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A B S T R A C T

Co-registration between structural head images and functional MEG data is needed for anatomically-informed
MEG data analysis. Despite the efforts to minimize the co-registration error, conventional landmark- and
surface-based strategies for co-registering head and MEG device coordinates achieve an accuracy of typically
5–10mm. Recent advances in instrumentation and technical solutions, such as the development of hybrid ultra-
low-field (ULF) MRI–MEG devices or the use of 3D-printed individualized foam head-casts, promise unprece-
dented co-registration accuracy, i.e., 2 mm or better. In the present study, we assess through simulations the
impact of such an improved co-registration on MEG connectivity analysis.

We generated synthetic MEG recordings for pairs of connected cortical sources with variable locations. We then
assessed the capability to reconstruct source-level connectivity from these recordings for 0–15-mm co-registration
error, three levels of head modeling detail (one-, three- and four-compartment models), two source estimation
techniques (linearly constrained minimum-variance beamforming and minimum-norm estimation MNE) and five
separate connectivity metrics (imaginary coherency, phase-locking value, amplitude-envelope correlation, phase-
slope index and frequency-domain Granger causality).

We found that beamforming can better take advantage of an accurate co-registration than MNE. Specifically,
when the co-registration error was smaller than 3mm, the relative error in connectivity estimates was down to
one-third of that observed with typical co-registration errors. MNE provided stable results for a wide range of co-
registration errors, while the performance of beamforming rapidly degraded as the co-registration error increased.
Furthermore, we found that even moderate co-registration errors (>6mm, on average) essentially decrease the
difference of four- and three- or one-compartment models. Hence, a precise co-registration is important if one
wants to take full advantage of highly accurate head models for connectivity analysis.

We conclude that an improved co-registration will be beneficial for reliable connectivity analysis and effective
use of highly accurate head models in future MEG connectivity studies.
1. Introduction

Brain operation relies on the functional segregation and integration of
several brain areas into networks (Avena-Koenigsberger et al., 2018).
The functional relevance of cross-areal associations has been extensively
demonstrated (see Cole et al., 2014 for a review). Most of these studies
have used functional Magnetic Resonance Imaging (fMRI) to investigate
the coupling of slow fluctuations in blood oxygenation during task
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execution and during inactivity, the latter leading to the concept of
resting-state networks (Raichle, 2010).

To investigate cross-areal coupling at behaviorally relevant temporal
scales, e.g., in the 10–100ms range, fMRI is inadequate due to its
intrinsic poor temporal resolution. Electrophysiological techniques, such
as magnetoencephalography (MEG) or electroencephalography (EEG),
offer a solution to this problem thanks to their exquisite temporal reso-
lution (Baillet, 2017; H€am€al€ainen et al., 1993). In this framework, several
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strategies have been developed to detect functional associations,
including investigations of the coupling of slow signal fluctuations, in
analogy with the fMRI network approach (Brookes et al., 2011a; de
Pasquale et al., 2010; Liu et al., 2017; O'Neill et al., 2015). Phase locking
of oscillatory activity, i.e., of brain rhythms, is a plausible candidate
mechanism behind cross-areal integration (Engel et al., 2013; Fries,
2015; Varela et al., 2001). Noninvasive access to neuronal oscillations is
exclusively provided by MEG or EEG. Along this line, MEG has sub-
stantially contributed to unravelling the oscillatory coupling between
cortical regions (e.g., Basti et al., 2018; Chella et al., 2016; D'Andrea
et al., 2019; Lobier et al., 2018; Marzetti et al., 2013; Palva and Palva,
2012; Siegel et al., 2008).

The identification of neuronal generators from MEG signals requires
one to solve an ill-posed inverse problem. Besides the intrinsic non-
uniqueness and the properties of the techniques used to render the so-
lution unique, the accuracy of the solution is limited by the knowledge of
the conductivity geometry of the head (described as the head model) as
well as of MEG sensor positions relative to the head; this knowledge,
along with sensor type and geometry, determines the sensitivity distri-
butions of the sensors, i.e., the lead field matrix. The accuracy of this
information, in turn, affects the reliability and reproducibility of the es-
timates of cross-areal associations.

To date, realistically shaped and sufficiently detailed headmodels can
be constructed from structural head images (usually MRI scans); several
forward-modeling techniques have been developed to take into account
the effect of relevant head tissues, such as the boundary-element method
(BEM) (H€am€al€ainen and Sarvas, 1989; Mosher et al., 1999; Stenroos and
Nummenmaa, 2016), and the finite-element method (Haueisen et al.,
1997; Schimpf et al., 2002; Wolters et al., 2006, 2004). Including the
cerebrospinal fluid (CSF) and the distinction between white and gray
matter have in simulations been shown to improve the accuracy of MEG
forward solutions (Stenroos and Nummenmaa, 2016; Vorwerk et al.,
2014). Similar results have been obtained for inverse solutions involving
one source at a time (Neugebauer et al., 2017) and for connectivity es-
timates (Cho et al., 2015). Nevertheless, when using structural images for
modeling MEG, a precise co-registration between functional and
anatomical data is required for accurate forward modeling.

In MEG recordings, co-registration errors are typically several milli-
meters. As an example, Whalen et al. (2008) reported a mean error of
8.7 mm for co-registration based on a small set of anatomical reference
points, which can be reduced down to 4.4mm by using surface-matching
techniques. Adjamian et al. (2004) used personalized bite bars with extra
fiducial coils, achieving a co-registration accuracy of about 5mm. Hill-
ebrand and Barnes (2011) suggested that a reasonable bound for
co-registration error is between 5 and 10mm. These findings suggest that
co-registration errors can be quite large, and thus possible effects on
source and connectivity estimation should be carefully taken into ac-
count when designing MEG experiments. Besides co-registration, subject
movements within or across different MEG sessions represent a related
source of error on the assumed head location relative to sensors. The
magnitude of head movements is often greater than co-registration er-
rors. As an example, Wehner et al. (2008) reported an average head
displacement up to 12mm from the beginning to the end of the experi-
ment in a study with children. Head movements can be corrected for in
software (Taulu and Simola, 2006; Uutela et al., 2001), but even in this
case the remaining co-registration error represents the absolute limit for
forward modeling accuracy, which cannot be further reduced.

Recent technical solutions and advances in instrumentation allow for
improved MEG–MRI co-registration. Troebinger et al. (2014) proposed
the use of subject-specific head casts produced with 3D printing tech-
nologies to constrain headmovements within and betweenMEG sessions,
reducing co-registration variability to be below 2mm and the absolute
co-registration error below 5mm. Sonntag et al. (2018) reported an
improved co-registration based on a Metropolis sampling algorithm,
achieving an average uncertainty of about 1.7 mm on the head surface,
with an upper bound of 4mm. This is of the same order of magnitude as
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expected from novel instrumentation for biomagnetic measurements that
combines ultra-low-field (ULF) MRI with MEG (Vesanen et al., 2013;
Zotev et al., 2008), where no co-registration between MEG and ULF MRI
is required (M€akinen et al., 2019); one will only need to match ULF MRI
with conventional high-field MRI to provide high-quality structural im-
ages (Guidotti et al., 2018).

Co-registration errors have been shown to degrade source recon-
struction accuracy (Barratt et al., 2018; Hillebrand and Barnes, 2011,
2003; L�opez et al., 2012; Zetter et al., 2018). Nonetheless, the effects of
co-registration errors on source connectivity estimates have, to our
knowledge, only been investigated for beamformer reconstruction by
Liuzzi et al. (2017), who reported reduced reliability and reproducibility
of functional connectivity estimates due to erroneous co-registration.

This study aims at a quantitative evaluation of the impact of co-
registration errors on the estimation of functional brain connectivity,
taking also into account head-model accuracy and the source-
reconstruction technique. We approach these aims through extensive
simulations in which synthetic MEG recordings with known connectivity
patterns are considered. We use three levels of detail in volume-
conductor test models, namely the four-, three- and one-compartment
models, and two source-reconstruction techniques, namely minimum-
norm estimation (H€am€al€ainen and Ilmoniemi, 1994; Lin et al., 2004)
and beamforming (van Veen et al., 1997). We consider five conventional
connectivity measures: three non-directional measures—imaginary part
of coherency (Nolte et al., 2004), phase-locking value (Lachaux et al.,
1999) and amplitude-envelope correlation (Brookes et al., 2011b; O'Neill
et al., 2015)—and two directional measures—phase-slope index (Nolte
et al., 2008) and frequency-domain Granger causality (Geweke, 1982).

2. Materials and methods

2.1. Head model and sensor layout

The head models used in the simulations were based on the sample
anatomy provided with the SimNIBS toolbox (Windhoff et al., 2013). The
model data contain FreeSurfer (Dale et al., 1999; Fischl, 2012; Fischl
et al., 1999) segmentation of brain, an FSL (Jenkinson et al., 2012)
segmentation of skull and skin, and a finite-element volume mesh built
based on these segmentations. We used the FreeSurfer-generated mesh
for the boundary betweenwhite and gray matter (white surface). The rest
of the boundaries (pial surface, cerebellum, inner and outer skull, scalp)
were extracted from the volume mesh. The original meshes were slightly
smoothed according to a desired triangle side length (TSL) (see Table 1)
by using the iso2mesh toolbox (Fang and Boas, 2009). Segmentation
errors at the head base were manually corrected. The white surface was
used for the source space; source-current distributions were modeled
using normally-oriented current dipoles placed in the nodes of the mesh.
The other meshes were used as conductivity boundaries in a
boundary-element volume-conductor model. The same conductivity
boundaries had earlier been used for EEG/MEG head modeling by
Stenroos and Nummenmaa (2016).

From the mentioned surfaces, we built four head models, which differ
by the number of compartments and/or by the mesh sampling. The first
model, hereafter referred to as Reference Model (RM), consists of four
compartments: brain (i.e., the volume within the pial surface and cere-
bellum), CSF (i.e., the volume between the pial surface/cerebellum and
the inner skull), skull (i.e., the volume between the inner and outer skull
surfaces), and scalp (i.e., the volume between the outer skull and the skin
surfaces). It was used for generating MEG signals, and as a reference for
comparison of forward solutions (see Supplementary Material). Meshes
and the head model for RM are visualized in Fig. 1 (see also Stenroos and
Nummenmaa, 2016).

The other three models were used for source reconstruction and
assessment procedures; for this reason, they will be referred to as Test
Models (TMs). The first TM consists of 4 compartments (TM-4c): brain,
CSF, skull and scalp. To avoid using exactly the same headmodel for both



Table 1
Details of the boundary meshes comprising the Reference Model (RM) and the Test Models (TM-4c; TM-3c; TM-1c).

Model name Mean triangle side length (mm) – Number of triangles

White surface Pial surface Cerebellum Inner skull Outer skull Skin

RM 3.0–40640 4.0–22592 5.0–1812 5.0–7016 6.0–5388 7.0–5298
TM-4c 3.5–28498 4.0–22592 5.5–1496 5.5–5792 6.5–4578 7.5–4608
TM-3c 3.5–28498 – – 5.5–5792 6.5–4578 7.5–4608
TM-1c 3.5–28498 – – 5.5–5792 – –

Fig. 1. a–e) Boundary meshes used for the construction of the Reference Model (see also Stenroos and Nummenmaa, 2016), and f) a cross-sectional view of the
4-compartment head model and MEG sensor array.
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data generation and assessment procedures, TM-4c was built using a
different, slightly coarser cortex mesh (white matter) and smoothed,
partially slightly coarser volume meshes obtained by resampling the
meshes used for RM. Meshing details for the different head models are
listed in Table 1. The second and third TM were obtained as increasingly
simplified models from TM-4c. Specifically, the second TM consisted of
three compartments (TM-3c): brain, skull, and scalp; it was derived from
TM-4c by considering the whole intracranial space, including CSF, as the
brain compartment. The third TM consisted of one homogeneous
compartment (TM-1c) inside the inner skull surface, coinciding with the
innermost compartment of TM-3c. Tissue conductivities in RM and TMs
were set equal to σbrain¼ σscalp¼ 0.33 S/m, σskull¼ 0.0066 S/m, and
σCSF¼ 1.79 S/m. As MEG is rather insensitive to compartment conduc-
tivities, we did not adjust the conductivity of the brain to compensate for
the omission of the CSF in TM-3c and TM-1c; such an adjustment would
be advisable if EEG were modeled (see Stenroos and Nummenmaa,
2016).

The simulated sensor array comprised 102 magnetometers in the
configuration of the 306-channel Elekta Neuromag VectorView system
(MEGIN, Helsinki, Finland). The magnetometer output was computed by
numerically integrating the field over four points per pick-up coil.

2.2. Simulating co-registration errors

For the generation of the simulated MEG recordings, the head of the
RM was almost centered within the MEG helmet, with a minimum head-
to-sensors distance of 2.9 cm. In conventional MEG devices, the dewar
walls of the MEG helmet are approximately 2 cm thick (as reported in,
e.g., Iivanainen et al., 2017); thus the head was reasonably close to the
dewar surface, as recommended in real-world measurements.
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Imperfect co-registration of TM-4c, TM-3c and TM-1c was then
simulated by adding a random translational and rotational error to the
head position relative to MEG sensors. The translational error was
simulated by a shift to a random direction by distance δ chosen from a
normal distribution with zero mean and 5-mm standard deviation. The
rotational error consisted of a rotation by an angle θ around a randomly
chosen axis (i.e., a randomly oriented axis passing through a randomly
chosen point within the head volume), with θ being randomly chosen
from a normal distribution with zero mean and 3� standard deviation.
Translational and rotational errors were added simultaneously. A total of
250 erroneous co-registrations were generated. After adding the co-
registration error, the head position with respect to sensors was veri-
fied. In only 11 out of the 250 random repetitions of translations and
rotations the minimum head-to-sensors distance was lower than 2 cm;
and of these 11 cases, only in one case the minimum head-to-sensors was
lower than 1.5 cm (specifically 1.1 cm); in all cases, the sensors were still
outside the head.

For each source in the RM, we calculated the source-level co-regis-
tration error (SCE) as the distance between the actual source location ri in
the RM and its corresponding misaligned location r 'i in the TMs, i.e.,

SCEi ¼
��ri � r'i

�� for i ¼ 1;…;K ; (1)

where k⋅k denotes the Euclidean norm, and i runs over the K sources in
RM. Due to different cortical sampling, r 'i does not correspond to any of
the possible source locations in the TMs in these models; here, r 'i is
calculated by adding the co-registration error to ri. Based on the above
definition, SCE quantifies the error in the knowledge of the actual source
location in the misaligned sensor space.

In addition, we defined the cortical co-registration error (CCE) as the
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average SCE across all sources, i.e.,

CCE ¼ 1
K

XK
i¼1

SCEi ; (2)

2.3. BEM forward modeling

We built forwardmodels for RM and TMs by using a linear collocation
boundary-element method (LC-BEM) (de Munck, 1992; Stenroos et al.,
2007) formulated with the isolated source approach (H€am€al€ainen and
Sarvas, 1989; Stenroos and Sarvas, 2012). The LC-BEM solver used in this
study, called MEGBEM, was verified and used earlier by Stenroos et al.
(2014) and by Stenroos and Nummenmaa (2016).

The forward-modeling process results in a lead-field matrix where the
i-th column represents the magnetic field generated at the sensors by a
unit-strength elementary source, in this case a normally-oriented current
dipole, placed at the i-th location of the source space. The lead field
matrices for RM and TMs are hereafter distinguished by using plain (L)

and ‘hatted’ (bL) symbols, respectively. The co-registration error con-
tributes to the overall difference between the lead fields in the RM and
TMs; we refer the interested reader to the Supplementary Material for a
detailed analysis of the effects of co-registration errors on the forward
models. In the following, we will focus on how this affects the results of
source identification and connectivity analysis.

2.4. Generation of synthetic MEG recordings

We simulated a 5-min MEG recording, sampled at 256Hz, with brain
sources and sensor noise. We assumed two interacting sources with
unidirectional coupling, i.e., one source is the sender and the other is the
receiver. The source time courses, s1ðtÞ and s2ðtÞ, were generated by
using a unidirectional connectivity model in which the first source is a
random process, while the second source is influenced, with a delay, by
the first source. This model has the form:
8><
>:

s1ðtÞ ¼ ε1ðtÞ
s2ðtÞ ¼

XP
p¼1

aðpÞs1ðt � pÞ þ ε2ðtÞ ; (3)

where aðpÞ (for p ¼ 1;…;P) are linear coefficients describing the time-
delayed influence of s1 on s2, and εi (for i ¼ 1;2) are uncorrelated
noise terms. Both coefficients and noise terms were sampled from a
standard normal distribution. A model order P ¼ 5 was used as was done,
e.g., in Basti et al. (2018), Haufe et al. (2013), Haufe and Ewald (2016),
Nolte et al. (2008) or Sommariva et al. (2017), and the model was tested
for stability (Lütkepohl, 2005); we refer to section S3 of the Supple-
mentary Material for further details on the generative model for source
time courses. We finally standardized the source time courses for unit
variance.

The generated time courses were assigned to two point-like dipolar
sources randomly located in the source space. MEG signals were then
simulated by multiplying the source time courses with the topography
vectors (i.e., the columns of the lead field matrix) for sources at the
chosen locations in the RM and adding correlated sensor and biological
noise, according to the following model:

xðtÞ ¼ xiðtÞ þ xbðtÞ þ xnðtÞ; (4)

where

xiðtÞ ¼ l1s1ðtÞ þ l2s2ðtÞ; (5)

is the signal component generated by the interacting sources s1 and s2,

xbðtÞ ¼ γ1
X

j¼1…100

ljsnoisej ðtÞ ; (6)
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is the biological noise ‘of brain origin’ generated by 100 uncorrelated
point-like sources uniformly distributed over the cortex, and

xnðtÞ ¼ γ2 nðtÞ; (7)

is normally-distributed sensor noise with fixed covariance matrix taken
from a real empty-room MEG measurement (Wakeman and Henson,
2015). In the above notation, li denotes the topography of the i-th source;
snoisej ðtÞ are the time courses of uncorrelated normally-distributed sources
of biological noise; γ1 and γ2 are scaling parameters that weight the
contribution of biological noise and sensor noise, respectively; and nðtÞ is
the unweighted vector of sensor noise. We defined the
signal-to-biological-noise ratio (SbNR) as the ratio between the
root-mean-square (r.m.s.) across sensors of the standard deviation of xiðtÞ
and the r.m.s. across sensors of the standard deviation of xbðtÞ. Similarly,
we defined the signal-to-sensor-noise ratio (SsNR) as the ratio between
the r.m.s. across sensors of the standard deviations of xiðtÞ and xnðtÞ. For
each two-source configuration, we set γ1 and γ2 in such a way that
SbNR¼ 2 and SsNR¼ 10. We also defined the
biological-plus-sensor-noise covariance matrix Σ as the covariance ma-
trix of xbðtÞþ xnðtÞ.

In order to avoid bias from a particular source configuration or
location, we generated 10,000 MEG data sets by independently changing
the locations of sources s1 and s2 randomly 100 times each (Fig. 2a). In
addition, to visualize the obtained results onto the cortical surface, we
considered one illustrative case in which s1 is fixed in the middle frontal
cortex (Fig. 2b) while s2 varies across all the other locations in the source
space.
2.5. Source reconstruction

Source time courses were reconstructed from the simulated MEG data
sets and forward model from TMs. We recall that, besides being affected
by the co-registration error, TMs are different from RM in terms of
boundary meshes, spatial sampling and putative source locations, which
helped avoid the ‘inverse crime’ of using the same model parameters for
both data generation and source reconstruction (Kaipio and Somersalo,
2007); in addition, the three- and one-compartment TMs also simulate
common real-worldmodel simplifications such as the omission of the CSF
and the assumption of a homogeneous brain compartment inside the
inner skull surface (TM-3c), and the exclusion of the skull and scalp
compartments (TM-1c).

Both the simulated data and lead fields from TMs were first pre-
whitened with the matrix Σ�1=2. That is, we assume that the noise
covariance matrix is available, e.g., from a baseline period or a contrast
condition. In the following, all signals, topography vectors and lead field
matrices are whitened, even though we use the same symbols that we so
far used for non-whitened signals and models. We then located the two
interacting sources by using a recently developed version of MUltiple
SIgnal Classification (MUSIC) algorithm, called Truncated Recursively-
Applied-and-Projected MUSIC (TRAP-MUSIC) (M€akel€a et al., 2018).
MUSIC-type algorithms aim to estimate source parameters by using the
temporal information from the measured signals and the spatial and
physical information of the forward model (Mosher and Leahy, 1999,
1998; Schmidt, 1986). In particular, the source localization is performed
by evaluating a localizer function at all putative source locations in a
scanning grid; the locations of the maxima of the localizer function yield
an estimate of source locations. Similarly to conventional RAP-MUSIC
algorithms, TRAP-MUSIC allows one to locate multiple sources in a
recursive way. Specifically, a plain MUSIC scan is performed at first,
yielding an estimate of the first source location (i.e., the global
maximum); at each following recursion step, the topography of the
source found in the previous step is projected out of the data and the
forward model and the dimension of the data and model are reduced by
one (M€akel€a et al., 2018); the recursive process is then applied to the



Fig. 2. Locations of the sources used in the generation of simulated MEG data shown on the inflated surface between the white and gray matter. a) The employed 100
source locations for s1 (black), s2 (red) and sources of biological noise (blue) randomly chosen from the full source space; b) Sample location of s1 (black) in the middle
frontal cortex for visualizations.
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transformed data. Hence the problem of finding multiple local maxima of
the localizer in one round is overcome by finding one global maximum at
each recursive step. The interested reader is referred to M€akel€a et al.
(2018) for details.

The first two maxima of the TRAP-MUSIC localizer yielded an esti-
mate of the location of the two interacting sources. The accuracy of
source localization was assessed by using a Source Localization Error
(SLE) of the form

SLEi ¼
��r̂i � r'i

��; for i ¼ 1; 2 (8)

where br i is the location of source i estimated by TRAP-MUSIC, and r 'i is
the actual location in the TM source space as defined in the previous
section.

Of note, MUSIC-type algorithms, including TRAP-MUSIC, do not
provide the source time courses during the localization process; they
need to be estimated separately. For this purpose, we calculated the
weight vectors bw1 and bw2 that give an estimate of source time courses at
locations br1 and br2 as a linear combination of sensor signals, i.e.,

bsiðtÞ ¼ bwi xðtÞ; for i ¼ 1; 2 (9)

by using either a scalar linearly constrained minimum-variance (LCMV)
beamformer (van Veen et al., 1997) or depth-weighted minimum-norm
estimation (MNE) (H€am€al€ainen et al., 1993; Lin et al., 2004).

In scalar LCMV beamforming, the weight vector bwLCMV
i of a given

source i is estimated by minimizing the variance of bsiðtÞ while satisfying
the constraint that the signal that has topography bli is passed with unit
gain. The solution of this minimization has the form (van Veen et al.,
1997)

bwLCMV
i ¼

hblTi C�1
r

blii�1 blTi C�1
r ; (10)

where bli is the N � 1 topography vector of source i in the TM, ð⋅ÞT and
ð⋅Þ�1 denote the transpose and inverse operators, respectively, and Cr is a
regularized version of the N � N measurement covariance matrix C. We
use the regularization of the form Cr ¼ Cþ μΣ, where Σ is the N � N
noise covariance matrix, and μ is a Backus–Gilbert regularization
parameter, in this study set to μ ¼ 10 (Brookes et al., 2011a, 2008). For
beamforming, accurate modeling of source space (location and orienta-
tion) is important. Overall, if the actual signal topography differs too

much from topographies bli, e.g., due to co-registration errors, due to
sources being extended, or head model being too inaccurate, sources are
incorrectly reconstructed or even missed.

In MNE, an estimate of distributed source activity that balances be-
tween small overall source amplitude, reconstruction of measured signals
and rejection of noise is sought (H€am€al€ainen et al., 1993; H€am€al€ainen
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and Ilmoniemi, 1994). The computation of the spatial filter has the form
(Lin et al., 2006, 2004)

cWMNE ¼ RbLT�bL R bLT þ λ2Σ
��1

; (11)

where Σ is the N � N noise covariance matrix, bL is the N � bK lead-field

matrix of the TMs, and R is the bK � bK source covariance matrix that
contains prior information on the source distribution. If no such prior is
used, R is set equal to the identity matrix. The regularization parameter
λ2 that sets the balance between data reconstruction accuracy and source
amplitude is commonly set with the help of (power) signal-to-noise ratio
SNR2 (Lin et al., 2006):

λ2 ¼ trace
�bL R bLT�

traceðΣÞ SNR2 ; (12)

For each simulated data set, SNR2 was estimated from the data as the
ratio between the trace of the whitened measurement covariance matrix
and the trace of the whitened noise covariance matrix; in our case,
traceðΣÞ ¼ N, because our noise covariance matrix had full rank and did
not need additional regularization. The weight vector bwMNE

i of a given

source i is finally taken as the i-th row of the matrix cWMNE
.

As MNE aims to reconstruct the relevant part of the measurement data
with a small overall source amplitude, it favors source locations that
produce strong signals. This leads to favoring of superficial tangential
sources. For a minimum-norm spatial filter this means strong response
(cross-talk) from those superficial sources. This property may be miti-
gated by so-called depth weighting, namely by multiplying the elements
of R corresponding to the i-th source by

fi ¼
�blTi bli

��q
(13)

where q is a tunable depth-weighting parameter, whose optimal value
depends on several factors, including decimation of the source space,
local anatomy features, and the regularization parameter. In this study,
we used q ¼ 0.4 based on a preliminary quantitative analysis that we
performed as suggested by Lin et al. (2006). Thus, we set R to a diagonal
matrix, with values fi on the diagonal.

We assessed the accuracy of source activity estimates by using the
Crosstalk-to-Signal Ratio (Cho et al., 2015; Sekihara and Nagarajan,
2008) and the Neural Activity Index (van Veen et al., 1997). The
Crosstalk-to-Signal Ratio (CSR) is a measure of the contamination
induced in the estimated activity of one source due to the activity of the
other source, and it is expressed as

CSR1 ¼ jbw1 l2j
jbw1 l1j; (14)
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for source 1, and

CSR2 ¼ jbw2 l1j
jbw2 l2j; (15)

for source 2, where |⋅| denotes the absolute value. A non-zero CSR in-
dicates the presence of zero-lag correlated components in the recon-
structed source time courses, which are due to the leakage of one source
time-course into the estimate of the other source; this is often referred to
as the source-leakage effect (Brookes et al., 2012; Colclough et al., 2016).
The Neural Activity Index (NAI) quantifies, for each source, the ratio
between the reconstructed source power and projected noise power, and
it is given by

NAIi ¼ bwi C bwT
ibwi Σ bwT
i

; for i ¼ 1; 2: (16)

Small NAI values mean that the reconstructed source time-courses
contain a large amount of noise, which is likely to render connectivity
between the reconstructed sources invisible.
2.6. Connectivity analysis

Connectivity was estimated from the time courses of the recon-
structed sources, bs1ðtÞ and bs2ðtÞ, by using five different connectivity
measures. Three of them were non-directional measures: imaginary part
of coherency (ImCohy) (Nolte et al., 2004), phase-locking value (PLV)
(Lachaux et al., 1999) and amplitude-envelope correlation (AEC)
(Brookes et al., 2011b; O'Neill et al., 2015); and the two others direc-
tional measures: phase-slope index (PSI) (Nolte et al., 2008) and
frequency-domain Granger causality (fGC) (Geweke, 1982). Basic prin-
ciples and estimation methods for these measures are available in Section
S2 of Supplementary Material.

Source-leakage effects represent a potential confound in the MEG
source connectivity analysis. They result in zero-phase-lag correlation
between the reconstructed source time courses that, without careful
control, can artifactually inflate the estimated connectivity (Basti et al.,
2018, 2017; Brookes et al., 2012; Chella et al., 2016, 2014; Colclough
et al., 2016; Ewald et al., 2012; Hipp et al., 2012; Marzetti et al., 2013;
Nolte et al., 2004; Palva et al., 2018; Soto et al., 2016; Vinck et al., 2011).
Among the connectivity measures investigated in this study, ImCohy and
PSI are robust to this bias since zero-phase-lag effects are inherently
removed (Nolte et al., 2008, 2004); similarly, fGC is not inflated by the
leakage of one source to the other. However, PLV and AEC are affected by
source leakage, and therefore, prior to the estimation of connectivity, we
applied a source-leakage compensation by using a pairwise orthogonal-
isation procedure (Brookes et al., 2012; O'Neill et al., 2015) for
band-limited signals.

In order to investigate the effects of co-registration errors on the
above connectivity measures, we restricted our analysis to the frequency
range 8–12Hz to mimic a realistic scenario of data analysis. AEC was
computed after frequency filtering the source time courses to this range.
The other measures were computed in the frequency domain for fre-
quencies in this range with 1-Hz steps, and then averaged over the band.
ImCohy and AEC, which may be negative-valued, were considered as
absolute values, in such a way that a decrease of their value unambigu-
ously indicates a decrease of estimated connectivity.

We assessed the accuracy of the obtained estimates for each con-
nectivity metric (ImCohy, PLV, AEC, PSI, or fGC) by using a Relative
Error (RE) measure defined as

RE ¼
��μ12 � μtrue12

��
jμ12j þ jμtrue12 j; (17)

where μ12 is the estimated value, i.e., obtained from the reconstructed
source time courses, and μtrue12 is the true value, i.e., obtained directly from
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source time courses used in the generation of simulated data. The RE is a
normalized difference between the estimated and the true value, with the
normalization ensuring RE to be bound between 0 and 1. In addition, to
map relative errors onto the cortical surface, we calculated a signed
Relative Error (RE) by omitting the absolute value at the numerator of the
above formula, i.e., we kept the sign of the difference between the esti-
mated value and the true value, in such a way that a positive signed RE
value indicates a locally inflated connectivity estimate, while a negative
signed RE value indicates a locally deflated connectivity estimate.

Statistical analysis for the contrast between RE distributions obtained
by using the three different head models in forward solution (TM-4c, TM-
3c, or TM1-c) was carried out by using a non-parametric Friedman test,
followed by a Tukey post-hoc test. Correction for multiple comparison
was performed using the false-discovery-rate (FDR) approach (Benjamini
and Yekutieli, 2001). For pairwise comparisons between RE distributions
obtained by using two different head models, or by using the two
different source reconstruction techniques (beamforming or MNE), we
relied on a non-parametric Wilcoxon signed-rank test. We also calculated
the effect size r associated to Wilcoxon z-value as r ¼ z=

ffiffiffi
n

p
, where n is

the number of samples (Fritz et al., 2012). By convention, r-values of 0.1,
0.3, and 0.5 are considered ‘small’, ‘medium’, and ‘large’ effect sizes,
respectively (Cohen, 1988).

2.7. Data and code availability statement

The code used for synthetic data generation and analysis is available
upon direct request.

3. Results

3.1. Assessment of source reconstruction

SLE for TRAP-MUSIC source localization, as well as CSR and NAI for
both beamforming and MNE source activity reconstruction, were first
evaluated for sources s1 and s2 separately, and for all simulation repeti-
tions obtained by randomizing source locations. CSR and NAI, which
quantify relative amplitude and power measures, respectively, were
logarithmically transformed. We then averaged these indices across
sources s1 and s2, and sorted the obtained values for increasing mean
source co-registration error across s1 and s2 in the range 0–15mm, i.e., a
range which matches expected and reported real co-registration errors
(Hillebrand and Barnes, 2011; Whalen et al., 2008); with this range se-
lection, we retained roughly the 98% of total cases generated in simu-
lation. CSR values were also sorted as a function of the distance between
s1 and s2.

Fig. 3 shows the box plots of the distribution of SLE as a function of
the mean source co-registration error between sources s1 and s2. We first
note that SLE increases for an increasing co-registration error. In
particular, for a mean source co-registration errors ranging from 0 to
15mm, the median SLE values range from 1 to 3mm, depending on the
forward model accuracy, up to about 15mm. Overall, head model sim-
plifications, i.e., the omission of CSF in TM-3c and the further exclusion
of skull and scalp in TM-1c, cause an increase of the SLE, but the dif-
ferences between the TMs rapidly decrease for increasing co-registration
error.

Fig. 4 shows the median logarithmic CSR as a function of the mean
source co-registration error (x axis) and of the distance between sources
s1 and s2 (y axis). Of note, CSR is relevant only for nearby sources, and it
rapidly decreases for increasing distance between sources. For instance, a
log10(CSR) equal to �1 means that the source contamination from cross-
talk is one tenth of the true source signal, which at low co-registration
errors (<3mm) occurs for s1-to-s2 distance lower than ~10mm (for
TM-4c) or ~20mm (for TM-3c and TM-1c) in beamforming, or lower
than ~50mm in MNE. Interestingly, CSR shows a clear dependence on
co-registration errors only for sources reconstructed using beamforming,
with the cross-talk decaying less rapidly with source distance for



Fig. 3. Box plots for Source Localization Error (SLE) as a function of the mean
source co-registration error across s1 and s2, for source locations estimated by
using TRAP-MUSIC. The dot, the rectangular box and the whiskers for each box
plot denote the median value, the range from the 16th to the 84th percentile and
the range from the 5th to the 95th percentile of the distribution, respectively.
Notice that these roughly correspond to the mean value and the ranges between
one or two standard deviations below and above the mean in case of Gaussian
distribution. The abscissa is divided into bins (i.e., intervals) of 1-mm width, and
each box plot is displayed on the right-hand edge of the corresponding bin – i.e.,
the box plot at 1mm collects the data for mean source co-registration error
between 0 (excluded) and 1mm (included), the box plot at 2mm collects the
data for mean source co-registration error between 1 (excluded) and 2mm
(included), and so on; the box plot at 0mm corresponds to the case of no co-
registration error. In blue: data obtained using the 4-compartment test model
(TM-4c). In red: data obtained using the 3-compartment test model (TM-3c). In
green: data obtained using the 1-compartment test model (TM-1c).
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increasing co-registration errors. No noticeable effects can be observed
when using MNE, although it must be noted that the CSR decays less
rapidly with source distance than in beamforming, at least if the co-
registration error is low. Analogously to SLE, small changes in CSR due
to the head model simplification can be observed only for beamforming-
reconstructed sources and if the co-registration error is small.

Fig. 5 shows the box plots of the distribution of logarithmic NAI as a
function of the mean source co-registration error. Analogously to CSR,
NAI shows a dependence on co-registration error only for sources
reconstructed using beamforming, with NAI rapidly decreasing for
increasing co-registration error. Specifically, for mean source co-
registration errors ranging from 0 up to 15mm, the median NAI values
range from ~1.5 (i.e., for TM-4c) or ~1.3 (i.e., for TM-3c and TM-1c) to
Fig. 4. Heat maps for the median logarithmic Crosstalk-to-Signal Ratio, log10(CSR),
distance between s1 and s2, obtained using three different test models (top row: TM
struction methods (left column: LCMV beamforming; right column: MNE).
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~0.9 (i.e., for all TMs). No noticeable dependence of NAI values on co-
registration error can be observed for sources reconstructed using
MNE. Finally, for beamforming-reconstructed sources, NAI values ob-
tained using TM-3c and TM-1c are systematically lower than the ones
obtained using TM-4c, although the difference decreases for increasing
co-registration error.

3.2. Assessment of source connectivity estimates

RE values were computed for all simulation repetitions, and then
sorted for ascending mean co-registration error across sources s1 and s2.
The obtained RE distributions are plotted in Fig. 6. In this figure, the
panels in different rows refer to different connectivity measures (PLV,
ImCohy, AEC, PSI, and fGC), while the panels in different columns refer
to different source reconstruction technique (left column for beam-
forming; right column for MNE).

For beamforming (Fig. 6, left column), we first note that the RE values
increase for increasing co-registration error, with median values ranging
from a few percent in case of zero-error up to about 7–8% for PLV and
ImCohy, or even about 15–20% for AEC, PSI and fGC, in case of 15-mm
error. A more marked increase can be observed at the upper tails of the
distributions, denoted by the 84th and 95th percentiles, especially for
directional measures (PSI and fGC). In order to quantify the impact of an
improved co-registration on the accuracy of connectivity estimates ob-
tained with beamforming, we compared the mean values of RE for
three different ranges of mean source co-registration error (mSCE):
0 mm � mSCE � 3 mm (low mSCE), 3 mm < mSCE � 7 mm (me-
dium mSCE), and 7 mm < mSCE � 15 mm (high mSCE). The obtained
results are listed in Table 2a–c. Here, we also list the ratio of mean RE
values in high mSCE and medium mSCE to low mSCE, which quantifies
the factor that we expect to gain in the accuracy of connectivity estimates
by reducing the co-registration error below 3mm. Notably, on average
this factor is about 1.5 (for TM-4c) or 1.3 (for TM-3c and TM-1c) when
switching from medium to low mSCE, and about 2.6 (for TM-4c) or 1.9
(for TM-3c and TM-1c) when switching from high to low mSCE.

For beamforming-based connectivity estimates (Fig. 6, left panels),
we also observe that RE values obtained for TM-3c and TM-1c are sys-
tematically larger than the respective values obtained for TM-4c for small
co-registration errors, which demonstrates a systematic decrease in the
accuracy of connectivity estimates when a simplified volume-conductor
model is used. Moreover, RE values for TM-3c and TM-1c show little
difference as compared to those of TM-4c. A non-parametric Friedman
test performed to compare different TMs, followed by a Tukey post-hoc
as a function of the mean source co-registration error across s1 and s2 and of the
-4c; middle row: TM3-c; bottom row: TM-1c) and two different source recon-



Fig. 5. Box plots for logarithmic Neural Activity Index, log10(NAI), as a function of the mean source co-registration error across s1 and s2, for sources reconstructed by
using a beamforming approach (LCMV beamforming, left panel) and a weighted MNE solution (MNE, right panel). NAI quantifies the ratio between reconstructed
source power and projected noise power, in such a way that large NAI values mean that the reconstructed source time courses contain a small amount of noise. The dot,
the rectangular box and the whiskers for each box plot denote the median value, the range from the 16th to the 84th percentile and the range from the 5th to the 95th
percentile of the distribution, respectively. Notice that these roughly correspond to the mean value and the ranges between one or two standard deviations below and
above the mean in case of Gaussian distribution. The abscissa is divided into bins (i.e., intervals) of 1-mm width, and each box plot is displayed on the right-hand edge
of the corresponding bin—i.e., the box plot at 1mm collects the data for mean source co-registration error between 0 (excluded) and 1mm (included), the box plot at
2 mm collects the data for mean source co-registration error between 1 (excluded) and 2mm (included), and so on; the box plot at 0 mm corresponds to the case of no
co-registration error. In blue: data obtained using the 4-compartment test model (TM-4c). In red: data obtained using the 3-compartment test model (TM-3c). In green:
data obtained using the 1-compartment test model (TM-1c).
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test, with FDR correction, revealed a significant effect of head-model
accuracy on RE values, even if some of the differences that can be
observed in Fig. 6 are small (see section S4 of the SupplementaryMaterial
for summary tables of test statistics). We considered this as an effect due
to the large sample size, given by the number of simulated source pairs
(minimum sample size: 10,000 at mSCE¼ 0mm; degrees of freedom for
groups and error: 2; 19,998). This also means that the large variability
observed in the RE distributions is mainly due to the within-group
variability, i.e., across the different source pairs (our units-of-
observation). We then performed pairwise contrasts between different
TMs by using a non-parametric Wilcoxon signed-rank test, and we
evaluated meaningful differences by using the associated effect size r.
Fig. 7a–c shows the effect size as a function of the mean source co-
registration error for the difference TM-3c–TM-4c, TM-1c–TM-4c and
TM-3c–TM-1c, respectively. In this figure, conventional values for a small
(0.1), medium (0.3), and large (0.5) effect size have been marked by the
horizontal grid lines. Notably, for PLV, ImCohy, AEC and fGC, the effect
size between TM-4c and TM-3c (Fig. 7a) or TM-1c (Fig. 7b) is large below
a mean co-registration error between 3 and 5mm, or medium-to-large
below a mean co-registration error between 5 and 7mm, depending on
the connectivity measure. Above this limit, the effect size rapidly decays
toward small values; for PSI, the effect size is substantially smaller, being
medium-to-large only below 4mm. The effect size between TM-3c and
TM-1c (Fig. 7c) is overall small or negligible in a wide range of co-
registration errors, i.e., 0–15mm.

Regarding connectivity estimated from sources reconstructed using
MNE (Fig. 6, right panels), we note that there are no noticeable effects of
co-registration errors on RE for connectivity estimates. For a direct
comparison with the RE values obtained using beamforming, we
compared the RE distributions obtained by the two source reconstruction
techniques by using a Wilcoxon signed-rank test with FDR correction.
Specifically, we will refer here only to the case when a 4-compartment
head model (TM-4c) is used. Similarly to the Friedman test, due to the
large sample size, we assessed meaningful differences between RE dis-
tributions by using Cohen's effect size r. Fig. 7d shows the effect size for
the difference REMNE – REbeamforming as a function of the mean source co-
registration error. We found that for directional measures (fGC and PSI)
the RE for MNE is larger than the RE for beamforming below a co-
registration error of about 6mm, but the effect size is small-to-medium
only below 2 or 3mm; above 3mm, the RE for MNE is smaller than
the RE for beamforming, with the effect size rapidly increasing (in ab-
solute value) for increasing co-registration error. For non-directional
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measure (PLV, ImCohy and AEC), we found small difference between
the RE distributions below a co-registration error of about 2mm; whilst
above this limit, the RE for beamforming becomes substantially larger
(negative effect size) than the RE for MNE.

We finally investigated the spatial features of the effects of co-
registration errors on connectivity estimates by mapping the relative
errors onto the cortical surface. As MNE did not show clear effects due to
co-registration error, we will only discuss the case in which LCMV
beamforming is used for source reconstruction. For the visualization of
cortical maps, we considered an illustrative case in which source s1 is
fixed at a given location in the middle frontal cortex (see Fig. 2), while
the location of the source s2 varies across all the possible locations in the
source space. We then evaluated relative errors for connectivity measures
and plotted these values at the location of source s2.

The cortical maps of signed RE were averaged on the basis of
the cortical co-registration error (CCE) (i.e., the mean source
co-registration error over the cortex; see Eq. (2)) into three ranges:
0 mm � CCE � 3 mm (low CCE), 3 mm < CCE � 7 mm (medium
CCE), and 7 mm < CCE � 15 mm (high CCE). Fig. 8 shows the maps of
the average signed RE in the low, medium and high CCE range, obtained
from TM-4c. We observe two main effects. First, there is an overall
negative signed RE all over the brain, being largest at gyrus top and deep
regions, especially insula, which demonstrates a decrease of the esti-
mated connectivity with respect to the true value; such a decrease is
enhanced by a larger co-registration error. Second, there is substantial
decrease in an area surrounding the location of s1; also this effect is
enhanced by a larger co-registration error, but is more marked for
directional measures (PSI and fGC). A similar pattern for the signed RE
was observed for TM-3c and TM-1c (data not shown here).

4. Discussion

In this study, we investigated the impact of improved MEG–MRI co-
registration strategies, which promise unprecedented accuracy, on
MEG source-level connectivity estimates. The results were achieved
using extensive simulations in which synthetic MEG data sets were
generated for pairs of connected brain sources at variable locations. From
these, the capability of estimating source connectivity, as measured by
ImCohy, PLV, AEC, PSI and fGC, was assessed for co-registration errors of
0–15mm and for four-, three- and one-compartment volume-conductor
models. This was tested for two widely used source-reconstruction
techniques: LCMV beamforming and MNE. Overall, our findings



Fig. 6. Box plots for Relative Error (RE) for
connectivity estimates as function of the
mean source co-registration error across s1
and s2. The panels in different rows refer to
different connectivity measures (PLV,
ImCohy, AEC, PSI, and fGC), while the
panels in different columns refer to different
source-reconstruction techniques (left-col-
umn for beamforming; right-column for
MNE). In blue: data obtained using the 4-
compartment test model (TM-4c). In red:
data obtained using the 3-compartment test
model (TM-3c). In green: data obtained using
the 1-compartment test model (TM-1c).
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suggest that the beamforming approach (LCMV) can better take advan-
tage of accurate co-registration than MNE. This was the case of all the
investigated connectivity methods. On the other hand, MNE provides
more stable results in a wide range of co-registration errors, i.e., from 0 to
15mm, while the performance of beamforming rapidly degrades for
increasing co-registration errors. In particular, for beamforming-
reconstructed sources, our results suggest that the accuracy of connec-
tivity estimates in routine MEG analysis can be increased by a factor
between 1.3 and 2.2 if the co-registration error is kept below 3mm, or
even by a factor between 1.5 and 3.1 if a detailed head model is available
(see Table 2).

It is important to understand the two effects of co-registration errors
on connectivity estimates obtained from sources reconstructed by using
beamforming. First, there is an overall decrease in the values of con-
nectivity metrics for increasing co-registration errors (Figs. 6 and 8) due
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to source attenuation and relative increase of noise contamination in
reconstructed source activity (Fig. 5, left panel). Such a decrease was
observed for all the investigated connectivity metrics, being largest for
directional metrics (i.e., PSI and fGC). This is conceivably due to a strict
spatial constraint of the beamforming, namely if the topographies of
putative sources get far apart from the topographies of the actual sources,
the amount of projected source signal decreases, or even vanishes at large
distances, while the projected noise amplitude does not change signifi-
cantly. This was confirmed by the fact that, as shown in Fig. 8, the
decrease is largest at the top of the gyrus. At these locations, sources are
close to radial with respect to skull and thus produce weak magnetic
fields; in these conditions, already a small change in source orientation
may cause a large relative change in the field (see also Supplementary
Material). In this respect, beamforming is known to be highly sensitive to
inaccurate lead-field modeling (van Veen et al., 1997), especially if the



Table 2
Mean Relative Error (RE) for connectivity estimates (PLV, ImCohy, AEC, PSI, or
fGC) obtained with beamforming for three ranges of mean source co-registration
error (mSCE): 0mm�mSCE� 3mm (low mSCE), 3mm<mSCE� 7mm (me-
dium mSCE), and 7mm<mSCE� 15mm (high mSCE). (a) Data obtained when
using a 4-compartment test model (TM-4c). (b) Data obtained when using a 3-
compartment test model (TM-3c). (c) Data obtained when using a 3-compart-
ment test model (TM-1c). For each test model, the ratio of mean RE values in
high mSCE and medium mSCE to low mSCE is also given.

a) TM-4c Low
mSCE

Medium
mSCE

High
mSCE

Medium mSCE
Low mSCE

High mSCE
Low mSCE

PLV 0.03 0.05 0.08 1.50 2.39
ImCohy 0.02 0.03 0.06 1.71 3.08
AEC 0.06 0.09 0.15 1.49 2.34
PSI 0.06 0.10 0.16 1.53 2.53
fGC 0.07 0.11 0.18 1.50 2.41

b) TM-3c Low
mSCE

Medium
mSCE

High
mSCE

Medium mSCE
Low mSCE

High mSCE
Low mSCE

PLV 0.04 0.06 0.08 1.28 1.84
ImCohy 0.03 0.04 0.06 1.39 2.20
AEC 0.08 0.11 0.15 1.27 1.83
PSI 0.08 0.11 0.16 1.32 1.99
fGC 0.10 0.13 0.18 1.28 1.87

c) TM-1c Low
mSCE

Medium
mSCE

High
mSCE

Medium mSCE
Low mSCE

High mSCE
Low mSCE

PLV 0.04 0.06 0.08 1.28 1.83
ImCohy 0.03 0.04 0.06 1.39 2.17
AEC 0.09 0.11 0.15 1.25 1.76
PSI 0.09 0.11 0.17 1.30 1.91
fGC 0.10 0.13 0.18 1.27 1.82

F. Chella et al. NeuroImage 197 (2019) 354–367
SNR is high, i.e., when the noise does not cover the differences between
the actual and modeled lead fields (Boto et al., 2016; Hillebrand and
Barnes, 2003). The above results are consistent with the recent findings
from Liuzzi et al. (2017) that showed that co-registration errors have the
effect of reducing the magnitude of functional connectivity estimated
from beamforming-reconstructed sources, as well as the effect of
increasing the variability of connectivity estimates over simulated
recordings.

Second, there is a substantial decrease in the estimated connectivity
between nearby sources (Fig. 8). This effect is most likely a result of the
limited spatial resolution related to the so-called leakage or cross-talk
problem in reconstructed source activity (see also Hauk and Stenroos,
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2014). This is confirmed by the results in Fig. 4 (left panel), which indeed
show increasing cross-talk between nearby sources for increasing
co-registration errors. In this study, we compensated for spatial leakage
using either connectivity measures which are not biased by
zero-phase-lag correlations or a signal orthogonalization procedure prior
to the estimation of connectivity. Such measures can reduce but not
completely suppress the bias arising from source leakage. This bias was
found to be especially relevant for directional measures (PSI and fGC)
and it increased with the co-registration error.

The above effects were present even though beamformers recon-
structed the source time courses at locations which maximized the TRAP-
MUSIC localizer. One reason for this is that the effects of co-registration
error are global; co-registration errors affect not only the grid locations
relative to MEG sensors but also the orientations of cortical surface
normals as well as the location and orientation of the whole volume-
conductor model used for source estimation. In our data, this is re-
flected by the difference between the true lead fields and the modeled
lead fields (see the Supplementary Material); such a difference increases
for increasing co-registration error (Fig. S1 of the Supplementary Mate-
rial) and it affects almost all the grid locations (Fig. S3 of the Supple-
mentary Material) including those selected for source time course
estimation. As discussed above, this causes errors in beamformer source
reconstruction and related connectivity estimates, which, analogously to
lead-field modeling errors and localization accuracy (Fig. 3), increase for
increasing co-registration error.

Our results show that, contrarily to beamforming, MNE provides
time-course and connectivity estimates that are not very sensitive to co-
registration errors, at least in the error range investigated in the present
study. This is because MNE spatial filter has distributed and rather
smooth spatial sensitivity profile, which is a consequence of the l2-norm
minimization employed in derivation of the solution. The spatial
smoothness of MNEmakes it thus more tolerant to small displacements of
head position relative to sensors. In our simulations, the smoothness
leads to overall larger cross-talk between sources compared to typical
beamforming solutions (Fig. 4, right panel). The interpretation of this
observation is non-trivial. Promoting smoothness to alleviate the effects
of co-registration errors might favor sources which are far from one
another, whereas on the contrary, care should be taken if two sources are
close to one another, since residual signal-leakage effects would
unavoidably affect the connectivity estimates. Our simulation setting,
however, favors beamforming, because we use two point-like dipoles for
simulations and the LCMV beamformer scans the source space with
Fig. 7. a–c) Effect size r for the difference
between RE distributions obtained by using
different TMs (i.e., a) RETM-3c – RETM-4c; b)
RETM-1c – RETM-4c; c) RETM-1c – RETM-3c) with
beamforming source reconstruction, as a
function of the mean source co-registration
error. d) Effect size r for the difference be-
tween RE distributions obtained by using
different source reconstruction techniques,
i.e., REMNE – REbeamforming, with TM-4c, as a
function of the mean source co-registration
error. Conventional values for a small (0.1),
medium (0.3), large (0.5) effect size have
been marked by the horizontal grid lines.
Different colored lines refer to different
connectivity measures (PLV, ImCohy, AEC,
PSI, fGC).



Fig. 8. Maps of the average signed Relative Error (RE) for different connectivity measures (first, second and third row: non-directional measures, i.e., PLV, ImCohy and
AEC; fourth and fifth row: directional measures, i.e., PSI and fGC) for an illustrative case in which s1 is located in the middle frontal gyrus. The maps are plotted on the
inflated boundary surface between the white and gray matter, and they show the average signed RE in three different CCE ranges (left column: low CCE¼ 0–3mm;
middle column: medium CCE¼ 3–7mm; right column: high CCE¼ 7–15mm). Data obtained from TM-4c.
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point-like dipoles and thus performs ideally with a data comprising a
small set of dipolar sources (van Veen et al., 1997), while the MNE spatial
filter attempts to reject cross-talk globally, not getting any advantage
from the sparse nature of our simulated data (see Hauk and Stenroos,
2014). Our use of different volume conductor models and slightly
different source positions and orientations for reference and test models
alleviates this bias.

Our results suggest that, in our simulated conditions, if the co-
registration error is below 3mm, a beamforming approach provides
more accurate estimates of directional connectivity measures (PSI and
fGC), while a small difference was observed for non-directional con-
nectivity measures (PLV, ImCohy, AEC) (Fig. 7d). Above this limit, the
performance of beamforming over inaccurately modeled sources be-
comes worse than that of the minimum-norm estimate.

We simulated our data using a four-compartment model and esti-
mated connectivity using a four-compartment, as well as a three- and
one-shell models, and observed that simplifications of the volume-
conductor model (i.e., the omission of CSF in TM-3c, with the exclu-
sion of skull and scalp in TM-1c) decreased the accuracy of connectivity
estimates when beamforming was used. Such a decrease was, however,
relevant only if the co-registration error was lower than a value between
4 and 7mm, depending on the connectivity measure (Fig. 7a–b). Hence,
the importance of precise co-registration increases if one wants to take
full advantage of highly accurate head models. Highly detailed head
models are rarely employed in MEG for practical reasons such as the time
and effort required for such model construction (e.g., extra MRI se-
quences, segmentation, uncertainties in modeling conductivity and
anisotropy, etc.). Recent software developments and technical solutions
are, however, overcoming part of these issues so that highly accurate
head models might gain in the future a more widespread use in MEG
practice (Lew et al., 2009; Stenroos and Nummenmaa, 2016). Based on
our findings, we then posit that novel co-registration strategies will be
beneficial for the effective use of these models.

In order to achieve a practical relevance of our results, we tested
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realistic head models and MEG sensor configuration. In particular, a
realistically-shaped four-compartment head model was used as a refer-
ence model, which is anatomically more accurate than the convention-
ally used three- and one-compartment models and allows easy testing of
the effects of common model simplifications. The simulated data were
generated with dense boundary meshes for BEM and a cortical model
with about 20,000 source locations, while source reconstruction was
performed by using smoothed boundary meshes for BEM and a cortical
model with about 14,000 source locations. Hence, our results are not
likely to be affected by the inverse crime of using the same head model
for the forward and inverse steps (Kaipio and Somersalo, 2007). Never-
theless, like in most simulation studies, our simulations are biased in
favor of the higher-detail test model: most importantly, both the refer-
ence model and the high-detail test model had the same four compart-
ments and conductivities. Further, the reference and test models were
built from the same original segmentations, and thus all the added
anatomical information in the four-compartment test model was correct
(apart from smoothing and remeshing). One should thus not read our
results as “the effect of simplifying the head model”, but rather as an
overall comparison between near-ideal and real-world forward models
(see also Stenroos and Nummenmaa, 2016).

For the sake of completeness, it should be noted that, in this study, we
restricted ourselves to the evaluation of the effects of co-registration er-
rors on a limited number of connectivity measures. In particular, we
chose five well-established measures of connectivity: three non-
directional measures (ImCohy, PLV and AEC) and two measures which
are specifically designed to detect directional couplings (PSI and fCG).
Yet, there is a wide family of connectivity measures which could be used
to assess functional and effective coupling in oscillatory brain activity,
occurring both at the same or at different frequencies (e.g., Bastos and
Schoffelen, 2016; Chella et al., 2014; Darvas et al., 2009; O'Neill et al.,
2015; €Ozkurt, 2016; Pereda et al., 2005; Tass et al., 1998). While testing
all possible variants of such connectivity metrics is beyond the scope of
this work, we might still reasonably argue that co-registration errors will
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have a similar effect in suppressing the observed connectivity estimates
also for these other metrics.

We also restricted our investigation to a limited number of configu-
rations of inverse models and connectivity metrics. The rationale beyond
these choices was to select the most widely used methods, thus making
our results of more general interest. Discussing the difference with
respect to all other possible choices is beyond the scope of this work. For
instance, we used as source model, both for data generation and for the
inverse solution, cortically constrained sources with fixed orientation
orthogonal to the local cortical surface. This is a common choice for
various source reconstruction techniques (e.g., Dale and Sereno, 1993;
Gross et al., 2013; Henson et al., 2009; Hillebrand and Barnes, 2003; Lin
et al., 2006; Liu et al., 1998), and it is based on the observation that MEG
signals are mostly due post-synaptic currents of pyramidal cells that are
perpendicular to the cortical surface (Okada, 1982; Okada et al., 1997).
This choice was also driven by the fact that fixing source orientation
would reduce the dimensionality of the lead field matrix by a factor 3,
with a consequent gain on the number of unknowns to be determined by
the solution of the inverse problem.

Our simulations are also limited by the fact that we did not exhaus-
tively study possible effects due to source size and configuration. Here,
we simulated signal generators as focal, i.e., point-like, sources which
represent the activity of about 7.2mm2 given the average spatial density
of the cortical mesh. As discussed above, this choice is more advanta-
geous for beamforming than for MNE (see also Hincapi�e et al., 2017).
Hence, it would be interesting to investigate in a future study how our
results would change if extended cortical sources were modeled.
Furthermore, in our simulated scenario, only two sources were inter-
acting, and we assumed a time-delayed unidirectional source coupling
model (Fries, 2015), thus avoiding the issue of zero-time-delay correla-
tion on beamforming source reconstruction (Quraan and Cheyne, 2010;
Sekihara et al., 2005; van Veen et al., 1997). More complex interaction
scenarios could be investigated in future studies, e.g., with network-like
topographies comprising more than two interacting sources.

Overall, the results of the present study provide evidence for how an
improved co-registration impacts MEG connectivity analysis. We also
discussed the theoretical and practical implications in the use of accurate
head models and source reconstruction techniques. Of course, these re-
sults are limited by the extent in which our simulations match real-life
circumstances. Nonetheless, there is clear evidence that, by reducing
co-registration errors, the accuracy of connectivity estimates can signif-
icantly improve. Hence, we believe that novel and upcoming techno-
logical advances, such as the development of hybrid MEG–ULF MRI
systems, which hold promise for more accurate co-registration, will
enable effective use of highly accurate headmodels and will be beneficial
for reliable MEG connectivity analysis.

Declarations of interest

None.

Acknowledgements

This work was funded by the European Commission Horizon 2020
research and innovation program under Grant Agreement No. 686865
(BREAKBEN—H2020-FETOPEN-2014-2015/H2020-FETOPEN-2014-
2015-RIA). The content reflects only the author's view and the European
Commission is not responsible for the content. This work was partially
supported by the University of Chieti-Pescara Faculty Resources Grant
2018 of author LM, titled “Development and applications of methods for
the study of brain connectivity with Magnetoencephalography and
Electroencephalography”. This work was conducted under the frame-
work of the “Departments of Excellence 2018-2022” initiative of the
Italian Ministry of Education, University and Research for the Depart-
ment of Neuroscience, Imaging and Clinical Sciences (DNISC) of the
University of Chieti-Pescara.
365
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2019.04.061.

References

Adjamian, P., Barnes, G.R., Hillebrand, A., Holliday, I.E., Singh, K.D., Furlong, P.L.,
Harrington, E., Barclay, C.W., Route, P.J.G., 2004. Co-registration of
magnetoencephalography with magnetic resonance imaging using bite-bar-based
fiducials and surface-matching. Clin. Neurophysiol. 115, 691–698. https://doi.org
/10.1016/j.clinph.2003.10.023.

Avena-Koenigsberger, A., Misic, B., Sporns, O., 2018. Communication dynamics in
complex brain networks. Nat. Rev. Neurosci. 19, 17–33. https://doi.org/10.1038/nrn
.2017.149.

Baillet, S., 2017. Magnetoencephalography for brain electrophysiology and imaging. Nat.
Neurosci. 20, 327–339. https://doi.org/10.1038/nn.4504.

Barratt, E.L., Francis, S.T., Morris, P.G., Brookes, M.J., 2018. Mapping the topological
organisation of beta oscillations in motor cortex using MEG. Neuroimage 181,
831–844. https://doi.org/10.1016/j.neuroimage.2018.06.041.

Basti, A., Pizzella, V., Chella, F., Romani, G.L., Nolte, G., Marzetti, L., 2018. Disclosing
large-scale directed functional connections in MEG with the multivariate phase slope
index. Neuroimage 175, 161–175. https://doi.org/10.1016/j.neuroimage.2018.0
3.004.

Basti, A., Pizzella, V., Nolte, G., Chella, F., Marzetti, L., 2017. Disclosing brain functional
connectivity from electrophysiological signals with phase slope based metrics.
J. Serbian Soc. Comput. Mech. 11, 50–62. https://doi.org/10.24874/jsscm.2017
.11.02.05.

Bastos, A.M., Schoffelen, J.-M., 2016. A tutorial review of functional connectivity analysis
methods and their interpretational pitfalls. Front. Syst. Neurosci. 9. https://doi
.org/10.3389/fnsys.2015.00175.

Benjamini, Y., Yekutieli, D., 2001. The control of the false discovery rate in multiple
testing under dependency. Ann. Stat. 29, 1165–1188.

Boto, E., Bowtell, R., Krüger, P., Fromhold, T.M., Morris, P.G., Meyer, S.S., Barnes, G.R.,
Brookes, M.J., 2016. On the potential of a new generation of magnetometers for
MEG: a beamformer simulation study. PLoS One 11, e0157655. https://doi.org
/10.1371/journal.pone.0157655.

Brookes, M.J., Hale, J.R., Zumer, J.M., Stevenson, C.M., Francis, S.T., Barnes, G.R.,
Owen, J.P., Morris, P.G., Nagarajan, S.S., 2011a. Measuring functional connectivity
using MEG: methodology and comparison with fcMRI. Neuroimage 56, 1082–1104.
https://doi.org/10.1016/j.neuroimage.2011.02.054.

Brookes, M.J., Vrba, J., Robinson, S.E., Stevenson, C.M., Peters, A.M., Barnes, G.R.,
Hillebrand, A., Morris, P.G., 2008. Optimising experimental design for MEG
beamformer imaging. Neuroimage 39, 1788–1802. https://doi.org/10.1016/j.neu
roimage.2007.09.050.

Brookes, M.J., Woolrich, M., Luckhoo, H., Price, D., Hale, J.R., Stephenson, M.C.,
Barnes, G.R., Smith, S.M., Morris, P.G., 2011b. Investigating the electrophysiological
basis of resting state networks using magnetoencephalography. Proc. Natl. Acad. Sci.
108, 16783–16788. https://doi.org/10.1073/pnas.1112685108.

Brookes, M.J., Woolrich, M.W., Barnes, G.R., 2012. Measuring functional connectivity in
MEG: a multivariate approach insensitive to linear source leakage. Neuroimage 63,
910–920. https://doi.org/10.1016/j.neuroimage.2012.03.048.

Chella, F., Marzetti, L., Pizzella, V., Zappasodi, F., Nolte, G., 2014. Third order spectral
analysis robust to mixing artifacts for mapping cross-frequency interactions in EEG/
MEG. Neuroimage 91, 146–161. https://doi.org/10.1016/j.neuroimage.2013.12.0
64.

Chella, F., Pizzella, V., Zappasodi, F., Nolte, G., Marzetti, L., 2016. Bispectral pairwise
interacting source analysis for identifying systems of cross-frequency interacting
brain sources from electroencephalographic or magnetoencephalographic signals.
Phys. Rev. E 93, 052420. https://doi.org/10.1103/PhysRevE.93.052420.

Cho, J.-H., Vorwerk, J., Wolters, C.H., Kn€osche, T.R., 2015. Influence of the head model
on EEG and MEG source connectivity analyses. Neuroimage 110, 60–77. https://doi.
org/10.1016/j.neuroimage.2015.01.043.

Cohen, J., 1988. Statistical Power Analysis for the Behavioral Sciences, second ed.
Erlbaum Associates, Hillsdale.

Colclough, G.L., Woolrich, M.W., Tewarie, P.K., Brookes, M.J., Quinn, A.J., Smith, S.M.,
2016. How reliable are MEG resting-state connectivity metrics? Neuroimage 138,
284–293. https://doi.org/10.1016/j.neuroimage.2016.05.070.

Cole, M.W., Bassett, D.S., Power, J.D., Braver, T.S., Petersen, S.E., 2014. Intrinsic and
task-evoked network architectures of the human brain. Neuron 83, 238–251. https
://doi.org/10.1016/j.neuron.2014.05.014.

Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis: I. Segmentation
and surface reconstruction. Neuroimage 9, 179–194. https://doi.org/10.1006/nimg.
1998.0395.

Dale, A.M., Sereno, M.I., 1993. Improved localizadon of cortical activity by combining
EEG and MEG with MRI cortical surface reconstruction: a linear approach. J. Cogn.
Neurosci. 5, 162–176. https://doi.org/10.1162/jocn.1993.5.2.162.

D'Andrea, A., Chella, F., Marshall, T.R., Pizzella, V., Romani, G.L., Jensen, O., Marzetti, L.,
2019. Alpha and alpha-beta phase synchronization mediate the recruitment of the
visuospatial attention network through the Superior Longitudinal Fasciculus.
NeuroImage 188, 722–732. https://doi.org/10.1016/j.neuroimage.2018.12.056.

Darvas, F., Ojemann, J.G., Sorensen, L.B., 2009. Bi-phase locking - a tool for probing non-
linear interaction in the human brain. Neuroimage 46, 123–132. https://doi.org/10.
1016/j.neuroimage.2009.01.034.

https://doi.org/10.1016/j.neuroimage.2019.04.061
https://doi.org/10.1016/j.neuroimage.2019.04.061
https://doi.org/10.1016/j.clinph.2003.10.023
https://doi.org/10.1016/j.clinph.2003.10.023
https://doi.org/10.1038/nrn.2017.149
https://doi.org/10.1038/nrn.2017.149
https://doi.org/10.1038/nn.4504
https://doi.org/10.1016/j.neuroimage.2018.06.041
https://doi.org/10.1016/j.neuroimage.2018.03.004
https://doi.org/10.1016/j.neuroimage.2018.03.004
https://doi.org/10.24874/jsscm.2017.11.02.05
https://doi.org/10.24874/jsscm.2017.11.02.05
https://doi.org/10.3389/fnsys.2015.00175
https://doi.org/10.3389/fnsys.2015.00175
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref8
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref8
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref8
https://doi.org/10.1371/journal.pone.0157655
https://doi.org/10.1371/journal.pone.0157655
https://doi.org/10.1016/j.neuroimage.2011.02.054
https://doi.org/10.1016/j.neuroimage.2007.09.050
https://doi.org/10.1016/j.neuroimage.2007.09.050
https://doi.org/10.1073/pnas.1112685108
https://doi.org/10.1016/j.neuroimage.2012.03.048
https://doi.org/10.1016/j.neuroimage.2013.12.064
https://doi.org/10.1016/j.neuroimage.2013.12.064
https://doi.org/10.1103/PhysRevE.93.052420
https://doi.org/10.1016/j.neuroimage.2015.01.043
https://doi.org/10.1016/j.neuroimage.2015.01.043
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref17
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref17
https://doi.org/10.1016/j.neuroimage.2016.05.070
https://doi.org/10.1016/j.neuron.2014.05.014
https://doi.org/10.1016/j.neuron.2014.05.014
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1162/jocn.1993.5.2.162
https://doi.org/10.1016/j.neuroimage.2018.12.056
https://doi.org/10.1016/j.neuroimage.2009.01.034
https://doi.org/10.1016/j.neuroimage.2009.01.034


F. Chella et al. NeuroImage 197 (2019) 354–367
de Munck, J.C., 1992. A linear discretization of the volume conductor boundary integral
equation using analytically integrated elements (electrophysiology application). IEEE
Trans. Biomed. Eng. 39, 986–990. https://doi.org/10.1109/10.256433.

de Pasquale, F., Della Penna, S., Snyder, A.Z., Lewis, C., Mantini, D., Marzetti, L.,
Belardinelli, P., Ciancetta, L., Pizzella, V., Romani, G.L., Corbetta, M., 2010. Temporal
dynamics of spontaneous MEG activity in brain networks. Proc. Natl. Acad. Sci. 107,
6040. https://doi.org/10.1073/pnas.0913863107.

Engel, A.K., Gerloff, C., Hilgetag, C.C., Nolte, G., 2013. Intrinsic coupling modes:
multiscale interactions in ongoing brain activity. Neuron 80, 867–886. https
://doi.org/10.1016/j.neuron.2013.09.038.

Ewald, A., Marzetti, L., Zappasodi, F., Meinecke, F.C., Nolte, G., 2012. Estimating true
brain connectivity from EEG/MEG data invariant to linear and static transformations
in sensor space. Neuroimage 60, 476–488. https://doi.org/10.1016/j.neuroimage.20
11.11.084.

Fang, Q., Boas, D.A., 2009. Tetrahedral mesh generation from volumetric binary and
grayscale images. In: 2009 IEEE International Symposium on Biomedical Imaging:
from Nano to Macro. Presented at the 2009 IEEE International Symposium on
Biomedical Imaging: from Nano to Macro, pp. 1142–1145. https://doi.org/10.110
9/ISBI.2009.5193259.

Fischl, B., 2012. FreeSurfer. NeuroImage, 20 YEARS of fMRI 62, pp. 774–781. https://doi.
org/10.1016/j.neuroimage.2012.01.021.

Fischl, B., Sereno, M.I., Dale, A.M., 1999. Cortical surface-based analysis: II: inflation,
flattening, and a surface-based coordinate system. Neuroimage 9, 195–207. https://d
oi.org/10.1006/nimg.1998.0396.

Fries, P., 2015. Rhythms for cognition: communication through coherence. Neuron 88,
220–235. https://doi.org/10.1016/j.neuron.2015.09.034.

Fritz, C.O., Morris, P.E., Richler, J.J., 2012. Effect size estimates: current use, calculations,
and interpretation. J. Exp. Psychol. Gen. 141, 2–18. https://doi.org/10.1037
/a0024338.

Geweke, J., 1982. Measurement of linear dependence and feedback between multiple
time series. J. Am. Stat. Assoc. 77, 304–313. https://doi.org/10.2307/2287238.

Gross, J., Baillet, S., Barnes, G.R., Henson, R.N., Hillebrand, A., Jensen, O., Jerbi, K.,
Litvak, V., Maess, B., Oostenveld, R., Parkkonen, L., Taylor, J.R., van Wassenhove, V.,
Wibral, M., Schoffelen, J.-M., 2013. Good practice for conducting and reporting MEG
research. Neuroimage 65, 349–363. https://doi.org/10.1016/j.neuroimage.2012.
10.001.

Guidotti, R., Sinibaldi, R., Luca, C.D., Conti, A., Ilmoniemi, R.J., Zevenhoven, K.C.J.,
Magnelind, P.E., Pizzella, V., Gratta, C.D., Romani, G.L., Penna, S.D., 2018.
Optimized 3D co-registration of ultra-low-field and high-field magnetic resonance
images. PLoS One 13, e0193890. https://doi.org/10.1371/journal.pone.0193890.

H€am€al€ainen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V., 1993.
Magnetoencephalography—theory, instrumentation, and applications to noninvasive
studies of the working human brain. Rev. Mod. Phys. 65, 413–497. https://doi.
org/10.1103/RevModPhys.65.413.

H€am€al€ainen, M.S., Ilmoniemi, R.J., 1994. Interpreting magnetic fields of the brain:
minimum norm estimates. Med. Biol. Eng. Comput. 32, 35–42. https://doi.org
/10.1007/BF02512476.

H€am€al€ainen, M.S., Sarvas, J., 1989. Realistic conductivity geometry model of the human
head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 36,
165–171. https://doi.org/10.1109/10.16463.

Haueisen, J., Ramon, C., Eiselt, M., Brauer, H., Nowak, H., 1997. Influence of tissue
resistivities on neuromagnetic fields and electric potentials studied with a finite
element model of the head. IEEE Trans. Biomed. Eng. 44, 727–735. https://doi.org/
10.1109/10.605429.

Haufe, S., Ewald, A., 2016. A simulation framework for benchmarking EEG-based brain
connectivity estimation methodologies. Brain Topogr. 1–18. https://doi.org/10.100
7/s10548-016-0498-y.

Haufe, S., Nikulin, V.V., Müller, K.-R., Nolte, G., 2013. A critical assessment of
connectivity measures for EEG data: a simulation study. Neuroimage 64, 120–133.
https://doi.org/10.1016/j.neuroimage.2012.09.036.

Hauk, O., Stenroos, M., 2014. A framework for the design of flexible cross-talk functions
for spatial filtering of EEG/MEG data: DeFleCT. Hum. Brain Mapp. 35, 1642–1653.
https://doi.org/10.1002/hbm.22279.

Henson, R.N., Mattout, J., Phillips, C., Friston, K.J., 2009. Selecting forward models for
MEG source-reconstruction using model-evidence. Neuroimage 46, 168–176.
https://doi.org/10.1016/j.neuroimage.2009.01.062.

Hillebrand, A., Barnes, G.R., 2011. Practical constraints on estimation of source extent
with MEG beamformers. Neuroimage 54, 2732–2740. https://doi.org/10.1016/j.neu
roimage.2010.10.036.

Hillebrand, A., Barnes, G.R., 2003. The use of anatomical constraints with MEG
beamformers. Neuroimage 20, 2302–2313. https://doi.org/10.1016/j.neuroimage.
2003.07.031.

Hincapi�e, A.-S., Kujala, J., Mattout, J., Pascarella, A., Daligault, S., Delpuech, C., Mery, D.,
Cosmelli, D., Jerbi, K., 2017. The impact of MEG source reconstruction method on
source-space connectivity estimation: a comparison between minimum-norm solution
and beamforming. Neuroimage 156, 29–42. https://doi.org/10.1016/j.neuroimage.
2017.04.038.

Hipp, J.F., Hawellek, D.J., Corbetta, M., Siegel, M., Engel, A.K., 2012. Large-scale cortical
correlation structure of spontaneous oscillatory activity. Nat. Neurosci. 15, 884–890.

Iivanainen, J., Stenroos, M., Parkkonen, L., 2017. Measuring MEG closer to the brain:
performance of on-scalp sensor arrays. Neuroimage 147, 542–553. https://doi.
org/10.1016/j.neuroimage.2016.12.048.

Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M., 2012. FSL.
NeuroImage, 20 YEARS of fMRI 62, pp. 782–790. https://doi.org/10.1016/j.neu
roimage.2011.09.015.
366
Kaipio, J., Somersalo, E., 2007. Statistical inverse problems: discretization, model
reduction and inverse crimes. J. Comput. Appl. Math., Special Issue: Applied
Computational Inverse Problems 198, 493–504. https://doi.org/10.1016/j.cam.200
5.09.027.

Lachaux, J.-P., Rodriguez, E., Martinerie, J., Varela, F.J., 1999. Measuring phase
synchrony in brain signals. Hum. Brain Mapp. 8, 194–208. <194::AID-
HBM4>3.0.CO;2-C. https://doi.org/10.1002/(SICI)1097-0193(1999)8:4.

Lew, S., Wolters, C.H., Dierkes, T., R€oer, C., MacLeod, R.S., 2009. Accuracy and run-time
comparison for different potential approaches and iterative solvers in finite element
method based EEG source analysis. Appl. Numer. Math. 59. https://doi.org/10.1016/
j.apnum.2009.02.006, 1970–1988.

Lin, F.-H., Witzel, T., Ahlfors, S.P., Stufflebeam, S.M., Belliveau, J.W., H€am€al€ainen, M.S.,
2006. Assessing and improving the spatial accuracy in MEG source localization by
depth-weighted minimum-norm estimates. Neuroimage 31, 160–171. https://doi.
org/10.1016/j.neuroimage.2005.11.054.

Lin, F.-H., Witzel, T., H€am€al€ainen, M.S., Dale, A.M., Belliveau, J.W., Stufflebeam, S.M.,
2004. Spectral spatiotemporal imaging of cortical oscillations and interactions in the
human brain. Neuroimage 23, 582–595. https://doi.org/10.1016/j.neuroimage.200
4.04.027.

Liu, A.K., Belliveau, J.W., Dale, A.M., 1998. Spatiotemporal imaging of human brain
activity using functional MRI constrained magnetoencephalography data: Monte
Carlo simulations. Proc. Natl. Acad. Sci. 95, 8945.

Liu, Q., Farahibozorg, S., Porcaro, C., Wenderoth, N., Mantini, D., 2017. Detecting large-
scale networks in the human brain using high-density electroencephalography. Hum.
Brain Mapp. 38, 4631–4643. https://doi.org/10.1002/hbm.23688.

Liuzzi, L., Gascoyne, L.E., Tewarie, P.K., Barratt, E.L., Boto, E., Brookes, M.J., 2017.
Optimising experimental design for MEG resting state functional connectivity
measurement. Neuroimage 155, 565–576. https://doi.org/10.1016/j.neuroimage.20
16.11.064.

Lobier, M., Palva, J.M., Palva, S., 2018. High-alpha band synchronization across frontal,
parietal and visual cortex mediates behavioral and neuronal effects of visuospatial
attention. Neuroimage 165, 222–237. https://doi.org/10.1016/j.neuroimage.2017.
10.044.

L�opez, J.D., Penny, W.D., Espinosa, J.J., Barnes, G.R., 2012. A general Bayesian treatment
for MEG source reconstruction incorporating lead field uncertainty. Neuroimage 60,
1194–1204. https://doi.org/10.1016/j.neuroimage.2012.01.077.

Lütkepohl, H., 2005. New Introduction to Multiple Time Series Analysis. Springer-Verlag,
Berlin Heidelberg.

M€akel€a, N., Stenroos, M., Sarvas, J., Ilmoniemi, R.J., 2018. Truncated RAP-MUSIC (TRAP-
MUSIC) for MEG and EEG source localization. Neuroimage 167, 73–83. https://doi.
org/10.1016/j.neuroimage.2017.11.013.

M€akinen, A.J., Zevenhoven, K.C.J., Ilmoniemi, R.J., 2019. Automatic spatial calibration of
Ultra-Low-Field MRI for High-Accuracy Hybrid MEG–MRI. IEEE Trans. Med. Imaging.
https://doi.org/10.1109/TMI.2019.2905934.

Marzetti, L., Penna, S.D., Snyder, A.Z., Pizzella, V., Nolte, G., Pasquale, F. de,
Romani, G.L., Corbetta, M., 2013. Frequency specific interactions of MEG resting
state activity within and across brain networks as revealed by the multivariate
interaction measure. Neuroimage 79, 172–183. https://doi.org/10.1016/j.neu
roimage.2013.04.062.

Mosher, J.C., Leahy, R.M., 1999. Source localization using recursively applied and
projected (RAP) MUSIC. IEEE Trans. Signal Process. 47, 332–340. https://doi.org/
10.1109/78.740118.

Mosher, J.C., Leahy, R.M., 1998. Recursive MUSIC: a framework for EEG and MEG source
localization. IEEE Trans. Biomed. Eng. 45, 1342–1354. https://doi.org/10.1109/
10.725331.

Mosher, J.C., Leahy, R.M., Lewis, P.S., 1999. EEG and MEG: forward solutions for inverse
methods. IEEE Trans. Biomed. Eng. 46, 245–259. https://doi.org/10.1109/
10.748978.

Neugebauer, F., M€oddel, G., Rampp, S., Burger, M., Wolters, C.H., 2017. The effect of
head model simplification on beamformer source localization. Front. Neurosci. 11,
625. https://doi.org/10.3389/fnins.2017.00625.

Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M., 2004. Identifying true
brain interaction from EEG data using the imaginary part of coherency. Clin.
Neurophysiol. 115, 2292–2307. https://doi.org/10.1016/j.clinph.2004.04.029.

Nolte, G., Ziehe, A., Nikulin, V.V., Schl€ogl, A., Kr€amer, N., Brismar, T., Müller, K.-R.,
2008. Robustly estimating the flow direction of information in complex physical
systems. Phys. Rev. Lett. 100, 234101. https://doi.org/10.1103/PhysRevLett.1
00.234101.

Okada, Y., 1982. Neurogenesis of evoked magnetic fields. Biomagnetism: an
Interdiciplinary Approach. Pergamon Press, New York, NY.

Okada, Y.C., Wu, J., Kyuhou, S., 1997. Genesis of MEG signals in a mammalian CNS
structure. Electroencephalogr. Clin. Neurophysiol. 103, 474–485.
https://doi.org/10.1016/S0013-4694(97)00043-6.

O'Neill, G.C., Barratt, E.L., Hunt, B.A.E., Tewarie, P.K., Brookes, M.J., 2015. Measuring
electrophysiological connectivity by power envelope correlation: a technical review
on MEG methods. Phys. Med. Biol. 60, R271. https://doi.org/10.1088/00
31-9155/60/21/R271.

€Ozkurt, T.E., 2016. Estimation of nonlinear neural source interactions via sliced
bicoherence. Biomed. Signal Process. Control 30, 43–52. https://doi.org/10.1016
/j.bspc.2016.05.001.

Palva, J.M., Wang, S.H., Palva, S., Zhigalov, A., Monto, S., Brookes, M.J., Schoffelen, J.-
M., Jerbi, K., 2018. Ghost interactions in MEG/EEG source space: a note of caution on
inter-areal coupling measures. Neuroimage 173, 632–643. https://doi.org/10.10
16/j.neuroimage.2018.02.032.

https://doi.org/10.1109/10.256433
https://doi.org/10.1073/pnas.0913863107
https://doi.org/10.1016/j.neuron.2013.09.038
https://doi.org/10.1016/j.neuron.2013.09.038
https://doi.org/10.1016/j.neuroimage.2011.11.084
https://doi.org/10.1016/j.neuroimage.2011.11.084
https://doi.org/10.1109/ISBI.2009.5193259
https://doi.org/10.1109/ISBI.2009.5193259
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1006/nimg.1998.0396
https://doi.org/10.1006/nimg.1998.0396
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1037/a0024338
https://doi.org/10.1037/a0024338
https://doi.org/10.2307/2287238
https://doi.org/10.1016/j.neuroimage.2012.10.001
https://doi.org/10.1016/j.neuroimage.2012.10.001
https://doi.org/10.1371/journal.pone.0193890
https://doi.org/10.1103/RevModPhys.65.413
https://doi.org/10.1103/RevModPhys.65.413
https://doi.org/10.1007/BF02512476
https://doi.org/10.1007/BF02512476
https://doi.org/10.1109/10.16463
https://doi.org/10.1109/10.605429
https://doi.org/10.1109/10.605429
https://doi.org/10.1007/s10548-016-0498-y
https://doi.org/10.1007/s10548-016-0498-y
https://doi.org/10.1016/j.neuroimage.2012.09.036
https://doi.org/10.1002/hbm.22279
https://doi.org/10.1016/j.neuroimage.2009.01.062
https://doi.org/10.1016/j.neuroimage.2010.10.036
https://doi.org/10.1016/j.neuroimage.2010.10.036
https://doi.org/10.1016/j.neuroimage.2003.07.031
https://doi.org/10.1016/j.neuroimage.2003.07.031
https://doi.org/10.1016/j.neuroimage.2017.04.038
https://doi.org/10.1016/j.neuroimage.2017.04.038
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref46
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref46
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref46
https://doi.org/10.1016/j.neuroimage.2016.12.048
https://doi.org/10.1016/j.neuroimage.2016.12.048
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.cam.2005.09.027
https://doi.org/10.1016/j.cam.2005.09.027
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4
https://doi.org/10.1016/j.apnum.2009.02.006
https://doi.org/10.1016/j.apnum.2009.02.006
https://doi.org/10.1016/j.neuroimage.2005.11.054
https://doi.org/10.1016/j.neuroimage.2005.11.054
https://doi.org/10.1016/j.neuroimage.2004.04.027
https://doi.org/10.1016/j.neuroimage.2004.04.027
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref54
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref54
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref54
https://doi.org/10.1002/hbm.23688
https://doi.org/10.1016/j.neuroimage.2016.11.064
https://doi.org/10.1016/j.neuroimage.2016.11.064
https://doi.org/10.1016/j.neuroimage.2017.10.044
https://doi.org/10.1016/j.neuroimage.2017.10.044
https://doi.org/10.1016/j.neuroimage.2012.01.077
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref59
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref59
https://doi.org/10.1016/j.neuroimage.2017.11.013
https://doi.org/10.1016/j.neuroimage.2017.11.013
https://doi.org/10.1109/TMI.2019.2905934
https://doi.org/10.1016/j.neuroimage.2013.04.062
https://doi.org/10.1016/j.neuroimage.2013.04.062
https://doi.org/10.1109/78.740118
https://doi.org/10.1109/78.740118
https://doi.org/10.1109/10.725331
https://doi.org/10.1109/10.725331
https://doi.org/10.1109/10.748978
https://doi.org/10.1109/10.748978
https://doi.org/10.3389/fnins.2017.00625
https://doi.org/10.1016/j.clinph.2004.04.029
https://doi.org/10.1103/PhysRevLett.100.234101
https://doi.org/10.1103/PhysRevLett.100.234101
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref68
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref68
https://doi.org/10.1016/S0013-4694(97)00043-6
https://doi.org/10.1088/0031-9155/60/21/R271
https://doi.org/10.1088/0031-9155/60/21/R271
https://doi.org/10.1016/j.bspc.2016.05.001
https://doi.org/10.1016/j.bspc.2016.05.001
https://doi.org/10.1016/j.neuroimage.2018.02.032
https://doi.org/10.1016/j.neuroimage.2018.02.032


F. Chella et al. NeuroImage 197 (2019) 354–367
Palva, S., Palva, J.M., 2012. Discovering oscillatory interaction networks with M/EEG:
challenges and breakthroughs. Trends Cognit. Sci. 16, 219–230. https://doi.org/10
.1016/j.tics.2012.02.004.

Pereda, E., Quiroga, R.Q., Bhattacharya, J., 2005. Nonlinear multivariate analysis of
neurophysiological signals. Prog. Neurobiol. 77, 1–37. https://doi.org/10.1016/j.pn
eurobio.2005.10.003.

Quraan, M.A., Cheyne, D., 2010. Reconstruction of correlated brain activity with adaptive
spatial filters in MEG. Neuroimage 49, 2387–2400. https://doi.org/10.1016/j.neu
roimage.2009.10.012.

Raichle, M.E., 2010. Two views of brain function. Trends Cognit. Sci. 14, 180–190. htt
ps://doi.org/10.1016/j.tics.2010.01.008.

Schimpf, P.H., Ramon, C., Haueisen, J., 2002. Dipole models for the EEG and MEG. IEEE
Trans. Biomed. Eng. 49, 409–418. https://doi.org/10.1109/10.995679.

Schmidt, R., 1986. Multiple emitter location and signal parameter estimation. IEEE Trans.
Antennas Propag. 34, 276–280. https://doi.org/10.1109/TAP.1986.1143830.

Sekihara, K., Nagarajan, S.S., 2008. Adaptive Spatial Filters for Electromagnetic Brain
Imaging. In: Series in Biomedical Engineering. Springer-Verlag, Berlin Heidelberg.

Sekihara, K., Sahani, M., Nagarajan, S.S., 2005. Localization bias and spatial resolution of
adaptive and non-adaptive spatial filters for MEG source reconstruction. Neuroimage
25, 1056–1067. https://doi.org/10.1016/j.neuroimage.2004.11.051.

Siegel, M., Donner, T.H., Oostenveld, R., Fries, P., Engel, A.K., 2008. Neuronal
synchronization along the dorsal visual pathway reflects the focus of spatial
attention. Neuron 60, 709–719. https://doi.org/10.1016/j.neuron.2008.09.010.

Sommariva, S., Sorrentino, A., Piana, M., Pizzella, V., Marzetti, L., 2017. A comparative
study of the robustness of frequency-domain connectivity measures to finite data
length. Brain Topogr. 1–21. https://doi.org/10.1007/s10548-017-0609-4.

Sonntag, H., Haueisen, J., Maess, B., 2018. Quality assessment of MEG-to-MRI
coregistrations. Phys. Med. Biol. 63, 075003. https://doi.org/10.1088/1361-6560
/aab248.

Soto, J.L.P., Lachaux, J.-P., Baillet, S., Jerbi, K., 2016. A multivariate method for
estimating cross-frequency neuronal interactions and correcting linear mixing in
MEG data, using canonical correlations. J. Neurosci. Methods 271, 169–181. https://
doi.org/10.1016/j.jneumeth.2016.07.017.

Stenroos, M., Hunold, A., Haueisen, J., 2014. Comparison of three-shell and simplified
volume conductor models in magnetoencephalography. Neuroimage 94, 337–348.
https://doi.org/10.1016/j.neuroimage.2014.01.006.

Stenroos, M., M€antynen, V., Nenonen, J., 2007. A Matlab library for solving quasi-static
volume conduction problems using the boundary element method. Comput. Methods
Progr. Biomed. 88, 256–263. https://doi.org/10.1016/j.cmpb.2007.09.004.

Stenroos, M., Nummenmaa, A., 2016. Incorporating and compensating cerebrospinal fluid
in surface-based forward models of magneto- and electroencephalography. PLoS One
11, e0159595. https://doi.org/10.1371/journal.pone.0159595.

Stenroos, M., Sarvas, J., 2012. Bioelectromagnetic forward problem: isolated source
approach revis(it). Phys. Med. Biol. 57, 3517. https://doi.org/10.1088/0031-9155
/57/11/3517.

Tass, P., Rosenblum, M.G., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J.,
Schnitzler, A., Freund, H.-J., 1998. Detection of $\mathit{n}:\mathit{m}$ phase
locking from noisy data: application to magnetoencephalography. Phys. Rev. Lett. 81,
3291–3294. https://doi.org/10.1103/PhysRevLett.81.3291.

Taulu, S., Simola, J., 2006. Spatiotemporal signal space separation method for rejecting
nearby interference in MEG measurements. Phys. Med. Biol. 51, 1759. https://doi.o
rg/10.1088/0031-9155/51/7/008.
367
Troebinger, L., L�opez, J.D., Lutti, A., Bradbury, D., Bestmann, S., Barnes, G., 2014. High
precision anatomy for MEG. Neuroimage 86, 583–591. https://doi.org/10.1016/j.
neuroimage.2013.07.065.

Uutela, K., Taulu, S., H€am€al€ainen, M., 2001. Detecting and correcting for head
movements in neuromagnetic measurements. Neuroimage 14, 1424–1431. https://d
oi.org/10.1006/nimg.2001.0915.

van Veen, B.D., Drongelen, W.V., Yuchtman, M., Suzuki, A., 1997. Localization of brain
electrical activity via linearly constrained minimum variance spatial filtering. IEEE
Trans. Biomed. Eng. 44, 867–880. https://doi.org/10.1109/10.623056.

Varela, F., Lachaux, J.-P., Rodriguez, E., Martinerie, J., 2001. The brainweb: phase
synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239. htt
ps://doi.org/10.1038/35067550.

Vesanen, P.T., Nieminen, J.O., Zevenhoven, K.C.J., Dabek, J., Parkkonen, L.T.,
Zhdanov, A.V., Luomahaara, J., Hassel, J., Penttil€a, J., Simola, J., Ahonen, A.I.,
M€akel€a, J.P., Ilmoniemi, R.J., 2013. Hybrid ultra-low-field MRI and
magnetoencephalography system based on a commercial whole-head
neuromagnetometer. Magn. Reson. Med. 69, 1795–1804. https://doi.org/10.1002/
mrm.24413.

Vinck, M., Oostenveld, R., Wingerden, M., vanBattaglia, F., Pennartz, C.M.A., 2011. An
improved index of phase-synchronization for electrophysiological data in the
presence of volume-conduction, noise and sample-size bias. Neuroimage 55,
1548–1565. https://doi.org/10.1016/j.neuroimage.2011.01.055.

Vorwerk, J., Cho, J.-H., Rampp, S., Hamer, H., Kn€osche, T.R., Wolters, C.H., 2014.
A guideline for head volume conductor modeling in EEG and MEG. Neuroimage 100,
590–607. https://doi.org/10.1016/j.neuroimage.2014.06.040.

Wakeman, D.G., Henson, R.N., 2015. A multi-subject, multi-modal human neuroimaging
dataset. Sci. Data 2, 150001. https://doi.org/10.1038/sdata.2015.1.

Wehner, D.T., H€am€al€ainen, M.S., Mody, M., Ahlfors, S.P., 2008. Head movements of
children in MEG: quantification, effects on source estimation, and compensation.
Neuroimage 40, 541–550. https://doi.org/10.1016/j.neuroimage.2007.12.026.

Whalen, C., Maclin, E.L., Fabiani, M., Gratton, G., 2008. Validation of a method for
coregistering scalp recording locations with 3D structural MR images. Hum. Brain
Mapp. 29, 1288–1301. https://doi.org/10.1002/hbm.20465.

Windhoff, M., Opitz, A., Thielscher, A., 2013. Electric field calculations in brain
stimulation based on finite elements: an optimized processing pipeline for the
generation and usage of accurate individual head models. Hum. Brain Mapp. 34,
923–935. https://doi.org/10.1002/hbm.21479.

Wolters, C.H., Anwander, A., Tricoche, X., Weinstein, D., Koch, M.A., MacLeod, R.S.,
2006. Influence of tissue conductivity anisotropy on EEG/MEG field and return
current computation in a realistic head model: a simulation and visualization study
using high-resolution finite element modeling. Neuroimage 30, 813–826. https://doi.
org/10.1016/j.neuroimage.2005.10.014.

Wolters, C.H., Grasedyck, L., Hackbusch, W., 2004. Efficient computation of lead field
bases and influence matrix for the FEM-based EEG and MEG inverse problem. Inverse
Probl. 20, 1099. https://doi.org/10.1088/0266-5611/20/4/007.

Zetter, R., Iivanainen, J., Stenroos, M., Parkkonen, L., 2018. Requirements for
coregistration accuracy in on-scalp MEG. Brain Topogr. 1–18. https://doi.org/10.100
7/s10548-018-0656-5.

Zotev, V.S., Matlashov, A.N., Volegov, P.L., Savukov, I.M., Espy, M.A., Mosher, J.C.,
Gomez, J.J., Kraus, R.H., 2008. Microtesla MRI of the human brain combined with
MEG. J. Magn. Reson. 194, 115–120. https://doi.org/10.1016/j.jmr.2008.06.007.

https://doi.org/10.1016/j.tics.2012.02.004
https://doi.org/10.1016/j.tics.2012.02.004
https://doi.org/10.1016/j.pneurobio.2005.10.003
https://doi.org/10.1016/j.pneurobio.2005.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.012
https://doi.org/10.1016/j.neuroimage.2009.10.012
https://doi.org/10.1016/j.tics.2010.01.008
https://doi.org/10.1016/j.tics.2010.01.008
https://doi.org/10.1109/10.995679
https://doi.org/10.1109/TAP.1986.1143830
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref79
http://refhub.elsevier.com/S1053-8119(19)30347-7/sref79
https://doi.org/10.1016/j.neuroimage.2004.11.051
https://doi.org/10.1016/j.neuron.2008.09.010
https://doi.org/10.1007/s10548-017-0609-4
https://doi.org/10.1088/1361-6560/aab248
https://doi.org/10.1088/1361-6560/aab248
https://doi.org/10.1016/j.jneumeth.2016.07.017
https://doi.org/10.1016/j.jneumeth.2016.07.017
https://doi.org/10.1016/j.neuroimage.2014.01.006
https://doi.org/10.1016/j.cmpb.2007.09.004
https://doi.org/10.1371/journal.pone.0159595
https://doi.org/10.1088/0031-9155/57/11/3517
https://doi.org/10.1088/0031-9155/57/11/3517
https://doi.org/10.1103/PhysRevLett.81.3291
https://doi.org/10.1088/0031-9155/51/7/008
https://doi.org/10.1088/0031-9155/51/7/008
https://doi.org/10.1016/j.neuroimage.2013.07.065
https://doi.org/10.1016/j.neuroimage.2013.07.065
https://doi.org/10.1006/nimg.2001.0915
https://doi.org/10.1006/nimg.2001.0915
https://doi.org/10.1109/10.623056
https://doi.org/10.1038/35067550
https://doi.org/10.1038/35067550
https://doi.org/10.1002/mrm.24413
https://doi.org/10.1002/mrm.24413
https://doi.org/10.1016/j.neuroimage.2011.01.055
https://doi.org/10.1016/j.neuroimage.2014.06.040
https://doi.org/10.1038/sdata.2015.1
https://doi.org/10.1016/j.neuroimage.2007.12.026
https://doi.org/10.1002/hbm.20465
https://doi.org/10.1002/hbm.21479
https://doi.org/10.1016/j.neuroimage.2005.10.014
https://doi.org/10.1016/j.neuroimage.2005.10.014
https://doi.org/10.1088/0266-5611/20/4/007
https://doi.org/10.1007/s10548-018-0656-5
https://doi.org/10.1007/s10548-018-0656-5
https://doi.org/10.1016/j.jmr.2008.06.007

	The impact of improved MEG–MRI co-registration on MEG connectivity analysis
	1. Introduction
	2. Materials and methods
	2.1. Head model and sensor layout
	2.2. Simulating co-registration errors
	2.3. BEM forward modeling
	2.4. Generation of synthetic MEG recordings
	2.5. Source reconstruction
	2.6. Connectivity analysis
	2.7. Data and code availability statement

	3. Results
	3.1. Assessment of source reconstruction
	3.2. Assessment of source connectivity estimates

	4. Discussion
	Declarations of interest
	Acknowledgements
	Appendix A. Supplementary data
	References


