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On the sharp approach in theorems of Fatou type

by Fausto Di Biase

Abstract1. We consider the almost everywhere boundary behaviour of bounded holo-

morphic functions on a domain, along certain approach regions that are optimal, in a sense

to be made precise. The work2 we describe is in part in collaboration with A. Stokolos,

O. Svensson and T. Weiss [8].

1. How sharp is the Stolz approach?

1.1. The sharpness of the Stolz approach in the unit disc. In 1906, P. Fatou
[10] proved that every bounded holomorphic functions defined on the unit disc D in
the plane admit boundary values, for almost every points in the boundary, provided
we approach the boundary ∂D of the unit disc in a nontangential way. Moreover,
these functions are uniquely determined by their nontangential boundary values.

If w ∈ ∂D then the set

(1.1) Γα(eiθ) =
{
z ∈ D : |z − eiθ| < (1 + α)(1 − |z|)

}

is called the Stolz (nontangential) approach at w. Denote by H∞ the space of all
bounded holomorphic functions defined on D. The Stolz approach at w does not
contain any curve ending at w and tangential to the boundary.

How sharp is the Stolz (nontangential) approach for the a. e. boundary conver-
gence of H∞ functions? In other words: Is there an approach that is essentially
larger than Γα and along which all bounded holomorphic functions do converge
almost everywhere to their nontangential boundary values? This issue was first
addressed in 1927 by Littlewood [22], who proved that there is no rotation in-
variant approach by tangential curves along which all bounded holomorphic func-
tions converge a. e. to their nontangential boundary values. Indeed, a family
γ = {γ(θ)}θ∈[0,2π) of subsets of D, called an approach, may have the following
properties:

c: each γ(θ) is a curve in D ending at eiθ;
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tg: each γ(θ) ends tangentially at eiθ;
aecv: each h ∈ H∞ converges a. e. along γ(θ) to its Stolz boundary values.

A precise form of the question about the sharpness of the Stolz approach for H∞

functions is the following claim, called the Strong Sharpness Claim.
(SSC) There is no approach γ satisfying (c)&(tg)&(aecv).

This claim is coherent with a principle — implicit in Fatou [10] — whose first ren-
dition is found in Littlewood [22], who showed that there is no rotation invariant
approach γ satisfying (c)&(tg)&(aecv). Another rendition of this principle (with
stronger conclusions) has been given by Aikawa [1], who proved that, if (u) is the
condition:

u: the curves {γ(θ)}θ are uniformly bi-Lipschitz equivalent;
then there is no approach γ satisfying (u) and (c)&(tg)&(aecv).

Our first result3 is a theorem of Littlewood type where the tangential curve is
allowed to vary its shape, and we do not require uniformity in the order of tangency.
Moreover, we show that, in a precise sense, Theorem 1.1 is sharp.

Theorem 1.1 (A sharp Littlewood type theorem [8]). Let γ : [0, 2π) → 2D such
that
(c⋆): for each θ ∈ [0, 2π), the set {eiθ} ∪ γ(θ) is connected;
(tg): for each α > 0 and θ ∈ [0, 2π) there exists δ > 0 such that if z ∈ γ(θ) ∩

Γα(eiθ) then |z − eiθ| > δ;
(reg): for each open subset O of D the set

{θ ∈ [0, 2π) : γ(θ) ∩ O ̸= ∅}

is a measurable subset of [0, 2π).
Then there exists h ∈ H∞ with the property that, for almost every θ ∈ [0, 2π), the
limit of h(z) as z → eiθ and z ∈ γ(θ) does not exist.

• Condition (c⋆) is strictly weaker than (c) but it cannot be relaxed to the
minimal condition one may ask for:

(apprch): eiθ belongs to the closure of γ(θ) for all θ ∈ [0, 2π);

since Nagel and Stein [24] showed that there is a rotation invariant approach γ
satisfying (apprch) and (tg)&(aecv). This discovery disproved a conjecture of
Rudin [27], prompted by his construction of a highly oscillating inner function in
D. Thus, (c⋆) identifies the property of curves relevant to a theorem of Littlewood
type.

• It is not easy to see (reg) fail. The images of radii by an inner function satisfy
(reg): this example prompted Rudin [27] to ask about the truth value of (SSC).
Observe that (reg) is a qualitative condition, while (u) is quantitative. The former
is perhaps more commonly met than the latter. They are independent of each other.

• Since our hypothesis do not impose any smoothness, neither on γ(θ) nor on
the domain, a version of our theorem can be formulated, and proved as well, for
domains with rough boundary, such as NTA domains in Rn; see Theorem 2.1.

• Is it possible to prove Theorem 1.1 without assuming (reg)? Several theorems
in Analysis do fail if we omit some regularity conditions, while others (typically

3A preliminary version of this result was announced in Di Biase et al. [7].
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those involving null sets) remain valid without ‘regularity’ hypothesis4. This ques-
tion brings us back to the truth value of (SSC), and we prove the following result.

Theorem 1.2 ([8]). It is neither possible to prove the Strong Sharpness Claim, nor
to disprove it.

The proof uses a combination of methods of modern logic (developed after 1929)
and harmonic analysis, based upon an insight about the location of the link that
makes the combination possible. See Theorem 3.1, Theorem 3.2 and Theorem 3.3.

Remark 1.1. We quote a remark made by K. Gödel in [12] about the Continuum
Hypothesis, or Cantor’s conjecture.

Only someone who [. . . ] denies that the concepts and axioms of
classical set theory have any meaning (or any well-defined meaning)
could be satisfied with such a solution, not someone who believes
them to describe some well-determined reality. For in this reality
Cantor’s conjecture must be either true or false, and its undecid-
ability from the axioms as knows today can only mean that these
axioms do not contain a complete description of this reality; and
such a belief is by no means chimerical, since it is possible to points
out ways in which a decision of the question, even if it is undecid-
able from the axioms in their present form, might nevertheless be
obtained.

It seems to us that Gödel’s remark applies equally well to (SSC), for those who
share the Platonist viewpoint of Gödel.

2. The sharpness of the corkscrew approach on NTA domains

Let h∞ be the space of bounded harmonic functions on a bounded domain D ⊂
Rn. Assume that D is NTA, as defined and studied by Jerison and Kenig [17].
Jerison and Kenig proved a Fatou type theorem for functions in h∞ (as well as in
the Hardy spaces). Indeed, they proved that if f ∈ h∞ then for almost every point
in the boundary, with respect to harmonic measure, f admits boundary values
taken along the corkscrew approach, defined, for w ∈ ∂D, by

(2.1) Γα(w) def= {z ∈ D : |z − w| < (1 + α)dist(z, ∂D)}
Observe that D may be twisting a. e. relative to harmonic measure. In this case,
the ‘corkscrew’ approach (2.1) does not look like a sectorial angle at all.

How sharp is the corkscrew approach for the boundary convergence for h∞ func-
tions, a. e. relative to harmonic measure? Theorem 1.1 lends itself to the task of
formulating5 the appropriate sharpness statement for NTA domains, without any
further restrictions on the domain.

Theorem 2.1. If D is an NTA domain in Rn and γ = {γ(w)}w∈∂D is a family of
subsets of D such that
(c⋆): for each w ∈ ∂D, γ(w) ∪ {w} is connected;

4A regularity hypothesis in a theorem is one which is not (formally) necessary to give meaning
to the conclusion of the theorem. A priori it is not clear which theorems belong to which group.
Egorov’s theorem on pointwise convergence belongs to the first; see Bourbaki [2], p. 198. One
example in the second group can be found in Stein [28], p. 251.

5In formulating (and proving) our Theorem 1.1 we also had this goal in mind.
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(tg): for each α > 0 and w ∈ ∂D there exists δ > 0 such that if z ∈ γ(w)∩Γα(w)
then |z − w| > δ;

(reg): for each open subset O of D the set

{w ∈ ∂D : γ(w) ∩ O ̸= ∅}
is a measurable subset of ∂D (i. e. its characteristic function is resolutive);

then there exists h ∈ h∞ such that for almost every w ∈ ∂D, with respect to
harmonic measure, the limit of h(z) as z → w and z ∈ γ(w) does not exist.

• A condition such as rotation invariance, in place of (reg), would have no
meaning, since in this context there is no group suitably acting, not even locally.

• Observe that (c⋆) cannot be relaxed to the condition

(2.2) w belongs to the closure of γ(w)

(the minimal one needed to take boundary values). Indeed, Di Biase showed the
existence, for NTA domains in Rn, of an approach γ, satisfying (2.2) and (tg),
along which all h∞ functions converge to their boundary values taken along (2.1),
a. e. relative to harmonic measure6.

3. Notation and Preliminary Results

The core of the problem belongs to harmonic analysis, so we restrict ourselves,
without loss of generality, to the space h∞ of bounded harmonic functions on D.

Much of the following notation applies not only when D is the open unit disc in
the plane, but, more generally, when D is a bounded open subset of Rn. If γ is a
subset of D × ∂D and w ∈ ∂D, the shape of γ at w is the set

γ(w) def= {z ∈ D : (z, w) ∈ γ} ⊂ D .

An approach is a subset γ of D × ∂D such that the following condition:

(apprch): w belongs to the closure of γ(w)

holds for all w ∈ ∂D. One may think of γ as a family {γ(w)}w∈∂D of subsets of D.
If γ an approach and u : D → R a function on D, the function on ∂D given by

(3.1) γ⋆(u)(w) def= sup {|u(z)| : z ∈ γ(w)

is called the maximal function of u along γ at w ∈ ∂D.

Lemma 3.1. The following properties of an approach γ are equivalent:
(a) γ⋆ maps all continuous functions (on D) to measurable functions (on ∂D);
(b) for every open Z ⊂ D, the boundary subset

γ↓(Z) def= {w ∈ ∂D : Z ∩ γ(w) ̸= ∅}
is a measurable subset of ∂D.

The subset in (b) is called the shadow projected by Z along γ. The proof of
Lemma 3.1 is left to the reader7. The approach γ is called: regular if it satisfies (a)
or (b) in Lemma 3.1.

6In Di Biase [5], the existence is showed by reducing the problem to the discrete setting of a
(not-necessarily-homogeneous) tree, rather than on the action of a group on the space. In general,
in this context, there is no group suitably acting on the space.

7This circle of ideas is based on the work of E. M. Stein. Cf. Fefferman and Stein [11].
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If D is the open unit disc in the plane then the boundary of D, denoted by
∂D, is naturally identified to the quotient group R/2πZ, from which it inherits the
Lebesgue measure m; thus, m(∂D) = 2π. If h ∈ h∞, the Fatou set of h, denoted by
F(h) ⊂ ∂D, is the set of points w ∈ ∂D, such that the limit of h(z) as z → w and
z ∈ Γα(w) exists for all α > 0; this limit is denoted h♭(w). Now, m(F(h)) = 2π
and h♭ ∈ L∞(∂D); see Fatou [10]. The Poisson extension P : L∞(∂D) → h∞

recaptures h from h♭, since h = P [h♭]. If h ∈ h∞ and γ is an approach, then define
the following two subsets of ∂D: C(h, γ) is the set

{w ∈ F(h); h(z) converges to h♭(w) as z → w and z ∈ γ(w)}

and D(h, γ) is the subset

{w ∈ ∂D; h(z) does not have any limit as z → w and z ∈ γ(w)} .

The approach γ is called rotation invariant if (z, w) ∈ γ implies (eiθz, eiθw) ∈ γ
for all θ, z, w. A rotation invariant approach is regular. If h : D → D is an inner
function, then the set

{(z, w) ∈ D × ∂D; z = f(ru) for some u ∈ F(h), h♭(u) = w, 0 ≤ r < 1}

is a (not necessarily rotation invariant) regular approach whose shape, given by the
images of radii by h, may be empty over a null set only; see Rudin [27].

3.1. The Independence Theorem. Modern logic gives us tools that show that
some statements can be neither proved nor disproved. The basic idea is familiar:
if different models (or ‘concrete’ representations) of some axioms exhibit different
properties, then these properties do not follows from those axioms. For example, the
existence of a single, ‘concrete’ non commutative group shows that commutativity
can not be derived from the group axioms, and the existence of different models
of geometry shows that Euclid’s Fifth Postulate does not follow from the others.
Since the currently adopted system of axioms for Mathematics is ZFC8, to prove a
theorem amounts to deduce the statement from ZFC. A model of ZFC stands to
ZFC as, say, a ‘concrete’ group stands to the axioms of groups. If ZFC is consistent,
then it has several, different models. K. Gödel showed, in his completeness theorem,
that a statement can be deduced from ZFC if and only if it holds in every model
of ZFC; in particular, if it holds in some models but not in others, then it follows
that it can be neither proved nor disproved. The tangential boundary behaviour of
h∞ functions is radically different in different models of ZFC9.

Theorem 3.1 ([8]). There is a model of ZFC in which there exists an approach
γ satisfying (c) and (tg) and such that C(h, γ) has measure equal to 2π for every
h ∈ h∞.

Theorem 3.2 ([8]). There is a model of ZFC in which for every approach satisfying
(c⋆) and (tg) there exists h ∈ h∞ such that D(h, γ) has outer measure equal to 2π.

The following result shows that Theorem 3.2 cannot be improved10.

8Acronym for Zermelo, Fraenkel and the Axiom of Choice. See Cohen [4], Drake [9], Jech [16],
Kunen [21].

9Since an approach is a fairly arbitrary subset of D × ∂D, in retrospect this result can be
rationalized, but other examples in Analysis show that this rationalization is not a priori infallible.

10Theorem 3.3 in itself does not say whether (SSC) can be proved or not.
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Theorem 3.3 (A theorem in ZFC [8]). There exists an approach γ satisfying (c)
and (tg) such that for each h ∈ h∞, the set C(h, γ) has outer measure equal to 2π.

4. How un-Stolz are the sharp approach regions in Cn?

Let D ⊂ Cn be a bounded pseudoconvex domain with smooth boundary and
let H∞ be the space of all bounded holomorphic functions defined on D. The
sharp approach, along which all functions in H∞ converge almost everywhere to
their boundary values, has been so far been sufficiently understood in a few cases
only. In the few cases that are sufficiently understood (listed below), two features
have been observed. The first one is that the order of contact of the boundary,
with the section of the shape of the approach at a given point, taken along a
direction tangential to the boundary, depends on the direction itself and may vary
even among different complex tangential directions (unless the domain has certain
symmetries, like the unit ball in Cn); the second feature is that the shape of the
approach changes near weakly pseudoconvex points.

(1) If D is the unit ball in Cn then Korányi [18] has considered the approach
K that can be essentially described by inequalities of the following form

dist(z, ∂D)
dist(z, w + T c

w(∂D))
≥ C > 0

where T c
w(∂D) is the complex tangent space at w ∈ ∂D and z ∈ D. He

proved that all functions in H∞ admit a. e. boundary values along K. A
notable feature of this approach is that the section of its shape at w ∈ ∂D,
taken along a tangential direction, depends on the direction itself. Indeed,
it is nontangential along the complex normal direction and tangential along
any complex tangential directions. Its degree of tangency to the boundary
depends upon the degree of contact of the boundary with the complex
tangent space and therefore it is, in the case of the unit ball, isotropic
along all complex tangential directions.

How sharp is K for the unit ball in Cn? This question has been first
addressed in 1983 by Hakim and Sibony [13] and more recently by Kentaro
Hirata [14]). Presumably, one should be able to obtain a Littlewood type
theorem along the lines of Theorem 1.1 in the case of the unit ball.

(2) If D ⊂ Cn is a bounded domain with smooth boundary, then an approach
along which all functions in H∞ admit a. e. boundary values has been
defined and studied in 1972 by Stein [29]. We denote this approach by S.

If D is strongly pseudoconvex, then the approach S should be sharp, in
the sense that a Littlewood type theorem along the lines of Theorem 1.1
should hold in this context as well, but so far a proof of this sharpness
statement has not appeared in the literature in this form; such a sharp-
ness result for S may very well hold for any bounded domain with smooth
boundary, but nevertheless, if D is not strongly pseudoconvex, then the
approach S does not appear to be sharp any longer, in a certain sense, as
we shall see in the next class of examples.

(3) If D ⊂ Cn is a bounded pseudoconvex domain with smooth boundary and
of finite type in the sense of commutators of vector fields, then an approach,
denoted by A, along which all functions in H∞ admit a. e. boundary values
has been described in 1981 by Nagel et al. [25]. See also [26] and [23]. In
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this context, the following additional feature appears: the shape of this
approach at w does change, and gets wider, when w gets close to weakly
pseudoconvex points.

How sharp is the approach A? Suppose first that n = 2. Then, since the
shape of A is asymptotically equal to that of S at strongly pseudoconvex
points (thus, on a set of full measure), the appropriate sharpness statement
for this approach should have the following form:

Claim 4.1. If D ⊂ Cn is a bounded pseudoconvex domain with smooth
boundary and of finite type and if n = 2 then there is no natural approach
γ that is essentially larger that A and whose maximal operator, defined in
(3.1), satisfies the following inequality, for all f ∈ Hp

∥γ⋆(f)∥Lp ≤ Cp∥f∥Hp .

(An approach is natural if the shadow it projects by points in the domain
is uniformly comparable to balls in the boundary; this condition is needed
to take into account the Nagel-Stein phenomenon; see [5] for the precise
definition). Indeed, the inequality appearing in the claim holds for γ = A
and it is a quantitative form of Fatou’s theorem. The inequality appearing
in the claim, for γ = A, does not follow from the corresponding statement
for S, because the distribution function of A⋆(f) is not controlled by the
distribution function of S⋆(f).

If n > 2, then the approach A does not appear to be sharp any longer,
in a certain sense, as we shall see by looking at smoothly bounded domains
in Cn that are convex and of finite type.

(4) If D ⊂ Cn is a convex, smoothly bounded domain of finite type, then an
approach along which all functions in H∞ admit a. e. boundary values has
been described in 1998 by Di Biase and Fischer [6]. We denote this approach
by C. In this case, another feature appears: the section of the shape of C is
anisotropic along the complex tangential directions, and it is appropriately
larger than that of A near weakly pseudoconvex points; in contrast, the
approach A is isotropic among all complex tangential directions (unless of
course n = 2). See [6]. In particular, we see that the notion of finite type
based on commutators of vector fields does not capture the optimal order
of contact with the boundary for the sharp approach.

How sharp is C? Since the shape of C is asymptotically equal to that of
S near strongly pseudoconvex points, the appropriate sharpness statement
for this approach should have the following form:

Claim 4.2. If D ⊂ Cn is a convex, smoothly bounded domain of finite
type, then there is no natural approach γ that is essentially larger that C
and whose maximal operator satisfies the inequality:

∥γ⋆(f)∥Lp ≤ Cp∥f∥Hp

for all f ∈ Hp.

Indeed, the inequality appearing in the claim holds for γ = C and it
is a quantitative form of Fatou’s theorem. The inequality appearing in
the claim, for γ = C, does not follow from the corresponding statement
for A, because the distribution function of C⋆(f) is not controlled by the
distribution function of A⋆(f).
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Once a precise (possibly intrinsic) description of the sharp approach, together
with a precise statement and proof of its sharpness, will have been given in the
desidered degree of generality (including bounded pseudoconvex domains in Cn),
then one should also establish further quantitative results related to the area func-
tion and the maximal function, both evaluted along the sharp approach, and the
Lp estimates relating these operators to each other, and so forth. See [25] and [20].

In the few cases that are sufficiently understood, a family of balls in the bound-
ary, having certain covering and doubling properties, plays an important role in the
theory; see Hörmander [15], Nagel et al. [26], Stein [29]. However, in general, this
structure seems to be missing; see Cirka [3] (where the result about a. e. conver-
gence appears to have a conditional nature, i.e. conditional upon the occurrence of
certain covering and doubling properties of certain boundary balls, that are rather
difficult to verify). See also [19].
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[3] E. Chirka, The theorems of Lindelöf and Fatou in Cn, Math. Sb., 92(1973), 622-644.
[4] P. J. Cohen, Set theory and the continuum hypothesis, Benjamin, 1966.
[5] F. Di Biase, Fatou type theorems. Maximal functions and approach regions, Birkhäuser,
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