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Early-life exposure (from postnatal day 6 to postnatal day 21) to permethrin has been associated with long-term development
of dopaminergic neurodegeneration in rats. Here, we first investigated if the dopamine decrease observed following early
postnatal exposure to permethrin, an oxidative stressor, can impair the dopamine level in the brain of their untreated
offspring. Secondly, we evaluated whether this adverse event affects the epigenome of both directly exposed rats (F0) and
their untreated offspring (F1). The results show that early-life exposure to the stressor is associated with changes in global
DNA methylation and hydroxymethylation in adult age. Furthermore, parental exposure leads to a significant reduction in
dopamine level in the offspring (F1) born from parents or just mothers early-life treated (72.72% and 47.35%,
respectively). About 2/3 of pups from exposed mothers showed a significant reduction in dopamine level compared to
controls. Global DNA methylation and hydroxymethylation impairment was associated with the F1 pups that showed
reduced dopamine. This study provides pivotal evidences on intergenerational effects of postnatal exposure to permethrin
emphasizing that this xenobiotic can influence the epigenetic memory of early-life parental perturbations disturbing
offspring health.

1. Introduction

Epigenetic memory of early-life parental perturbations may
impact offspring health, because this regulatory mechanism
of gene expression may be inherited. Early-life exposure to
xenobiotics represents a risk factor associated with epigenetic
remodeling due to free radical production [1–4].

Alterations in metabolism due to oxidative stress
have a particularly relevant role in the brain, where
5-hydroxymethylcytosine (5hmc), ten-eleven translocation
(TET) enzymes, and other global chromatin-modifying
proteins have been identified as crucial regulators of both
epigenetic and metabolic pathways [5]. Thus, given the
scientific evidence, it is of clinical relevance to investigate
how epigenetic processes could be involved in the onset

of several chronic diseases. Indeed, epigenetic alterations
are common elements in several different pathological
conditions, including neurodegenerative diseases [6–13].

Since the first 1000 days of life is a window of epigenetic
plasticity, the exposure to stressors in this period of life can
promote epigenetic remodeling associated with the onset of
neurodegeneration later in life [14]. Our previous studies
demonstrated that early-life exposure (from postnatal day 6
to postnatal day 21) to oxidative stress induced by the
xenobiotic permethrin during brain development promotes
behavioral and biochemical changes in the central nervous
system. Importantly, we reported that permethrin treatment
leads to the development of a progressive Parkinson-like
disease in rats, thus identifying this as a validated animal
model to study the mechanisms associated with this
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neurodegenerative disease [15–21]. In particular, our previ-
ous studies show that permethrin induces a progressive
decrease in dopamine level, from adolescence to old age
together with spatial working memory deficits and motor
disabilities [16, 18, 20, 22]; dopamine turnover is significantly
increased in the animal model of Parkinson, and this cata-
bolic pathway has been associated with early free radical pro-
duction. However, it is only starting from adult age that
age-dependent biomarkers of oxidative stress like decrease
in GSH and increase in protein, lipid, and DNA oxidation
in the striatum and substantia nigra pars compacta (SNpc)
have been observed [15, 16, 18–23]. Furthermore, it has been
undoubtedly demonstrated that permethrin promotes oxida-
tive stress in various cell types and tissues isolated from
exposed rats (i.e., erythrocytes, leukocytes, heart, and liver
striatum) [23–35]. It is important to note that population
exposure to the stressor permethrin is habitual because of
its wide usage in agriculture for pest control, and its presence
in fruits, vegetable, and milk has been significantly demon-
strated [36–39]. Residues of permethrin and other members
of the pyrethroid family in food are about 25-100 ng/15 g
[39]. Furthermore, the presence of the main metabolite
3-phenoxybenzoic acid in people’s urine clearly confirms
population exposure to this xenobiotic [37, 40]. Due to its
lipophilicity, permethrin can be easily absorbed, and we
previously demonstrated that it can cross the blood-brain
barrier accumulating in the brain and where it remains for
a long time even after early-life exposure in rats [19]. Per-
methrin’s ability to promote oxidative stress has also been
recognized because its cotreatment with known antioxidants
(e.g., vitamin E, vitamin C, coenzyme Q10, tocotrienols, and
electrolyzed reduced water) was able to counterbalance the
damage induced by its presence [24, 25, 28, 31, 41].
Moreover, we previously reported an increase in DNA
methyltransferases, tyrosine hydroxylase, and monomeric
and aggregated α-synuclein protein levels in adolescent,
adult, and old rats exposed to permethrin during brain
development [19]. Subsequently, we observed that Nurr1
and global DNA methylation were modified in 33% of
untreated offspring, if their parents were exposed to per-
methrin in their early life [22]. These data indicate that
epigenetic remodeling could be associated with nigrostria-
tal impairments observed in this model [19, 22, 42].
However, no data are available on the role of the mother
and the father in the intergenerational inheritance of
dopaminergic imbalance nor on the epigenetic mecha-
nisms involved.

Therefore, the first aim of this study was to investigate
if early postnatal life exposure (from postnatal day 6 to
postnatal day 21) to permethrin of parents (F0) affects
dopamine levels in their unexposed offspring (F1). The
secondary objective of this study was to investigate the
DNA methylation and hydroxymethylation in both par-
ents (F0) and their unexposed offspring (F1) with the
aim to identify which epigenetic marks acquired during
early life can be transmitted to the next generation.
Finally, the third aim was to identify the role of the father
and the mother in the intergenerational effect associated
with early-life stress exposure.

2. Methods

2.1. Animal Mating and Treatment: Early-Life Permethrin
Exposure (Parents). Male and female Wistar rats aged about
90 days weighing 250-270 g were obtained from Charles
River (Calco, LC, Italy). Animals were housed, two per cage,
in a room with artificial 12 : 12 h light/dark cycle (lights off at
8 : 00 a.m.), at constant temperature (21± 5°C) and humidity
(45-55%). Food and water were always available in the home
cages. Male and female pups born in our laboratory from
primiparous dams were assigned to two treatment groups:
the animals treated with the stressor permethrin indicated
as STRESS and the control, so that each group contained
no more than 4 pups (2 males and 2 females) from any litter.
Permethrin was solubilized in corn oil and administered to
animals by intragastric tube (4mL/kg) at a dose of 1/50 of
LD50 corresponding to 34.05mg/kg (Agency for Toxic
Substance and Disease Registry, 2005). The dosage was
chosen considering that NOAEL (no observed adverse effect
level) for permethrin is 25mg/kg. The compound was
administered daily in the morning from postnatal day
(PND) 6 to PND21 [21]. Control group was treated with
vehicle (corn oil, 4mL/kg) on a similar schedule. The volume
of solutions was adjusted daily based on body weight of
animals. On PND21, the pups were weaned and housed
two per cage. At the age of 90 PND, females treated (n = 14)
or untreated (n = 14) with the stressor were mated with
males treated (n = 6) or untreated (n = 8) with the stressor
as shown in Figure 1. No siblings were used for mating. F0
generation was then sacrificed at 150 PND; SNpc and the
striatum nuclei of each rat were used for DNA methylation
and hydroxymethylation assessment.

2.2. F1 Generations Born from Different Mating
Combinations. The F1 male offspring obtained from different
mating combinations (paragraph 2.1) were the main focus of
the present study. As reported in Figure 1, the final F1 sample
size was a total of 79 male pups divided into 4 groups: n = 16
male pups from parents of F0 group 1, n = 22male pups from
parents of F0 group 2, n = 20 male pups from parents of F0
group 3, and n = 21 male pups from parents of F0 group 4.
At PND 30, F1 male offspring were sacrificed by exposure
to CO2. The striatum from each rat was isolated from the
brain, immediately placed in liquid nitrogen and stored at
-80°C until used for analysis.

All experiments were conducted in accordance with the
European Guidelines (Directive 2010/63/EU) for the Care
and Use of Laboratory Animals and approved by the local
ethic committee.

2.3. Dopamine Assessment. Dopamine measurement was
performed following the method reported by Gramsbergen
and collaborators [43] with slight modifications. Tissues
derived from the rat striatum were homogenized with
500μL of 1N perchloric acid solution containing 0.02% w/v
sodium metabisulphite and 0.05% w/v disodium ethylenedi-
aminetetraacetate (Na2EDTA). Samples were centrifuged at
4500× g for 20min at 4°C. The obtained supernatants were
filtered using 0.45μm filters, collected into vials and stored
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on ice until analysis. 10μL of the filtrate was analyzed by
HPLC consisting of a Waters 600 pump, a Rheodyne 7295
injector, and an Antec Leyden Decade II detector, operating
at +0.75V. The mobile phase was composed of 0.6% of meth-
anol, 13.61 g/L sodium acetate, 19mg/L sodium n-octyl
sulfate, and 13mg/mL Na2EDTA dissolved in Milli-Q water;
the pH was set to 4.1 with glacial acetic acid and degassed
with helium. The mobile phase was pumped into a Luna
C18 column (250 × 4 6mm, 5μm) with a flow rate of
0.6mL/min. A calibration graph was obtained by preparing
various concentrations of dopamine to determine the
amount in each striatum sample [44, 45]. Final values are
expressed as ng/mg tissue.

2.4. DNA Extraction and Global DNA Methylation and
Hydroxymethylation Assessment. To isolate sperm DNA of
adult rat of the F0 generation, cauda sperms of each father
were washed twice with PBS, resuspended in 1.0mL lysis
buffer containing 20mM Tris (pH8), 10mM dithiothreitol,
150mM NaCl, 10mM EDTA (pH8), and 1% SDS, and
incubated for 20 h at 37°C [44]. The DNA was extracted from
the lysed tissue using DNAzol reagent (Thermo Fisher
Scientific Inc., Waltham, MA, USA) following the manufac-
turer’s instructions. Subsequently, 5mC DNA ELISA Kit
(Zymo Research s.r.l., Irvine, CA, USA) was used to evaluate
differences in global 5mC in spermDNA from treated fathers
with respect to controls.

SNpc and the striatum nuclei of each rat of F0 and F1
generations were also used to extract genomic DNA using
DNAzol (Thermo Fisher Scientific Inc., Waltham, MA,
USA), according to the manufacturer’s instructions. For
SNpc and the striatum nuclei DNA analysis, four subgroups
for each treatment were set up, basing the grouping on
quartiles of dopamine data distribution. 100ng of DNA for
each subgroup sample was then used to evaluate global
5mC and 5hmC levels using, respectively, the 5mC DNA

ELISA Kit™ and the Quest 5hmC™ DNA ELISA Kit
(Zymo Research s.r.l., Irvine, CA, USA). Results are pre-
sented as percentage of total CpG of rat genome. Each
sample was analyzed in duplicate following the manufac-
turer’s instructions.

2.5. Statistical Analyses. Throughout the study, data are
presented as mean ± SD. To calculate the adequate sample
size, we performed a power analysis based on effect size
observed in our preliminary data [22]. Specifically, the
computed effect size (δ) of 0.994 was used to perform an
a priori power analysis (α=0.05, 1-β=0.80) which showed
that the sample size required for each group was 15. Power
analysis was performed using G∗Power version 3.1.9.2
(Dusseldorf, Germany).

The Shapiro-Wilk test was used to evaluate the normality
of distributions. The Kruskal-Wallis or ANOVA and post
hoc analysis with Tukey correction were used, respectively,
as parametric or nonparametric tests for multiple compari-
sons. The Student t-test was used to compare means between
two groups. Correlation between variables was measured by
calculating linear regression and Spearman’s rho. Two-
tailed p values for all the mentioned tests are reported. Statis-
tical analysis and graphs were performed using SPSS [46] or
R Studio [47].

3. Results

3.1. Global DNA Methylation and Hydroxymethylation in
Parental F0 Generation. Global DNA methylation in the
striatum and SNpc in the parental generation was not signif-
icantly reduced in males (p > 0 05) (Figure 2(a)), while the
reduction was significant in female rats treated in early life
to stressor (STRESS) with respect to the control females
(p = 0 021) (Figure 2(b)). Interestingly, the early-life expo-
sure to the stressor induced a significant increase in global

Rat mating (1♂+2♀)

PND 6-21:
FO early-life treatment

FO:
treated with vehicle

CTR group
(8♂+14♀)

FO:
exposed to stressor

STRESS group
(8♂+14♀)

PND 90: mating of FO generation

FO group 1 FO group 2 FO group 3 FO group 4
4♂CTR+6♀CTR 4♂CTR+6♀STRESS 3♂STRESS+8♀CTR 3♂STRESS+8♀STRESS

Offspring F1
Group 1

16♂

Offspring F1
Group 2

22♂

Offspring F1
Group 3

20♂

Offspring F1
Group 4

21♂

FO

F1

Figure 1: Experimental design, animal mating, and treatment combinations. CTR= control; STRESS = exposed; PND=postnatal days.
F1 groups: 1 = control mother and father, 2 = treated mother and control father, 3 = control mother and treated father, and 4 = treated
mother and father.
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5hmC in males (p = 0 049) (Figure 2(c)) and a relative reduc-
tion of this epigenetic signature in females (p = 0 047) in this
tissue (Figure 2(d)). No significant differences could be
observed for sperm DNA methylation between treated
fathers and controls in this study (data not shown).

3.2. Dopamine Levels in F1 Generation. The analyzed F1
generation was composed of 79 rats subdivided as follows:
16 rats from both control parents (group 1), 22 rats from
treated mothers and control fathers (group 2), 20 rats from
control mothers and treated fathers (group 3), and 21 rats
originated from both mothers and fathers treated with the
stressor (group 4). The mean dopamine level assessed was
1.937 ng/mg (±1.666) throughout the entire F1 genera-
tion, with a minimum of 0.02 ng/mg and a maximum
of 7.99 ng/mg. Multiple comparisons showed significant dif-
ferences between dopamine levels measured in the offspring
originated from control parents (group 1) with respect to
the F1 obtained from both treated parents (group 4)
(p = 0 035) and treated mother/control father (group 2)
(p < 0 001). Reductions of 47.35% (group 4) and 72.72%
(group 2) in dopamine levels were observed compared to
the control group. The reduction induced in F1 groups 2
and 4 did not significantly differ from each other (p > 0 05).
No relevant changes in dopamine level were observed for
the group with control mothers/STRESS fathers (group 3)
with respect to the other groups (p > 0 05). These results
(Figure 3), together with no alteration observed in parental
sperm DNA methylation (data not shown), suggest a
maternal transmission of the altered phenotype to the
F1 generation.

Furthermore, by dividing the groups that significantly
differ from the controls based on the quartile of the dopa-
mine distribution observed, we noticed that the reduction
in dopamine was not homogenous within each treatment
group (Figure 4). About 64% of the rats from treatment
groups 2 and 4 actually showed a significant reduction
if compared to controls (1 vs. 2.1, p < 0 001; 1 vs. 2.2,
p < 0 001; 1 vs. 2.3, p < 0 001; 1 vs. 4.1, p < 0 001; and 1 vs.
4.2, p < 0 001). These results demonstrate that a significant
variability in the inheritance of the altered phenotype exists.
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Figure 2: Global methylation (a, b) and hydroxymethylation (c, d) of DNA extracted from the striatum nucleus and SNpc in parental F0
generation. p = 0 021 (b), p = 0 049 (c), and p = 0 047 (d).
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Figure 3: Dopamine level variation with respect to controls
(group 1) in the striatum nucleus and SNpc in F1 groups (1 vs. 2,
p < 0 001; 1 vs. 4, p = 0 035). F1 groups: 1 = control mother and
father, 2 = treated mother and control father, 3 = control mother
and treated father, and 4 = treated mother and father.
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3.3. Global DNA Methylation and Hydroxymethylation in F1
Generation. Analysis in the F1 generation showed significant
differences in global DNA methylation in the striatum and
SNpc of rats from differentially treated parents. Specifically,
an increase in global 5mC for the group originated from both
treated parents (group 4) was detected compared to the
others (1 vs. 4, p = 0 033; 2 vs. 4, p = 0 021; and 3 vs. 4,
p = 0 021) (Figure 5(a)). Moreover, a similar but less marked
trend was observed for 5hmC (Figure 5(b)). In particular,
5hmC in F1 group 4 differed significantly from group 3
(p = 0 021) and showed a similar but not significant trend

with respect to group 1 (p = 0 057) (Figure 5(b)), suggesting
that 5hmC levels can be influenced by parental treatment
as well.

Considering the previously observed variance for the
altered phenotype inheritance in terms of dopamine produc-
tion impairment (Figure 4), we analyzed the variation of
5mC and 5hmC within each parental treatment group that
had significantly decreased dopamine levels, according to
the quartile of dopamine reduction observed. We found
that, as observed for the phenotype, the transmission of
the epigenotype to the F1 generation does not occur
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1 = control mother and father, 2 = treated mother and control father, 3 = control mother and treated father, and 4 = treated mother and
father. Each subgroup represents a quartile of the dopamine distribution within the parental treatment group.
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homogeneously. Specifically, the increase in 5mC occurs in
3 of 4 quartiles within the offspring generated by both
treated parents (group 4) (1 vs. 4.1, p < 0 001; 1 vs. 4.2,
p = 0 003; and 1 vs. 4.3, p = 0 005), while no significant
differences in any of the subgroups for the F1 group 2
were observed (p > 0 05) (Figure 6(a)).

These data suggest that 5mC is related to the parental
treatment more than to the dopaminergic level. Concerning
with 5hmC, only the subgroups characterized by the low-
est levels of dopamine (2.1, 4.1, and 4.2 subgroups)
showed an increase in this epigenetic mark compared to
controls (1 vs. 2.1, p = 0 001; 1 vs. 4.1, p = 0 014; and
1 vs. 4.2, p = 0 011), suggesting a potential correlation

between 5hmC and dopamine levels (Figure 6(b)). To
corroborate this hypothesis, we tested the correlation
between 5hmC and dopamine levels, and we observed a
drift in the linear regression test (p = 0 1076, R2 = 0 1743)
(Figure 1(a) supplementary materials) and a ρ for the
trend for the Spearman’s correlation between these two
variables (p = 0 072, Spearman’s rho). Although these
results are not significant, a weak relationship between
5hmC and dopamine levels may be inferred. On the other
hand, a significant correlation between the increase in
5mC and that in 5hmC was detected (p = 0 008,
Spearman’s rho) (p = 0 024, R2 = 0 312) (Figure 1(b)
supplementary materials). Figure 2 of supplementary
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Figure 6: Methylation (a) and hydroxymethylation (b) of DNA extracted from the striatum nucleus and SNpc in subgroups originated
by different dopamine reduction levels within F1 groups 2 and 4. (a) 1 vs. 4.1, p < 0 001; 1 vs. 4.2, p = 0 003; and 1 vs. 4.3, p = 0 005 and
(b) 1 vs. 2.1, p = 0 001; 1 vs. 4.1, p = 0 014; and 1 vs. 4.2, p = 0 011.
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materials shows how 5hmC and 5mC impairments identify
the pups originated by both treated parents (group 4),
which differ from the others in their epigenetic profile.

4. Discussion

DNA methylation is a pivotal epigenetic mark exerting a
crucial role in a variety of cellular processes (i.e., gene expres-
sion regulation, genomic imprinting, silencing of transpos-
able elements, and X chromosome inactivation) and that
specifically plays important roles in mammalian neuronal
system [48, 49]. Recent discoveries have demonstrated that
5hmC, which represents an oxidized derivative of 5mC
produced by the process of active DNA demethylation, plays
an essential role in neuronal tissues. Of note is that 5hmC is
not equally distributed across different tissues: it is approxi-
mately 10-fold more abundant in neurons than in other cells
and particularly enriched in the vicinity of genes with
synapse-related functions [48, 50]. Moreover, the amount
of 5hmC in the brain increases in an age-dependent manner,
suggesting that 5hmC does not just mediate the demethyla-
tion process [48, 51–53], but might have a role as an impor-
tant and stable epigenetic marker in the brain. In support of
these evidences, several studies have indicated the dysregula-
tion of 5hmC, as well as of 5mC, as potentially being
involved in multiple diseases including neurodevelopmental
disorders (i.e., Rett syndrome, autism) and neurodegenera-
tive diseases (i.e., Huntington’s disease, Alzheimer’s disease,
and Parkinson disease) [48, 54–58].

Recent data revealed that global DNA methylation and
hydroxymethylation in the striatum nucleus and SNpc of
adolescent rats are increased following early-life permethrin
treatment [42]. Additionally, preliminary data showed that
permethrin-treated female rats have decreased levels of
5mC at adult age, and that this same 5mC reduction could
be observed in the adolescent F1 generation, both in the male
and female progenies [23].

Following these evidences, in this study, we demon-
strated that DNA methylation decreases in directly exposed
female rats at adult age, whereas this reduction is not like-
wise relevant in male adult rats. These results suggest that
DNA methylation may increase at the early stage of the
damage and decrease later in life (Figure 3 supplementary
materials). Concurrently, even if previous researches
suggested potential impairment of sperm DNA methylation
of rats exposed to this stressor [59–61], in the present
study, we did not observe any significant variation in this
parameter in early-life-treated rats. However, this paper
highlights that the treatment was able to affect not just
DNA methylation but also DNA hydroxymethylation in the
striatum nucleus and SNpc of adult rats, and again a
sex-dependent effect was observed: while adult females
displayed a reduction in 5hmC, male rats showed an
increase in this epigenetic mark. These data are not
completely surprising considering that sex-dependent
variations in 5mC and 5hmC have already been reported
[62–64]. The intricate relationship between 5mC and 5hmC
[65] becomes even more complex if we consider that not
just physiological processes but also environmental stimuli

could modulate it [1, 62]. Since permethrin is a well-known
oxidative stressor [15–31], it is reasonable to assume that
this kind of xenobiotic can interfere with normal
5mC/5hmC homeostasis and that different responses could
occur in different genders.

An important innovative aspect demonstrated in this
study is that not just epigenetic marks acquired during
pregnancy but also those established during postnatal
early-life can be inherited. Specifically, exposure to the
stressor in postnatal early-life (from PND6 to PND21) of
the parental generation leads to a significant reduction in
dopamine in their offspring, if both parents or just the
mothers are treated (dopamine reduction 47.35% and
72.72% vs. control, respectively). Furthermore, not just the
phenotype, represented by an impairment in the dopami-
nergic pathway, but also the epigenotype, in terms of global
DNA methylation and hydroxymethylation, are associated
with the altered F1 phenotype.

How epigenetic inheritance is transmitted is still unclear
[62–66]. Previous investigations demonstrated that 5mC sig-
natures developmentally acquired will be erased in the early
embryo and in the germline during a process named epige-
netic reprogramming [65]. Nevertheless, recent genome-
wide DNA methylation profiling demonstrated that, if
germline reprogramming partially fails, a certain number of
loci can escape reprogramming, indeed representing the
prime candidates for transgenerational epigenetic inheri-
tance in mammals [63, 65–67]. On the other hand, no
evidences on the possibility that 5hmC can be directly inher-
ited have been discussed until now. 5hmC accumulates inside
the brains during the life span, from neural progenitors
through young neurons in the fetal brain, and further during
aging of the brain after birth [68]. Additional studies are
necessary to establish if 5hmC variation is a consequence of
the inherited DNA methylation impairment or if other
molecular pathways are indirectly involved in the alteration
of this epigenetic mark.

Moreover, a key result of this study is that maternal
exposure to the stressor permethrin was the most effective
parameter for reducing dopamine levels (72.72% vs. control)
in their respective new born pups; thus, a maternal transmis-
sion not due to an exposure during pregnancy, but to an
epigenetic memory of an early-life perturbation, can be
theorized (Figures 2 and 4 supplementary materials).

Several examples of epigenetic inheritance linked to envi-
ronmental exposures which are heritable through the female
germline have recently been described [69, 70], and different
biological processes have been suggested to explain these
phenomena involving intergenerational or transgenerational
effects [71]. Uncertainties on this topic are still present [64]
probably because the majority of studies have focalized on
epigenetic inheritance through treatments during gestation
and have identified heritable epigenetic changes based on
differences observed between two populations without asses-
sing if a particular individual inherited the epigenetic state of
his/her parent [62]. In light of these drawbacks, the present
study is important to improve the knowledge on the complex
interaction between the environment and the epigenome in
the context of neurodegeneration.
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This study has two important limitations. First of all,
global DNA methylation and hydroxymethylation have been
measured, which provide a general estimation of epige-
nome perturbations without targeting the genomic regions
involved. Moreover, since epigenetics is extremely cell-
specific, and given the cellular heterogeneity and differences
in cell type composition across brain regions, a reduction of
bias should have been provided by analysis of the epigenome
at single-cell resolution. Nevertheless, this study is based on a
powerful animal model characterized by a progressive
neurodegenerative disease onset, where damages are slowly
induced by only 15 days of low dosage exposure to a stressor
after birth during brain development. This represents the
best condition to study epigenetic modifications (slow to
occur) and best mimics real effects of subtle exposure to other
environmental stressors [15–35].

In conclusion, since the F1 generation did not receive any
permethrin, the impairments observed in DNA methylation
and hydroxymethylation, together with reduction in dopa-
mine levels in the F1 generation, have to be associated with
parental early-life exposure to permethrin. This confirms
that epigenetics is involved in the induction of this intergen-
erational impairment of the dopaminergic pathway. Not just
epigenetic alterations established during pregnancy but also
the epigenetic memory of early-life maternal events can
impact offspring health, as observed in this study.

Further researches able to clarify the mechanisms
involved in the intergenerational inheritance of early-life
environmentally induced epigenotype would provide the
basis to identify early determinants of late-onset diseases,
helping to reduce the burden of neurodegenerative patholo-
gies that characterize modern society.
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