Background

Attributable fractions [1] have become a common way of
measuring the disease burden attributable to a risk factor
on a population level. More precisely, they measure that
portion of disease prevalence which would be avoided in a
hypothetical population where a particular risk factor was
entirely eliminated, but is otherwise identical to the popu-
lation of interest. Depending on the author, this quantity
is referred to variously as a population attributable frac-
tion (PAF), population attributable risk and excess frac-
tion, although it has been given many other names [2, 3].
Such metrics are commonly reported (and misinterpreted)
by the media, and often given erroneous interpretations.
To clarify confusion, Greenland and Robbins distinguish
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PAF from ‘etiologic fractions’ that truly represent the
proportion of disease prevalence that is caused by a par-
ticular risk factor [4], a quantity that can only be estimated
under certain conditions Despite this misinterpretation,
the attention garnered by PAF calculations signify their
importance in both informing public policy regarding
appropriate disease interventions and their power to influ-
ence public perception about what might and might not
be healthy behaviour, or healthy levels of physiologic mea-
sures such as blood pressure.

Often, attributable fractions and their possible general-
izations [5, 6] are used to rank the importance of the
various risk factors that are involved in disease patho-
genesis. As an example, we used attributable fractions to
quantify and compare disease burden due to major
stroke risk factors [7]; the analysis indicating that high
blood pressure, physical inactivity and apolipoprotein
levels were the most important risk factors contributing

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-019-0827-4&domain=pdf
http://orcid.org/0000-0001-8475-398X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:john.ferguson@nuigalway.ie

Ferguson et al. BIC Medical Research Methodology (2019) 19:186

to stroke on a population level. Here, we use these same
data to demonstrate an alternative and complementary
graphical comparison of the importance of the risk factors
under consideration. The suggested plots allow a quick
visual assessment of the relative attributable fractions for
differing risk factors, as well as risk factor prevalence and
disease/risk factor odds ratios. The plots utilize approxi-
mations that facilitate graphical representation of PAF and
impact fractions in terms of prevalence and Odds Ratio.
In addition, the approximations can be used as a rule of
thumb to quickly convert logistic regression coefficients
into attributable fractions. Extensions of the methods
to multi-category and continuous risk factors are also
suggested.

Methods
Definition and previous estimators for PAF (binary
exposures)
We first define PAF and possible estimators assuming a
binary disease indicator, Y, and a binary risk factor (or
synonymously binary disease exposure), A. We also state
some approximations that will be used in the suggested
plots, leaving their justification to the Additional file 1.
While many authors have defined PAF using conditional
probabilities for Y given A, attributable fractions are
causal concepts and deserve a causal definition. With
this in mind, we adopt a counterfactual notation, [8],
where the pair (Y*~° Y*=') denotes the potential (or
counterfactual) binary disease outcomes for an individ-
ual under the two scenarios that that they were exposed
to the risk factor A (a =1), and that they were not ex-
posed to the risk factor A (a =0). One interpretation of
the pair (Y*~° Y*=1) is that they are the disease out-
comes that would be observed for that individual in two
almost identical universes, which differ only according
to whether that individual was exposed to the risk factor,
and in the possible consequences of this exposure. In
the situation that (Y*=°, Y*=1) = (0, 1), the risk factor, A,
has is regarded as having a causal effect on disease for
that individual . In reality, we observe either Y*=° or Y*~
! but not both, as every individual (at least at a point in
time) is either exposed or unexposed to A.

Given these preliminaries, the population attributable
fraction can be defined [8] as:

P(Y =1)-P(Y*° =1)

PAF = ,
P(Y =1)

(E1)

where P(Y*=%°=1) can be interpreted as the disease
prevalence in a population where nobody was exposed,
and P(Y'=1) is current disease prevalence in the current
population. While in general PAF can be negative, here
we assume that the risk factor has been coded so that
P(Y=1)>P(Y*=°=1), which is usually implied if @ =0
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indicates absence of the risk factor. As explained above,
Y*= is only observed on the group of individuals who are
unexposed to the risk factor, and as a result P(Y*=°=1)
and by extension E1 are not directly estimable. To
proceed, three technical assumptions, usually referred to
as consistency, positivity and conditional exchangeability,
are needed (see Table 1 and [8] for further discussion). In
this manuscript, we also assume no multiplicative interac-
tions involving the exposure, or more precisely that the
relative risk within a strata ¢ of the confounders: RR =
P(Y=1|A=1, C=¢)/P(Y=1|A=0, C=c¢) does not de-
pend on ¢ [10]. Under these conditions one can rewrite E1
as follows:

P(A =1]Y = 1)(RR-1)

PAF = .

R (E2)

Note that under the same conditions other estim-
able expressions for E1 do exist (see (3)), but E2, an
expression that was first derived in [9], has the added
attraction of estimability in case-control studies. A
short proof of the equality of E1 and E2 under these
assumptions is provided for convenience in the Add-
itional file 1, but similar results have been proven
already elsewhere [17, 18].

Under an additional assumption that the disease risk is
small under each strata ¢ of the confounders, the condi-
tional odds ratioo OR=0dds(Y=1A=1, C=c)/
Odds(Y=1]|A=0, C=c) where Odds(Y=1|A=a, C=
¢)=P(Y=1|A=a, C=¢)/1-P(Y=1|A=0, C=¢)) is a
close approximation for RR. This implies that under this
‘rare disease’ assumption, PAF can be then estimated by

substituting an estimated Odds Ratio, OR, that is ad-
justed for ¢, and the sample proportion of cases with
A=1, P(A=1|Y =1), into E2 . Typically, OR is then
calculated via exponentiating the coefficient for the risk
factor, ﬁAl, in a logistic regression model (see Table 1) that
regresses Y against A and C leading to the estimator:

P(A=1]Y =1) (eﬁ1-1>
eb
This approach described above has formed the back-
bone of many previous attributable fraction estimators

[11, 12]. In the Additional file 1, we derive the following
approximation for E. 2b:

(E2b)

PAF =

PAF ~P(A=1]Y =0) 3, (E2c)

implying that the estimated PAF is approximately the
estimated log-odds ratio between the risk factor and dis-
ease multiplied by the estimated prevalence of the risk
factor in controls.
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Table 1 Definitions, assumptions and approximations for PAF when the exposure is binary, multi-category and logistic

Binary Multicategory Continuous
Counterfactual definition of PAF PY=1)-P(r"=0=1) PY=1)-P(r"=0=1) PY=1)-P(y"=0=1)
PY=1) P7=1) P7=1)

Assumptions:

1. Standard causal inference assumptions

- Conditional exchangeability (counterfactual outcome Y=/ and assigned risk factor A are
independent random variables, within strata of observed confounders ¢

- Consistency of counterfactuals: Y*=/ =Y when A =j for all levels j of the risk factor A

+ Positivity 0 < P(Y*=/=1|C=¢) <1 for all j and strata ¢

2. No interactions (P(Y*~/=1|C= AP =k=1 | C=0) does not depend on ¢), for any possible values

of exposure j and k

3. Rare disease assumption (P(Y =1) small)

Re-expression of PAF (given assumptions 1. PA=1Y=1)(RR—-1)/

and 2) RR
“Corresponding logistic model logit(P(v=1| A=j,C=
(Given assumption 3.) 0)

=H+ B+ v
Logistic Approximation for PAF — 3.
(Given assumptions 1,2 and 3) P(A=1JY - 1)(6& -1

B

Graphical Approximation P(A :/1\\\/ =0) x Rave
“Average” estimated log-odds ratio: Bm B?

Si PA =Y = DRR1)/RR™ [ (1) St

logit(P(Y=1] A=j,C=
) =u+pB+yl0

logit(P(Y=1| A=j, C=
Q)= u+ B + ()

S HG (U =) feBO) e

S Ma= iy = iy

P(A> 0y =0) x B 1 x B e
K 0o TN AT N
BA— ilY — 0B S fUI0)B()d
Pa=jlv=o0
; (A=jlY =0)B,
i-P(A = 0]y =0)

*Here B, =0 by definition for the Binary and Multicategory exposures and f(jo) = 0 for continuous exposures. Estimates 3(])/Bj and y(c) could be found via
generalized additive models with a logistic link, where the confounders and possibly the exposure are modelled non-parametrically

**Note that RR;=P(Y=1|A=j,C=0)/P(Y=1A=0,C=c) and RR() =P(Y=1]|A=j,C=)/P(Y=1|A=jo,C=C)

***f(j| 1) is the conditional density of A when Y = 1; similarly f{j| 0) is the conditional density of A when Y=0

*+*Note that when A is continuous, the probability of a non-reference level of the exposure: P(A+j,|Y = 0) is 1

Definition of PAF for multicategory and continuous
exposures
These definitions and results extend easily to multicate-
gory and continuous exposures. For instance, suppose
that the exposure A can take K+ 1 values: a €0, 1, ..., K,
with a = 0 a reference level such that:
P(Y*/ =1)2P(Y*° =1) (E3)
for all j=1, ..., K. In this case, the formula for PAF is
still given by E1 which now has the interpretation as the
proportion of disease cases removed in a hypothetical
population where everyone had A =0. In the case that A
is continuous, we set the A =j, to be a minimum risk
level of the exposure variable, that is:
P(Y*/ =1)2P(Y* ) =1) (E4)
for all possible exposure values: j. Here, a suitable defin-
ition of PAF is the following:

P(Y =1)-P(Y*o =1)

PAF = )
P(Y =1)

(E5)

and has the interpretation as the proportion of disease
cases removed in a hypothetical population where every-
one had A =j,. Note that in order to estimate E5, j,
needs to be a realizable value of the exposure variable,

with sufficient data in its vicinity to estimate relative
risks. For instance, jo=0 would not be an acceptable
value of systolic blood pressure, even if the relationship
between blood pressure and disease risk was strictly
increasing.

For both multicategory and continuous exposures, the
appropriate estimators for PAF, underlying assumptions
and possible approximations are similar to those de-
scribed in the binary case above and are detailed in
Table 1, and proven in the Additional file 1. In particu-
lar, we still have a result with a similar flavour to (2c):

P/A?:' - ﬁﬁave’ (E6)

with P now the estimated probability of an individual
having a non-reference level of the exposure in controls

and /;’ave an average of estimated log-odds ratios for vari-
ous exposure levels of A compared to the reference
weighted according to the distribution of exposure in

controls. Provided /S’uve is not too large and the disease is

rare, another re-interpretation of /;’me is it is approxi-
mately the average percentage elevation in risk when
comparing the actual exposure levels observed in the
population to the reference exposure. Note that E6 re-
duces to E2c in the case that the risk factors are binary.
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Results

Application of approximations on INTERSTROKE
INTERSTROKE [7] is a large international case control
study designed to quantify the contribution of established
risk factors to stroke prevalence at a global level. Here we
consider the 10 major risk factors for stroke considered in
[7]. These are high blood pressure, waist-to-hip ratio, diet,
physical activity, diabetes mellitus, alcohol intake, stress,
presence of cardiac risk factors and the ratio of apolipo-
proteins B to Al. In the original analysis, waist hip ratio,
diet score, alcohol intake and Apo-A/Apo-B ratio were
divided into 3 groups, necessitating a multi-category
approach to calculating attributable fractions for these
variables. To apply the approximations described above,
we first coded the minimum risk group for each risk fac-
tor, which was known for the 10 risk factors we consider
here, as a =0. Conditional Odds Ratios were then esti-
mated via a logistic regression model that adjusted for age,
sex and country as well as the other 9 risk factors. Note
that stroke, while regarded as a common disease, only has
a prevalence of around 1% in the population [13] indicat-
ing that the PAF approximations derived above may be
appropriate. Table 2 shows the log-Odds Ratios, Odds
Ratios, prevalences (in controls) and the approximation
E6 together with the exact calculation given by the logistic
approximation in Table 1. The approximation is accept-
ably accurate, except perhaps for cardiac causes, the risk-
factor having the largest estimated odds ratio. Later, we
will describe more precisely when the approximations
may break down.

Simultaneous graphical representation of PAF, odds

ratios and prevalence

While it is well recognized that PAF depends jointly on
risk factor prevalence and relative risk, the relative con-
tributions of these two components may be hidden when

Table 2 lllustration of the approximations on the INTERSTROKE dataset. For binary risk factors, Bm =

~ave
factors 3

Page 4 of 9

PAF is reported. A typical solution is to psresent PAF,
risk factor prevalence and estimated odds ratios in some
summary table [7]. Nevertheless, for some readers a sin-
gle graph, simultaneously representing all three metrics
might convey the same information in a more efficient,
intuitive and visually appealing manner. For instance,
clusters of risk factors with similar log-odds ratio and
prevalence are more easily identifiable using these
graphs. Here we use the approximations described above
to construct such plots. Denoting the approximate PAF

— A~ ~ave
from E6 as PAF, = PS5
expression:

the first plot involves the re-

Bave _ PAFa ) (E7)

p

Imagine now a set of N disease risk factors (either bin-
ary, multi-category or continuous); we denote the in-
verse prevalence, log-OR pair for the i™ risk factor as
(13;17 /;’?ve) . Plotting the ([3;1, /S’Em) pairs on a standard x-
y co-ordinate axis, risk factors with inverse prevalence/
log-odds ratio pairs lying on the line of slope K: /;’ave
= K/P emanating from the origin both have the same

approximate attributable fractions, PZI\-"a = K. Note that
binary, multicategory and continuous exposure variables
can all be represented on this same axis, with the under-
standing that P; represents prevalence of the risk factor
(in the binary case), and the prevalence of a ‘risk-increas-
ing’ level of the exposure (in the multicategory and con-
tinuous cases). The resulting plot resembles a fan, with
risk factors bearing heavier disease burden lie on lines of
increasing slope. The slope of any such line is an
approximate attributable fraction. Another observation

regarding equation E7: y = PAE,. (13)’ is that y = PAF,

/og(é??), for multicategory risk

is a kind of weighted average log odds ratio summarizing the increase in risk of non-reference levels of the risk factor

compared to the reference level. Confidence intervals for exact PAF are given at 99% level and calculated using Bootstrap

Risk factor B ~ Iog(OR) e[g“” Op Prevalence exposure in controls /;X}gr%imate EiaFc:t[g]alcu\ation
High blood pressure (Y/N) 1.093 298 47 4% 51.8% 47.9% (45.1-50.6)
Lack of physical activity 0.501 1.65 83.7% 41.9% 35.5% (27.7-44.7)
ApoA, ApoB ratio (in tertiles) 0428 153 66.9% 28.6% 26.9% (22.2-31.9)
Diet score (in tertiles) 0.378 1.46 67.0% 253% 23.0% (18.2-28.9)
Waist hip ratio (in tertiles) 0.294 1.34 67.0% 19.7% 18.8% (13.3-25.3)
Smoking (Y/N) 0513 167 22.4% 11.5% 12.4% (10.2-14.9)
Cardiac causes (Y/N) 1.156 3.18 4.9% 5.7% 9.1% (8.0-10.2)
Frequency of alcohol consumption (3 levels)  0.186 1.20 27.7% 52% 59% (3.4-9.7)
Global stress (Y/N) 0.301 135 14.4% 43% 5.0% (2.6-7.3)
Diabetes (Y/N) 0.148 1.16 12.9% 1.9% 24% (0.1-4.9)
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when P = 1, implying that if we move the y-axis to 1/P
= 1, the y-intercept of the line emanating from (0,0) to

(13;1, /;’;We) will be the approximate PAF.

Figure 1 demonstrates a figure built on these observations
for all 10 rows of Table 2. The plot allows simultaneous vis-
ual representation and ranking of the prevalence, odds ratio
and attributable fraction for a number of risk factors. For ex-
ample, the largest attributable fraction (hypertension) is both
represented as the line of greatest slope, and as the largest y-
intercept. The other 2 axes represent prevalence (x-axis) and
odds ratios (y-axis on right hand side). Note that Cardiac
causes (such as prior atrial fibrillation or myocardial infarc-
tion) stand on the plot as having the highest odds ratio of
stroke but contributes only modestly to stroke burden due
to the low prevalence of these causes in the population.

Attributable fraction nomograms

Interestingly, the multiplicative formula (E6) to produce
an approximate attributable fraction from prevalence in
controls and an estimate of the log odds ratio/relative
risk is similar to the updating rule in Bayes Rule (that is,
prior odds x Likelihood = posterior odds), a dependence
that has been exploited in the nomograms suggested by
Fagan [14]. This analogy suggests a similar pictorial
representation can be used to display the relationships
between approximate PAF, prevalence and the estimated

log-OR (Bave). In more detail, the multiplicative equation

Page 5 of 9

(E6) transforms to a linear equation upon taking logs of
both sides of the equation, with the result that log(p"”) is
proportional to the average of the log prevalence (in
controls) and the log approximate PAF. This observation
facilitates a log-scale plot where control prevalence, odds
ratios and approximate PAFs for each risk factor are
connected with lines (see Fig. 2). Here clustering of risk
factors (having similar prevalences, odds ratios and ap-
proximate PAFs) are represented as effective equality of
the corresponding lines (for instance WHR tertile and
diet tertile in Fig. 2). When 2 risk factors have similar
PAF, but have differing prevalences and relative risks,
the corresponding lines have very different slopes but
will almost intersect at the same approximate PAF verti-
cal (an example being cardiac-related risk factors and
alcohol in Fig. 2).

The symmetry of the multiplicative relationship (E6)
allows us to reorder the prevalence and odds ratios axes
of the previous nomogram, so the left axis represents
Odds Ratio, with the middle axis now representing con-
trol prevalence (Fig. 3a). This alternative representation
may be helpful as the lines originating at a particular OR
can be ‘tilted’ to represent alternative populations (where
the prevalence of the risk factor might be higher or
lower), or perhaps instead a partial elimination of the
prevalence of the risk factor resulting from an interven-
tion (that is an impact fraction, rather than PAF). For
example, Fig. 3b shows the approximate PAF that would

100% :.
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X 50% -4 -7
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= o ) -,
S 40% --'p IE L’
@®© 0, 4 //
0% g5l 7 -
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to right). Risk factors are ranked 1-10 according to approximate PAF

. 3 _
4 Risk factors (ranked)
- 2.7
-, ®  1: Hypertension
L 24
g o 2: Inactivity
o ®  3: ApoB/ApoA
2
L ® 4:Diet
1870 ,
@) ® 5 WHR
1.6 % ®  6: Smoking
1.4 ) ® 7: Cardiac causes
13 %
O < 8: Alcohol
1.2 9: Global Stress
11 ® 10: Diabetes
1
X
[Te}

Prevalence of exposure in Controls

Fig. 1 Graphical representation of estimates of approximate PAF (left-hand y-axis), prevalence (x-axis) and odds ratios (right-hand y-axis) for 10
risk factors from the INTERSTROKE dataset. Approximate PAF is represented both by the slope of the black dashed line, and also the left y-axis
intercept of the same line. Prevalence and Odds Ratio information is displayed as on a usual scatterplot (although prevalence decreases from left
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2% - 1

5% - 1
10%-6

20%: )
30%)1
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50°/'
7om<
909 1

2
Prevalenc Controls

Odds Ratio

approximate PAF, recorded on the right-most axis

approximate PAF

Fig. 2 Attributable fraction nomogram displaying estimates of risk factor prevalence, average Odds Ratio and approximate PAF for the 10 INTERSTROKE
risk factors. The prevalence, OR and approximate PAF for a particular risk factor are identified on the same line. Again risk factors are ranked according to

Risk factors (ranked)

1: Hypertension
—— 2 Inactivity
—— 3: ApoB/ApoA tertile
— 4: Diet tertile

5: WHR tertile
—— 6: Smoking
—— 7: Cardiac causes
8: Alcohol
9: Global Stress
10: Diabetes

result if the prevalence of smoking was 30.2% (as calcu-
lated in Chinese INTERSTROKE controls) compared to
22.4%, and the approximate impact fraction that would
result from an intervention that halved the prevalence of
hypertension (effectively this is the approximate PAF for
hypertension if the prevalence was 0.474/2 = 0.237 rather
than 0.474).

Biases in approximations for larger odds ratios

The approximations described here are derived from
second order Taylor expansions of (2b) and its analogues
for multi-category and continuous exposures. These are
derived and analysed in detail in the Additional file 1.
Figure 4 describes the estimated biases, both as a ratio:

—

PAF,

—

B, = and as an absolute value: By, = Pﬁa—lﬁ,

where the exact and approximate values are calculated
using E2b and E2c. The Taylor expansion effectively cre-

ates a quadratic function of /;’\1 that closely approximates

E2b for small /)/’\1 If /)?1 < 0.4, corresponding to an odds
ratio of 1.5, the approximation will be reasonably accur-
ate (within 20% on an exact calculation), regardless of
the prevalence of the risk factor. For odds ratios smaller
than 3, these approximations can still be used, if the
prevalence of the risk factor is less than 60% (particularly
if absolute bias in PAF quantification is more important
than relative bias quantification). For larger odds ratios,
the approximation may be inaccurate. Interestingly, the

approximation tends to be most accurate when the
prevalence is controls is approximately 0.5. Arguments
as to why this should be the case are presented in the
Additional file 1.

Discussion

The graphical approaches described in this manuscript
facilitate the visual assessment of relative risk factor bur-
den according to a number of different criteria on a sin-
gle axis. The plots depend on a simple approximation
formula for PAF, that may be of interest in of itself, both
as a quick rule of thumb to calculate PAFs and impact
fractions, and in that it demonstrates that risk factor
prevalence and risk factor/disease log-odds ratio equally
contribute to PAF. The 2 plots proposed both have their
advantages and disadvantages. While both methods
allow detection of risk factor clusters having similar
prevalence and odds ratios, it is more natural to visualize
clustering on a natural 2-dimensional x-y plane as in Fig.
1, than it is on a nomogram in Fig. 2. Conversely, while
both methods offer an explanation as to why a certain
risk factor has a particular PAF, perhaps the representa-
tion given by the nomogram lends extra intuition to
some epidemiologists who are already familiar with the
use of likelihood ratio nomograms in diagnostic testing.
Admittedly, these plots have limitations. The inverse or
log-scaling used may create confusion regarding the
absolute differences in PAF between the different risk
factors. For instance, there is a larger difference in the
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b

1.05---

China (where the prevalence of smoking is higher than the global average)

Odds Ratio Prevalence in Controls approximate PAF

~90%
~70%

--50%
—-40%

--30%

~20%
~15%

~10%

5%

2%

Odds Ratio Prevalence of exposure in controls approximate PAF

Risk factors (ranked)

— 1

— 2

Hypertension

- Inactivity

- ApoB/ApoA tertile
: Diet tertile

- WHR tertile

- Smoking

: Cardiac causes

- Alcohol

. Global Stress

— 10: Diabetes

— Hypertension

— Hypertension intervention
— Smoking (world wide)
— Smoking (China)

Fig. 3 a/b Alternative formatting of attributable fraction nomogram displaying estimates of risk factor prevalence, average Odds Ratio and
approximate PAF for the 10 INTERSTROKE risk factors. The prevalence, OR and approximate PAF for a particular risk factor are identified on the
same line. Here the left hand axis records estimated average odds ratios and the middle axis records estimated prevalence. Differing interventions
that might reduce risk factor prevalence might be compared by rotating the line for a given risk factor using the left axis intercept as a pivot. For
example, in the bottom pane, the difference in approximate PAF between the red dashed line and the solid line estimates the % reduction in the
prevalence of stroke from an intervention that halved the prevalence of hypertension. The blue dashed line estimates the PAF for smoking in
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Fig. 4 Absolute and relative bias from approximations as functions of the estimated prevalence and estimated odds ratios of the risk factor. Babs
is defined as PAFa -PAF, with PAF being the usual estimate of PAF and PAFa the estimated approximate PAF defined in this manuscript. Br is defined
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PAFs for hypertension and physical inactivity than Fig. 1
might suggest since the log-scaling has distorted the ab-
solute difference in PAF. Second, the approximations de-
rived are only valid for logistic disease models, with no
effect modification between the risk factors and con-
founders. A third problem is that the approximations
used may be inaccurate for larger odds ratios. These lim-
itations indicate that the plots might be best used as a
visual accompaniment to, and not a replacement for,
exact calculations of attributable fractions. A final point
is that the suggested graphs can be used to compare
continuous and discrete risk factors on the same axis.
Often naturally continuous risk factors such as blood
pressure are discretized for clinical convenience and in-
terpretability; but whether it is fair to rank the PAFs for
artificially discretized risk factors against un-discretised
continuous risk factors is questionable. For instance, cat-
egorizing a naturally continuous risk factor into two
groups only makes statistical sense if there is a threshold
effect, where the risk suddenly ‘jumps’ at the threshold
separating the categories. Otherwise discretization can
be a very crude approximation and is likely to disadvan-
tage a risk factor in a ranking compared with continuous
risk factors that have not be categorized.

The approximations derived will work well in genetic
settings, where Odds Ratios tend to be low. Even though
genetic variables (such as single nucleotide polymor-
phisms) are not modifiable, attributable fractions are still of
interest and have been used as a measure of disease herit-
ability in some settings [6, 15]. In contrast, while the Odds

Ratios in INTERSTROKE are larger, the approximate
calculations are perhaps acceptably accurate (Table 1).
However, extremely large odds ratios are possible in trad-
itional epidemiologic applications. For instance, the odds
ratio linking smoking and lung cancer was initially esti-
mated to be roughly 9 [16]. While in these extreme cases
the approximate PAF will be unacceptable as a proxy for
an exact calculation (and may indeed be larger than 1), the
plots suggested here may still convey a robust measure of
risk factor importance, provided the absolute quantification
of PAF is not of interest.

Conclusions

The described methods could be used as a complement to
tables summarizing prevalence, odds ratios and PAF, and
may convey the same information in a more intuitive and
visually appealing manner. The suggested nomogram can
also be used to visually estimate the effects of health inter-
ventions which only partially reduce risk factor prevalence.
Finally, in the binary risk factor case, the approximations
can also be used to quickly convert logistic regression co-
efficients for a risk factor into approximate PAFs.
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