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WRIGHT–FISHER CONSTRUCTION OF THE TWO-PARAMETER
POISSON–DIRICHLET DIFFUSION
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The two-parameter Poisson–Dirichlet diffusion, introduced in 2009 by
Petrov, extends the infinitely-many-neutral-alleles diffusion model, related
to Kingman’s one-parameter Poisson–Dirichlet distribution and to certain
Fleming–Viot processes. The additional parameter has been shown to regu-
late the clustering structure of the population, but is yet to be fully understood
in the way it governs the reproductive process. Here, we shed some light on
these dynamics by formulating a K-allele Wright–Fisher model for a popu-
lation of size N , involving a uniform mutation pattern and a specific state-
dependent migration mechanism. Suitably scaled, this process converges in
distribution to a K-dimensional diffusion process as N → ∞. Moreover, the
descending order statistics of the K-dimensional diffusion converge in dis-
tribution to the two-parameter Poisson–Dirichlet diffusion as K → ∞. The
choice of the migration mechanism depends on a delicate balance between
reinforcement and redistributive effects. The proof of convergence to the
infinite-dimensional diffusion is nontrivial because the generators do not con-
verge on a core. Our strategy for overcoming this complication is to prove a
priori that in the limit there is no “loss of mass”, that is, that, for each limit
point of the sequence of finite-dimensional diffusions (after a reordering of
components by size), allele frequencies sum to one.

1. Introduction. The goal of this paper is to provide a discrete-time finite-
population construction of the two-parameter Poisson–Dirichlet diffusion, extend-
ing an analogous construction for the well-known infinitely-many-neutral-alleles
diffusion model provided in Ethier and Kurtz (1981). Introduced by Petrov (2009)
and henceforth called the two-parameter model, this diffusion process assumes val-
ues in the infinite-dimensional ordered simplex (sometimes also called the King-
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man simplex)

(1.1) ∇∞ :=
{
z = (z1, z2, . . .) ∈ [0,1]∞ : z1 ≥ z2 ≥ · · · ≥ 0,

∞∑
i=1

zi ≤ 1

}

and describes the temporal evolution of the ranked frequencies of infinitely many
potential alleles, observed at a single gene locus, in a given population of large
but finite size. An exhaustive review of these and other models for stochastic
population dynamics can be found in Feng (2010). Further investigations of the
two-parameter model include Ruggiero and Walker (2009), who provide a particle
construction; Feng and Sun (2010), who study some path properties using Dirich-
let forms; Feng et al. (2011), who find the transition density function; Ruggiero,
Walker and Favaro (2013), who show that an instance of the two-parameter model
arises as a normalised inverse-Gaussian diffusion conditioned on having a fixed
environment; Ruggiero (2014), who shows that the clustering structure in the pop-
ulation is driven by a continuous-state branching process with immigration; Ethier
(2014), who shows that, with probability one, the diffusion instantly enters the
dense subset

(1.2) ∇∞ :=
{
z = (z1, z2, . . .) ∈ [0,1]∞ : z1 ≥ z2 ≥ · · · ≥ 0,

∞∑
i=1

zi = 1

}

and never exits; and Zhou (2015), who simplifies the formula for the transition
density and establishes an ergodic inequality.

The two-parameter model is known to be reversible [Petrov (2009)] with respect
to the two-parameter Poisson–Dirichlet distribution PD(θ,α), where 0 ≤ α < 1
and θ > −α [Perman, Pitman and Yor (1992), Pitman (1995), Pitman and Yor
(1997)]. When α = 0, the model reduces to the infinitely-many-neutral-alleles dif-
fusion model, henceforth called the one-parameter model, with Poisson–Dirichlet
reversible distribution PD(θ) := PD(θ,0) [Kingman (1975)]. The two-parameter
Poisson–Dirichlet distribution PD(θ,α) has found numerous applications in sev-
eral fields: See, for example, Bertoin (2006) for fragmentation and coalescent the-
ory; Pitman (2006) for excursion theory and combinatorics; Lijoi and Prünster
(2009) for Bayesian inference; and Teh and Jordan (2009) for machine learning.
However, in the dynamic setting, the two-parameter model is not as well under-
stood as the one-parameter special case, which motivates the need for further in-
vestigation.

One of the main differences between the PD(θ) and PD(θ,α) distributions is
the fact that the former arises as the weak limit of ranked Dirichlet frequencies
[Kingman (1975)], whereas a similar construction is not available for the two-
parameter case. In the dynamical framework, one possible construction of the one-
parameter model is as the limit in distribution as K → ∞ of a K-dimensional
diffusion process of Wright–Fisher type with components rearranged in descend-
ing order. Each of these Wright–Fisher diffusions can in turn be constructed as
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the limit in distribution as N → ∞ of a suitably scaled K-allele Wright–Fisher
Markov chain model for a randomly mating population of size N with discrete
nonoverlapping generations and uniform mutation [Ethier and Kurtz (1981)]. In
contrast, an analogous construction in the case 0 < α < 1 has not, to the best of
our knowledge, been published. The importance of finding examples of processes
with these features for the two-parameter model lies in the possibility of reveal-
ing the reproductive mechanisms acting at the level of individuals, thus provid-
ing interpretation for the roles played by the parameters θ and α in the dynamics
of the population’s allele frequencies, partially hidden or difficult to interpret in
the infinite-dimensional model. In Section 2, we will provide more comments on
this point and on the other existing sequential constructions for the two-parameter
model.

In this paper, we show that the two-parameter model can be derived from a
Wright–Fisher Markov chain model. As with the one-parameter model, there are
two limit operations involved. We start with a K-allele Wright–Fisher model for a
randomly mating population of size N with discrete nonoverlapping generations,
a uniform mutation pattern, and a specific state-dependent migration mechanism.
It is not difficult to see that this process, suitably scaled, converges in distribution
to a K-dimensional Wright–Fisher diffusion as N → ∞. The process obtained by
applying the descending order statistics to this Wright–Fisher diffusion is itself
a diffusion (i.e., the Markov property is retained), which we show converges in
distribution to the two-parameter model as K → ∞.

We also show that the two-parameter Poisson–Dirichlet distribution PD(θ,α) is
the weak limit of the stationary distributions of the Wright–Fisher diffusions we
obtain (modified to account for the rearranging of components in descending or-
der), by analogy to what happens in the one-parameter case, where these stationary
distributions are symmetric Dirichlet distributions.

Our Wright–Fisher model includes migration and mutation. Mutation is uniform
as before but with mutation rate proportional to θ + α instead of just θ . Migration,
which acts first, also depends on α and is governed by a generalisation of the
classical island model. In that model, the frequency of allele i on the island after
migration (in the gametic pool) is

(1.3) z∗
i = zi + pim − zim,

with zi being its frequency on the island prior to migration, m being the migration
rate, and pi being the frequency of allele i in the mainland population. We gener-
alise this in two ways, neither of which is conventional in the population genetics
literature. First, we allow the migration rate to be allele-dependent, so that (1.3) is
replaced by

(1.4) z∗
i = zi + pim(z) − zimi where m(z) =

K∑
j=1

zjmj .
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Here, mi is the migration rate for allele i and m(z) is the overall migration rate.
The second generalisation allows all parameters to be state-dependent, that is, to
depend on the vector z of allele frequencies on the island. Thus, (1.4) is replaced
by

(1.5) z∗
i = zi + pi(z)m(z) − zimi(z) where m(z) =

K∑
j=1

zjmj (z).

Here, mi(z) is the migration rate for allele i, m(z) is the overall migration rate,
and pi(z) is the frequency of allele i in the mainland population. The form of the
functions mi(z) and pi(z) will be specified later on, but for now we point out only
that mi(z) depends on zi alone and is a decreasing function of that variable that
does not depend in i, and pi(z) > pj (z) if zi < zj . Thus, more frequent alleles
on the island are less likely to emigrate (so emigration provides a reinforcement
effect), and less frequent alleles on the island are more frequent on the mainland
and, therefore, more likely to immigrate (so immigration provides a redistributive
effect).

The proof of convergence in distribution of the K-dimensional Wright–Fisher
diffusion, with components rearranged in descending order, to the two-parameter
model as K → ∞ is nontrivial and requires a new approach. The difficulty arises
essentially from the fact that, with BK denoting the generator of the reordered K-
dimensional diffusion, and B denoting the generator of the two-parameter model,
BKϕ does not converge to Bϕ on ∇∞ for certain ϕ in the domain D(B) of B (see
Section 2). The simplest such ϕ is the so-called homozygosity, ϕ2(z) := ∑∞

i=1 z2
i .

At the same time, it is not possible to eliminate ϕ2 from the domain of B, because
the resulting space of functions would not be a core for the closure of B. As a
consequence, the approach followed in Ethier and Kurtz (1981) to study the one-
parameter model fails here, and so do various other similar approaches. A more
complete discussion of these issues can be found at the beginning of Section 5.

Here, we take the martingale problem approach, that is, we view the reordered
K-dimensional diffusion as the solution of the martingale problem for BK , and, as
is usual in this approach, try to carry out three steps: (i) Show that the sequence of
finite-dimensional diffusions is relatively compact; (ii) Show that each of its limit
points is a solution to the martingale problem for B; (iii) Show that the martingale
problem for B has a unique solution. As may be expected, the difficulty described
above shows up in this approach as well: If the domain of B includes ϕ2, then it is
not clear that the limit martingale property will hold for the pair (ϕ2,Bϕ2). On the
other hand, if ϕ2 is excluded from the domain of B, then the martingale problem
for B may have more than one solution.

However, in the martingale problem framework we are able to overcome the
difficulty by proving a priori that, for any limit point Z of the sequence of finite-
dimensional diffusions, with probability one, for almost all t ≥ 0, Z(t) belongs to
∇∞ [cf. (1.2)]. The argument employed in this proof was inspired by the proof of
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Theorem 2.6 of Ethier and Kurtz (1981) and relies on a double limit, taken in the
appropriate order. When restricted to ∇∞, BKϕ2 does converge to Bϕ2, and this
yields that the limit martingale property carries over to (ϕ2,Bϕ2), and thus that the
limit martingale problem has a unique solution.

In the one-parameter case, it is possible to also formulate a Wright–Fisher model
with infinitely many alleles and obtain the limit process as N → ∞ (K is al-
ready ∞); see Ethier and Kurtz (1981), Theorem 3.3. That theorem requires some
rather delicate estimates and we were unsuccessful in trying to extend it to the
two-parameter setting.

The paper is organised as follows. In Section 2, the two-parameter model is re-
called. Section 3 provides the construction of the K-allele Wright–Fisher Markov
chain for a population of size N . In Section 4, the Wright–Fisher chain, scaled ap-
propriately, is shown to converge in distribution to a K-dimensional Wright–Fisher
diffusion as N → ∞. Then, in Section 5, the K-dimensional diffusion, with coor-
dinates rearranged in descending order, is shown to converge to the two-parameter
model as K → ∞. In Section 6, analogous results are proved for the stationary
distributions. Section 7 concludes by highlighting a slightly simpler formulation,
obtained under the assumption that θ ≥ 0, which allows us to separate the roles of
θ and α in driving the population dynamics.

2. The two-parameter model. The two-parameter model was introduced by
Petrov (2009). As with its one-parameter counterpart, characterised in Ethier and
Kurtz (1981), it describes the temporal evolution of infinitely many allele frequen-
cies. A natural state space for the process is ∇∞, defined in (1.2). However, the
closure of ∇∞ (in the product topology on [0,1]∞), namely ∇∞, defined in (1.1),
is compact and, therefore, more convenient as a state space. Consider, for param-
eters 0 ≤ α < 1 and θ > −α, the second-order differential operator B defined as
follows. The domain of B is

(2.1) D(B) := subalgebra of C(∇∞) generated by ϕ1, ϕ2, ϕ3, . . . ,

where ϕ1 ≡ 1 and, for m = 2,3, . . . , ϕm is defined by

(2.2) ϕm(z) :=
∞∑
i=1

zm
i .

For ϕ ∈ D(B), Bϕ is the continuous extension to ∇∞ of

(2.3) Bϕ(z) := 1

2

∞∑
i,j=1

zi(δij − zj )
∂2ϕ(z)

∂zi ∂zj

− 1

2

∞∑
i=1

(θzi + α)
∂ϕ(z)

∂zi

, z ∈ ∇∞,

with δij the Kronecker delta. For example,

(2.4) Bϕ2(z) := 1 − α − (1 + θ)ϕ2(z), z ∈ ∇∞.
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As shown by Petrov (2009), the closure of B generates a Feller semigroup
on C(∇∞), which characterises the finite-dimensional distributions of the two-
parameter model Z, and the sample paths of Z belong to C∇∞[0,∞) with proba-
bility one. Recently, Ethier (2014) proved that, for an arbitrary initial distribution
ν ∈ P(∇∞), we have

P
(
Z(t) ∈ ∇∞ for every t > 0

) = 1,

that is, ∇∞ −∇∞ acts as an entrance boundary (note however that technically it is
not a boundary because ∇∞ has no interior). In particular, if ν(∇∞) = 1, then the
sample paths of Z belong to C∇∞[0,∞) with probability one.

The diffusion coefficients in the first term of (2.3) describe the instantaneous
covariance, related to the allelic sampling, also called random genetic drift. The
interpretation of the drift coefficients in the second term of (2.3) is not as clear,
and is the object of primary interest in this paper. It is worth noting that the one-
parameter model, obtained by setting α = 0 in (2.3), admits the following two
interpretations.

First, the one-parameter model, also known as the unlabelled infinitely-many-
neutral-alleles diffusion model, has a more informative labelled version, namely
the Fleming–Viot process in P(S) (the set of Borel probability measures on the
compact metric space S with the topology of weak convergence) with mutation
operator

Ag(x) := 1

2
θ

∫
S

(
g(ξ) − g(x)

)
ν0(dξ),

where ν0 ∈ P(S) is nonatomic. The unlabelled model is a transformation of the
labelled one. The transformation takes μ ∈ P(S) to z ∈ ∇∞, where z is the vector
of descending order statistics of the sizes of the atoms of μ. See Ethier and Kurtz
(1993).

The second interpretation is as the limit in distribution of a K-allele Wright–
Fisher diffusion, with components rearranged in descending order, as K → ∞,
where the rate of a mutation from allele i to allele j is proportional to θ . See
Ethier and Kurtz (1981).

As a result of these correspondences, θ is usually interpreted as the rate at which
mutations occur. Similar interpretations for the two-parameter model, however, are
not available: First, the existence of a Fleming–Viot process whose unlabelled ver-
sion is the two-parameter model is an open problem [posed in Feng (2010)]. Sec-
ond, for 0 < α < 1, a Kingman-type result expressing PD(θ,α) as the limit in dis-
tribution of a sequence of finite-dimensional random vectors is not available; hence
it does not offer a guide for a Wright–Fisher construction, as in the one-parameter
case. Consequently, the interpretation of α cannot be deduced from existing work.
The role of α has been associated rather indirectly to mutation in a particle con-
struction of the two-parameter model, given in Ruggiero and Walker (2009), where
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θ and α jointly regulate births from the same distribution. They propose a Moran-
type process for the evolution of N individuals, whereby at exponential times a
randomly chosen individual is removed from the population after either giving a
simple birth, with the offspring inheriting the parent’s type, or giving a birth with
mutation, with the offspring being of a type not previously observed. The probabil-
ities of these events are regulated by the weights of Pitman’s generalisation of the
Blackwell–MacQueen Pólya urn scheme Pitman (1995, 1996). In particular, with
probability proportional to θ + αk, where k is the current number of distinct types
present in the population, a birth with mutation occurs, whereas with probability
proportional to nj − αk, where nj is the current number of type-j individuals, a
simple birth of type j occurs. The original sequential construction in Petrov (2009)
instead relates to a discrete Markov chain on the space of partitions of {1, . . . ,N}
and offers no insight into the role of α at the reproduction level. Both these con-
structions feature overlapping generations and fall into the infinitely-many-types
setting, in the sense that they both allow the possibility of new types appearing in
the population chosen from an uncountable genetic pool.

Here, instead, we are interested in a construction of the two-parameter model
by means of a classical Wright–Fisher Markov chain, with nonoverlapping gen-
erations and finitely many types, since this would reveal details about how the
reproduction acts at the individual level, which an inspection of B does not. As
an illustration of this aspect, consider the construction of the one-parameter model
via a Wright–Fisher Markov chain with K alleles in a population of size N . If
z = (z1, . . . , zK) is the vector of allele frequencies prior to mutation, the frequency
of allele i individuals after mutation is zi(1 − ∑

j :j 
=i uij ) + ∑
j :j 
=i zjuji , where

(2.5) uij := θ

2N(K − 1)
, j 
= i,

is the proportion of individuals of allele i that mutate to allele j , for sufficiently
large N . It can be easily seen that the expected change of zi , multiplied by N , is
given by the drift coefficient

(2.6)
1

2

[
θ

K − 1
(1 − zi) − θzi

]
,

which converges to −(1/2)θzi when K → ∞. See Ethier and Kurtz (1981) for
more details. This construction provides insight into the role of θ in the mutation
process, only partially readable from (2.3) with α = 0; it is indeed by inspection
of (2.5) that one can see that the probability of an individual mutation is inversely
proportional to the population size and the mutant type distribution is uniform on
the other K − 1 alleles; the rate θ determines how often the mutation events occur.

Here, we seek a similar insight, at the same level of magnification, on the action
of α in the two-parameter model. In this case, the drift coefficients in (2.3) are
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−1
2(θzi + α). The key observation for the following development is to think of

them as

(2.7) −1

2
(θ + α)zi − 1

2
α(1 − zi),

the first term corresponding to mutation and the second term to migration. The first
term is the limit as K → ∞ of the analogue of (2.6), namely

1

2

[
θ + α

K − 1
(1 − zi) − (θ + α)zi

]
,

while the second term should be the limit of the migration terms in the K-allele
drift coefficients.

3. A W–F model with state-dependent migration. Consider a population of
N individuals, and let the maximum number of alleles in the population be K ≥ 2.
The population size is assumed to be constant and generations are nonoverlapping.
Denote by zi the relative frequency of allele i in the current generation at the
selected locus. We assume the presence of migration and mutation, as discussed in
Section 1. The state space is

(3.1) 	K :=
{
z = (z1, . . . , zK) ∈ [0,1]K : z1 ≥ 0, . . . , zK ≥ 0,

K∑
i=1

zi = 1

}

or, more precisely,

(3.2) 	N
K := {

z = (z1, . . . , zK) ∈ 	K : Nz ∈ Z
K}

.

The frequency of allele i after migration (in the gametic pool) is

(3.3) z∗
i = zi + pi(z)m(z) − zimi(z) where m(z) =

K∑
j=1

zjmj (z),

as discussed in the Introduction [see (1.5)]. With uij denoting the proportion of
individuals of allele i that mutate to allele j , the frequency of allele i after mutation
(in the gametic pool) is

(3.4) z∗∗
i := z∗

i + ∑
j :j 
=i

z∗
juji − z∗

i

∑
j :j 
=i

uij .

Finally, random genetic drift is modelled by multinomial sampling, which amounts
to assuming that each individual of the next generation chooses its parent at ran-
dom from the current generation. Then the next generation’s allele frequencies
z′

1, . . . , z
′
K are formed according to the rule

(3.5) z′ | z ∼ N−1 multinomial
(
N,z∗∗

1 , . . . , z∗∗
K

)
,
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that is, Nz′ has a multinomial distribution with sample size N and cell prob-
abilities (z∗∗

1 , . . . , z∗∗
K ). This is the classic Wright–Fisher model with migration

and mutation in the state space 	N
K , and without migration it corresponds to

equation (2.2) in Ethier and Kurtz (1981). For a more complete description of
the Wright–Fisher model and its underlying assumptions, we refer the reader to
Section 9.9 of Nagylaki (1992), but with selection replaced by migration. [In
Nagylaki’s notation, (9.158), (9.155) and (9.146) are replaced respectively by
p∗

i = pi + p̂i(p)m(p) − pimi(p) with m(p) = ∑
j pjmj (p), P̃ ∗

ij = p∗
i p

∗
j , and

P ∗
ij = (2 − δij )p

∗
i p

∗
j . Finally, our N is Nagylaki’s 2N .]

We turn now to specifying the migration and mutation in sufficient detail to
derive a K-allele diffusion approximation. Consider parameter values of 0 ≤ α < 1
and θ > −α (the case θ ≥ 0, which allows a simplification, is treated separately in
Section 7). We assume that the migration rates are given by

(3.6) mi(z) := αri(z)

2N
, i = 1, . . . ,K,

and that the mutation rates uij are given by

(3.7) uij := θ + α

2N(K − 1)
, j 
= i,

for sufficiently large N [cf. (2.5)]. The functions pi in (3.3) and ri in (3.6), de-
fined on 	K for i = 1, . . . ,K , are assumed to satisfy the following properties:
(p1, . . . , pK) is a C4 map of 	K into 	K and is symmetric in the sense that, for
every permutation σ of {1,2, . . . ,K},

pi(zσ(1), . . . , zσ(K)) = pσ(i)(z), i = 1, . . . ,K, z ∈ 	K;
pi(z) > pj (z) if zi < zj for all z ∈ 	K and i 
= j ; ri(z) = r(zi) for i = 1, . . . ,K

and z ∈ 	K , where r : [0,1] → [0,∞) is C4 and is decreasing.
In Section 5, we will be more specific as to the form of pi(z) and ri(z) [see

(5.2) and (5.3) below]. In Section 7, we will give a simpler formulation of pi(z)

and ri(z) in the special case θ ≥ 0. Here and later, for notational simplicity, we
suppress the dependence on K of the defined quantities whenever this does not
create confusion.

To summarise, our Markov chain ZN
K(·) = {ZN

K(τ), τ = 0,1, . . .} has state space
	N

K [see (3.2)] and its transition probabilities are specified by (3.3)–(3.7).
From (3.3) and (3.4), we can write the frequency of allele i (in the gametic pool)

at reproductive age in terms of the allele frequencies before the action of migration
and mutation as

(3.8) z∗∗
i = zi + N−1bi(z) + o

(
N−1)

,

uniformly in z ∈ 	N
K , where, in view of the rescaling, we have isolated the relevant

drift term for the ith component, namely

(3.9) bi(z) := 1

2

[
θ + α

K − 1
(1 − zi) − (θ + α)zi + αpi(z)

K∑
j=1

zj rj (z) − αziri(z)

]
.
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For later use, note that

(3.10) bi(z) ≥ 0 if zi = 0, i = 1,2, . . . ,K,

and

(3.11)
K∑

i=1

bi(z) = 0, z ∈ 	K.

4. Diffusion approximation with K alleles. Recall (3.1), and define the
second-order differential operator

(4.1) AK := 1

2

K∑
i,j=1

aij (z)
∂2

∂zi ∂zj

+
K∑

i=1

bi(z)
∂

∂zi

, D(AK) = C2(	K),

with

(4.2) aij (z) := zi(δij − zj )

and bi(z), which of course depends on K , as in (3.9). Here,

C2(	K) := {
f ∈ C(	K) : ∃f̃ ∈ C2(

RK)
such that f̃ |	K

= f
}
,

and the choice of the extension f̃ to which the partial derivatives are applied does
not matter. Let C(	K) be endowed with the supremum norm. The following result
states that AK characterises a Feller diffusion on 	K .

PROPOSITION 4.1. Let AK be as in (4.1)–(4.2) and (3.9). Then the closure
in C(	K) of AK is single-valued and generates a Feller semigroup {TK(t)} on
C(	K). For each νK ∈ P(	K), there exists a strong Markov process ZK(·) =
{ZK(t), t ≥ 0}, with initial distribution νK , such that

E
(
f

(
ZK(t + s)

) | ZK(u),u ≤ s
) = TK(t)f

(
ZK(s)

)
, f ∈ C(	K), s, t ≥ 0.

Furthermore,

P
{
ZK(·) ∈ C	K

[0,∞)
} = 1.

PROOF. Noting that b1, . . . , bK ∈ C4(	K), the first assertion follows from
Ethier (1976) and Sato (1978), using (3.10) and (3.11). The second assertion fol-
lows from Theorem 4.2.7 in Ethier and Kurtz (1986). Note that for every z0 ∈ 	K

and ε > 0 there exists f ∈ D(AK) such that

sup
z∈B(z0,ε)c

f (z) < f
(
z0) = ‖f ‖ and AKf

(
z0) = 0,

where B(z0, ε) is the ball of radius ε centred at z0. Take, for example, f (z) :=
2 − ∑K

i=1(zi − z0
i )

4. Then the third assertion follows from Proposition 4.2.9 and
Remark 4.2.10 in Ethier and Kurtz (1986). �
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The diffusion of Proposition 4.1 is a good approximation, in the sense of the
limit in distribution as the population size tends to infinity, of a suitably rescaled
version of the Wright–Fisher Markov chain described in Section 3. This is for-
malised by the next theorem. Here and later ⇒ denotes convergence in distribution
(or weak convergence) and D	K

[0,∞) denotes the space of càdlàg sample paths
in 	K with the Skorokhod topology.

THEOREM 4.2. Let {ZN
K(τ), τ = 0,1, . . .} be the 	N

K -valued Markov chain
with one-step transitions as in (3.3)–(3.7), let ZK be the Feller diffusion of Propo-
sition 4.1. If ZN

K(0) ⇒ ZK(0), then

ZN
K

(�N ·�) ⇒ ZK(·) in D	K
[0,∞)

as N → ∞.

PROOF. From (3.5) and (3.8), letting Ez(·) := E(· | z) and similarly for Pz, we
have that

Ez

[
z′
i − zi

] = Ez

[
z′
i − z∗∗

i

] + z∗∗
i − zi = N−1bi(z) + o

(
N−1)

and

Ez

[(
z′
i − zi

)(
z′
j − zj

)] = N−1z∗∗
i

(
δij − z∗∗

j

) + o
(
N−1) = N−1aij (z) + o

(
N−1)

,

uniformly in z. Furthermore, it can be easily seen that Ez[(z′
i − zi)

4] = o(N−1), so
that Chebyshev’s inequality implies Dynkin’s condition for the continuity of paths
of the limit process, that is, Pz(|z′

i − zi | > δ) = o(N−1) for every δ > 0. Again,
these estimates are uniform in z. Denote by T N

K the semigroup operator associated
to the Markov chain ZN

K(·) and by I the identity operator. Then a Taylor expansion,
together with the above expressions, yields, for every f ∈ C2(	K),(

T N
K − I

)
f (z) = Ez

[
f

(
z′) − f (z)

]
= Ez

[
K∑

i=1

(
z′
i − zi

)
fzi

(z) + 1

2

K∑
i,j=1

(
z′
i − zi

)(
z′
j − zj

)
fzizj

(z)

+
∫ 1

0
(1 − t)

K∑
i,j=1

(
z′
i − zi

)(
z′
j − zj

)

× [
fzizj

(
z + t

(
z′ − z

)) − fzizj
(z)

]
dt

]

= 1

N

K∑
i=1

bi(z)fzi
(z) + 1

2N

K∑
i,j=1

aij (z)fzizj
(z) + o

(
1

N

)
,
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uniformly in z, where the o(N−1) term above is due to∣∣∣∣∣Ez

[∫ 1

0
(1 − t)

K∑
i,j=1

(
z′
i − zi

)(
z′
j − zj

)[
fzizj

(
z + t

(
z′ − z

)) − fzizj
(z)

]
dt

]∣∣∣∣∣
≤ Ez

[
1

2

K∑
i,j=1

∣∣z′
i − zi

∣∣∣∣z′
j − zj

∣∣2‖fzizj
‖; ∣∣z′ − z

∣∣ > δ

]

+Ez

[
1

2

K∑
i,j=1

∣∣z′
i − zi

∣∣∣∣z′
j − zj

∣∣ω(fzizj
, δ); ∣∣z′ − z

∣∣ ≤ δ

]

≤
K∑

i,j=1

‖fzizj
‖Pz

(∣∣z′ − z
∣∣ > δ

)

+ 1

2

K∑
i,j=1

Ez

[(
z′
i − zi

)2]1/2
Ez

[(
z′
j − zj

)2]1/2
ω(fzizj

, δ)

= o
(
N−1) + O

(
N−1)

max
i,j

ω(fzizj
, δ),

ω(g, δ) := sup|z′−z|≤δ |g(z′) − g(z)| being the modulus of continuity of the func-
tion g. It follows that, for every f ∈ C2(	K),

(4.3)
∥∥N(

T N
K − I

)
f −AKf

∥∥ → 0

as N → ∞, where AK is as in (4.1). An application of Theorems 1.6.5 and 4.2.6
in Ethier and Kurtz (1986) implies the statement of the theorem. �

Having justified our first limit operation, we now apply the descending order
statistics to our limit Wright–Fisher diffusion ZK(·). First, we define the continu-
ous map ρK : 	K → ∇∞ by

ρK(z) := (z(1), . . . , z(K),0,0, . . .),

where z(1) ≥ z(2) ≥ · · · ≥ z(K) are the descending order statistics of the coordinates
of z ∈ 	K . We will show in the next section that, with suitable definitions of pi(z)

and ri(z) and assuming convergence of the initial distributions, ρK(ZK(·)) ⇒ Z(·)
as K → ∞, with Z(·) denoting the two-parameter model in ∇∞.

Here, we simply observe that ρK(ZK(·)) is Markovian despite the fact that ρK

is not one-to-one. The state space of ρK(ZK(·)) is

∇K := {z ∈ ∇∞ : zK+1 = 0} ⊂ ∇∞
and its generator BK is given by

(4.4) BK := 1

2

K∑
i,j=1

aij (z)
∂2

∂zi ∂zj

+
K∑

i=1

bi(z)
∂

∂zi

,
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ostensibly the same as AK in (4.1)–(4.2) and (3.9), except that now z ∈ ∇K instead
of z ∈ 	K . In addition,

(4.5) D(BK) := {
f ∈ C2(∇K) : f ◦ ρK ∈ C2(	K)

}
.

Hidden in this definition are certain implicit boundary conditions needed to pre-
serve the inequalities z1 ≥ z2 ≥ · · · ≥ zK [see Ethier and Kurtz (1981) for more de-
tails]. The following result generalises Proposition 2.4 of Ethier and Kurtz (1981).

PROPOSITION 4.3. The closure in C(∇K) of the operator BK defined by
(4.4)–(4.5), (4.2) and (3.9) is single-valued and generates a Feller semigroup
{UK(t)} on C(∇K). Given ν ∈ P(	K), let ZK(·) be as in Proposition 4.1. Then
ρK(ZK(·)) is a strong Markov process corresponding to {UK(t)} with initial dis-
tribution νK ◦ ρ−1

K and almost all sample paths in C∇K
[0,∞).

PROOF. The proof is exactly as in the cited paper, the key observation being
that, for every permutation σ of {1,2, . . . ,K},

bi(zσ(1), . . . , zσ(K)) = bσ(i)(z), z ∈ 	K, i = 1,2, . . . ,K.

As a byproduct of this, we find that, if f ∈ D(BK),

(4.6) (BKf ) ◦ ρK =AK(f ◦ ρK) on 	K. �

5. Convergence to the infinite-dimensional diffusion. We now turn to our
second limit operation, namely the convergence of the reordered Wright–Fisher
diffusion ρK(ZK(·)) to the two-parameter model, that is, the ∇∞-valued diffu-
sion process with generator B introduced in Section 2. To this end we will specify
explicitly the functions pi and ri that determine the migration mechanism and pro-
vide some probabilistic interpretation of our choice, but the results of this section
hold more generally (see Remark 5.7).

The drift coefficients of B are −1
2(θzi + α), which we rewrite as in (2.7), while

those of BK are given by (3.9). In view of the comments at the end of Section 2,
the functions pi and ri should satisfy

(5.1) −1

2
α(1 − zi) = lim

K→∞
1

2

[
αpi(z)

K∑
j=1

zj rj (z) − αziri(z)

]
.

One way to achieve this is to take ri(z) = (1 − zi)/zi and pi(z) = o(1/K). How-
ever, this is problematic for two reasons. First, ri is unbounded; second, requiring
pi(z) = o(1/K) uniformly in i and z is inconsistent with

∑K
i=1 pi(z) = 1. We can

address both issues by instead defining

(5.2) ri(z) :=
{
(1 − zi)

[
1 − (1 − zi)

K ]
/zi, if zi > 0,

K, if zi = 0,
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and

(5.3) pi(z) := (1 − zi)
K∑K

l=1(1 − zl)K
.

An alternative formulation is in terms of the following system of Bernoulli trials
parameterised by the current state z. Let the array ζ = (ζij )i,j=1,...,K be such that,
along row i, ζi1, . . . , ζiK are i.i.d. Bernoulli(zi), for i = 1,2, . . . ,K . With Gi being
the number of failures in row i before the first success,

ri(z) =
K∑

k=1

(1 − zi)
k =

K∑
k=1

P(Gi ≥ k) = E[Gi].

Furthermore, pi(z) is proportional to the probability of observing no successes in
row i. Incidentally, pi(z) has also a direct probabilistic interpretation via Bayes’s
theorem. Let I be a row of the array chosen uniformly at random. Then pi(z) is
the probability of choosing row i given that we observe all failures along the row,
that is,

pi(z) = P

{
I = i

∣∣∣ K∑
j=1

ζIj = 0

}
.

Let Z be the two-parameter model. In order to prove that ρK(ZK(·)) ⇒ Z(·) as
K → ∞, the usual argument is to show that

(5.4) ‖BKηKϕ − ηKBϕ‖ → 0 as K → ∞,

where ηK : C(∇∞) → C(∇K) is given by the restriction ηKϕ = ϕ|∇K
, and ϕ ∈

D(B) is given by

ϕ = ϕm1 · · ·ϕml
, m1, . . . ,ml ∈ {2,3, . . .}, l ∈ N.

[Notice that ηK maps D(B) into D(BK).]
Unfortunately, despite the fact that (5.1) holds with this choice, (5.4) fails if one

or more of the subscripts m1, . . . ,ml is equal to 2. Similar to what was done in
Ethier and Kurtz (1981) in the proof of Theorem 2.6, we can enlarge the domain
of B to the algebra generated by 1 and the functions ϕm defined by (2.2) for all real
m ≥ 2 (not just integers). Then (5.4) holds for

ϕ = ϕm1 · · ·ϕml
, m1, . . . ,ml > 2, l ∈ N.

For example, if ϕ = ϕ2+ε for 0 < ε < 1, then ‖BKηKϕ −ηKBϕ‖ = O(K−ε). This
would suffice if we could show that

D0(B) := sub-algebra of C(∇∞) generated by 1 and ϕm, m ∈ (2,∞),
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is a core for the closure of B [cf. Ethier and Kurtz (1986), Section 1.3]. This also
appears to fail. In fact, this algebra is not even a core in the bounded-pointwise
sense, as

bp-lim
ε→0+

Bϕ2+ε(z) = (1 − α)

∞∑
i=1

zi − (1 + θ)ϕ2(z),

which is not equal to (2.4) except on ∇∞.
As mentioned in Section 2, recently Ethier (2014) proved that, for any initial

distribution ν concentrated on ∇∞, the paths of Z belong to C∇∞[0,∞) with prob-
ability one. In view of this result and of the above discussion, one might think of
taking ∇∞ as state space, rather than ∇∞. But ∇∞ is not compact, therefore, the
usual sufficient conditions for convergence in distribution include, besides (5.4),
the following compact containment condition: For every ε, T > 0, there exists a
compact set �ε,T such that

(5.5) inf
K

P
(
ρK

(
ZK(t)

) ∈ �ε,T ,∀t ≤ T
) ≥ 1 − ε.

Notice that, since ∇∞ is not a complete metric space, convergence might hold
without the compact containment condition [see, e.g., Billingsley (1968), Theo-
rems 6.1 and 6.2]. In any case, (5.5) is not easy to prove and we have not pursued
this approach.

A further alternative strategy would be to show that, for every ψ ∈ D(B), there
exists a sequence {ψK} ⊂ D0(B) such that

‖ηKψK − ηKψ‖ → 0 and ‖BKηKψK − ηKBψ‖ → 0,

as K → ∞, so that {(ψ,Bψ) : ψ ∈ D(B)} belongs to the extended limit of BK [cf.
Definition 1.4.3 of Ethier and Kurtz (1986)]. Then Theorem 1.6.1 of Ethier and
Kurtz (1986) would yield∥∥TK(t)ηKϕ − ηKT (t)ϕ

∥∥ → 0, ϕ ∈ C(∇∞), t ≥ 0,

where {T (t)} is the Feller semigroup on C(∇∞) whose generator is the closure
of B. Even this strategy seems not to be viable.

Having considered each of these routes, we have turned to the martingale prob-
lem approach. In this approach, ρK(ZK(·)) is viewed as a solution to the martin-
gale problem for BK (in fact the unique solution). The usual procedure consists of
three steps: (i) Show that {ρK(ZK(·))} is relatively compact; (ii) Show that each
of its limit points is a solution to the martingale problem for B; (iii) Show that the
martingale problem for B has a unique solution.

However, in the present setup, it is not clear how to carry out the second and
third steps. In fact, if D(B) is taken as the domain of B, then it is not clear that the
limit martingale relation will hold for ϕ2 (and any product in which ϕ2 is a factor)
because ‖BKηKϕ2 −ηKBϕ2‖ does not converge to zero, as outlined above. On the
other hand, if D0(B) is taken as the domain of B, then the martingale problem for
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B may have more than one solution. For instance, if the initial distribution is the
unit mass at z = 0, then the identically zero stochastic process is a solution.

We solve these problems by proving a priori that, for any limit point Z of
{ρK(ZK(·))}, with probability one, Z(t) ∈ ∇∞ for almost all t ≥ 0. This is done in
Lemma 5.3 below. On ∇∞, Bϕ2 can be approximated by Bϕ2+ε , for ε → 0+, and
this yields that the limit martingale relation, which holds for functions in D0(B),
carries over to all functions in D(B), and thus that the limit martingale problem
has a unique solution (Theorem 5.6).

LEMMA 5.1. {ρK(ZK(·))} is relatively compact in D∇∞[0,∞).

PROOF. By Proposition 4.3, ρK(ZK(·)) is a strong Markov process with gen-
erator the closure of BK and sample paths in C∇K

[0,∞). Therefore, ρK(ZK(·)) is
a solution of the martingale problem for BK [see, e.g., Proposition 4.1.7 in Ethier
and Kurtz (1986)].

We have, for m,K ∈ {2,3, . . .} and z ∈ ∇K ,

BKηKϕm(z)

=
(
m

2

)
(ϕm−1 − ϕm)(z)

+ m

2

{
θ + α

K − 1
(ϕm−1 − ϕm)(z) − θϕm(z)

+ α

K∑
j=1

zj rj (z)

K∑
i=1

pi(z)z
m−1
i − α

K∑
i=1

[
zi + ziri(z)

]
zm−1
i

}

=
(
m

2

)
(ϕm−1 − ϕm)(z)

+ m

2

θ + α

K − 1
(ϕm−1 − ϕm)(z) − m

2
(θϕm + αϕm−1)(z)

+ m

2
α

{
K∑

i=1

[
1 − zi − ziri(z)

]
zm−1
i +

K∑
j=1

zj rj (z)

K∑
i=1

pi(z)z
m−1
i

}
(5.6)

=
(
m

2

)
(ϕm−1 − ϕm)(z)

+ m

2

θ + α

K − 1
(ϕm−1 − ϕm)(z) − m

2
(θϕm + αϕm−1)(z)

+ m

2
α

K∑
i=1

(1 − zi)
K+1zm−1

i + m

2
α

K∑
j=1

zj rj (z)

K∑
i=1

pi(z)z
m−1
i
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=
(
m

2

)
(ϕm−1 − ϕm)(z)

+ m

2

θ + α

K − 1
(ϕm−1 − ϕm)(z) − m

2
(θϕm + αϕm−1)(z)

+ m

2
α

K∑
i=1

(1 − zi)
Kzm−1

i

(
1 − zi +

∑K
j=1 zj rj (z)∑K

l=1(1 − zl)K

)
,

where the third equality uses (5.2) and the fourth uses (5.3).
Now, since zi ≤ 1/i for i = 1, . . . ,K , we have

K∑
l=1

(1 − zl)
K ≥

K∑
l=�K/2�+1

(1 − zl)
K

≥ �K/2�
(

1 − 1

�K/2� + 1

)K

≥ (K/2)e−2,

so that

(5.7)

∑K
j=1 zj rj (z)∑K

l=1(1 − zl)K
≤ K

(K/2)e−2 = 2e2.

In addition,

(5.8)
K∑

i=1

(1 − zi)
Kzm−1

i ≤ K sup
0≤u≤1

(1 − u)Kum−1 ≤ K

(
m − 1

K + m − 1

)m−1
.

Therefore, for each integer m ≥ 2,

(5.9) sup
K

‖BKηKϕm‖ ≤ C(α, θ,ϕm).

For ϕ,ψ ∈ D(B), we can use the analogue of the first equation in (2.13) of Ethier
and Kurtz (1981), namely

BKηK(ϕψ) = (ηKψ)BKηKϕ + (ηKϕ)BKηKψ

+ 〈
grad(ηKϕ), a grad(ηKψ)

〉
,

(5.10)

where a is given by (4.2), to obtain∥∥BKηK(ϕψ)
∥∥ ≤ ‖ψ‖‖BKηKϕ‖ + ‖ϕ‖‖BKηKψ‖ + 2 sup

i≥1
‖ϕzi

‖ sup
j≥1

‖ψzj
‖.

Then we can see, by induction on l, that (5.9) holds with ϕm replaced by ϕ of
the form ϕ = ϕm1ϕm2 · · ·ϕml

, m1, . . . ,ml ∈ {2,3, . . .}, l ∈ N, hence for every ϕ ∈
D(B).

Since D(B) is dense in C(∇∞), the lemma follows from Theorems 3.9.1 and
3.9.4 of Ethier and Kurtz (1986). �
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LEMMA 5.2. For 2 < m < 3 and K ≥ 2,

BKηK(ϕ2 − ϕm) ≥ 1 − α − m(m − 1 − α)

2
ϕm−1

−
[
(1 + θ)ϕ2 − m(m − 1 + θ)

2
ϕm

]

−
[

3(θ + α)

2(K − 1)
+ α(1 + 2e2)

2(K + 1)

]
on ∇K.

PROOF. Let 2 < m < 3 and K ≥ 2. We have, on ∇K ,

BKηK(ϕ2 − ϕm)

= 1 − α − m(m − 1 − α)

2
ϕm−1

−
[
(1 + θ)ϕ2 − m(m − 1 + θ)

2
ϕm

]
+ θ + α

K − 1

[
1 − m

2
ϕm−1

]
− θ + α

K − 1

[
ϕ2 − m

2
ϕm

]
+ αRK,m,

where

RK,m(z) :=
K∑

i=1

[
1 − zi − ziri(z)

]
zi

(
1 − m

2
zm−2
i

)

+
K∑

j=1

zj rj (z)

K∑
i=1

pi(z)zi

(
1 − m

2
zm−2
i

)
.

Since zi ≤ 1/i for i = 1, . . . ,K , we obtain the inequalities

1 − m

2
zm−2
i ≥ 0, i ≥ 2, 1 − m

2
zm−2

1 ≥ −1

2
,

and hence

RK,m(z) ≥ −1

2

[
(1 − z1)

K+1z1 +
K∑

j=1

zj rj (z)p1(z)z1

]
.

In addition, by (5.3) and (5.7),

K∑
j=1

zj rj (z)p1(z) =
∑K

j=1 zj rj (z)∑K
l=1(1 − zl)K

(1 − z1)
K ≤ 2e2(1 − z1)

K.

Then, by the second inequality in (5.8), we get RK,m(z) ≥ −(1+2e2)/(2(K +1)).
Notice also that 1− m

2 ϕm−1(z) ≥ −1
2 and that ϕ2(z)− m

2 ϕm(z) ≤ 1. The conclusion
follows. �
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LEMMA 5.3. For every limit point Z of {ρK(ZK(·))} in D∇∞[0,∞), we have

E

[∫ ∞
0

(
1 −

∞∑
i=1

Zi(t)

)
dt

]
= 0.

PROOF. The proof is inspired by the first part of the proof of Theorem 2.6 in
Ethier and Kurtz (1981). As ρK(ZK(·)) is a solution of the martingale problem for
BK , Lemma 5.2 implies that, for 2 < m < 3 and K ≥ 2,

E
[
(ϕ2 − ϕm)

(
ρK

(
ZK(T )

))]
≥ E

[
(ϕ2 − ϕm)

(
ρK

(
ZK(0)

))]
+E

[∫ T

0

(
1 − α − m(m − 1 − α)

2
ϕm−1

(
ρK

(
ZK(t)

)))
dt

]

−E

[∫ T

0

(
(1 + θ)ϕ2 − m(m − 1 + θ)

2
ϕm

)(
ρK

(
ZK(t)

))
dt

]

−
[

3(θ + α)

2(K − 1)
+ α(1 + 2e2)

2(K + 1)

]
T .

(5.11)

Let Z be the limit in distribution of some subsequence {ρKh
(ZKh

)}. Since ϕ2, ϕm,
ϕm−1 are continuous and all integrands are bounded, by taking the limit as h → ∞
along the subsequence {Kh} in (5.11), we obtain

(1 − α)E

[∫ T

0

(
1 − m(m − 1 − α)

2(1 − α)
ϕm−1

(
Z(t)

))
dt

]
≤ E

[
(ϕ2 − ϕm)

(
Z(T )

)] −E
[
(ϕ2 − ϕm)

(
Z(0)

)]
+ (1 + θ)E

[∫ T

0

(
ϕ2 − m(m − 1 + θ)

2(1 + θ)
ϕm

)(
Z(t)

)
dt

]
.

(5.12)

Since ϕm−1(z) converges to
∑∞

i=1 zi boundedly and pointwise on ∇∞, we obtain
the assertion by taking the limit as m → 2+ in (5.12). �

LEMMA 5.4. For 0 < ε < 1, let ϕ = ϕm1 · · ·ϕml
, where m1, . . . ,ml ∈ [2 +

ε,∞). Then

‖BKηKϕ − ηKBϕ‖ = O
(
K−ε) as K → ∞.

PROOF. Consider first ϕ = ϕm with m ≥ 2 + ε. Then

Bϕm =
(
m

2

)
(ϕm−1 − ϕm) − m

2
(θϕm + αϕm−1).
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Recalling (5.6)–(5.8), we have

‖BKηKϕm − ηKBϕm‖

≤ m

2

θ + α

K − 1
sup

z∈∇K

∣∣(ϕm−1 − ϕm)(z)
∣∣

+ sup
z∈∇K

m

2
α

K∑
i=1

(1 − zi)
Kzm−1

i

(
1 − zi +

∑K
j=1 zj rj (z)∑K

l=1(1 − zl)K

)

≤ m

2

θ + α

K − 1
+ m

2
αK

(
m − 1

K + m − 1

)m−1(
1 + 2e2) = O

(
K−ε),

as required.
By an analogue of the first equation in (2.13) of Ethier and Kurtz (1981), namely

(5.13) B(ϕψ) = ψBϕ + ϕBψ + 〈gradϕ,a gradψ〉,
we get, by (5.10),∥∥BKηK(ϕψ) − ηKB(ϕψ)

∥∥
≤ ‖ψ‖‖BKηKϕ − ηKBϕ‖ + ‖ϕ‖‖BKηKψ − ηKBψ‖.

Thus, the statement of the lemma follows by induction on l. �

LEMMA 5.5. Let ϕ ∈ D0(B) and p ∈ N. Then B(ϕ
p
2+εϕ) → B(ϕ

p
2 ϕ) bound-

edly and pointwise on ∇∞.

PROOF. By (5.13),

B
(
ϕ

p
2+εϕ

) = ϕBϕ
p
2+ε + ϕ

p
2+εBϕ + 〈

gradϕ
p
2+ε, a gradϕ

〉
= ϕ

[
pϕ

p−1
2+ε Bϕ2+ε +

(
p

2

)
ϕ

p−2
2+ε 〈gradϕ2+ε, a gradϕ2+ε〉

]
+ ϕ

p
2+εBϕ + pϕ

p−1
2+ε 〈gradϕ2+ε, a gradϕ〉

→ ϕ

[
pϕ

p−1
2 Bϕ2+ +

(
p

2

)
ϕ

p−2
2 〈gradϕ2, a gradϕ2〉

]
+ ϕ

p
2 Bϕ + pϕ

p−1
2 〈gradϕ2, a gradϕ〉

boundedly and pointwise on ∇∞ as ε goes to zero, where

Bϕ2+(z) := lim
ε→0

Bϕ2+ε(z) = (1 − α)

∞∑
i=1

zi − (1 + θ)ϕ2(z), z ∈ ∇∞.
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We are also using

〈gradϕ2+ε, a gradϕ2+ε〉 = (2 + ε)2(
ϕ3+2ε − ϕ2

2+ε

)
→ 4

(
ϕ3 − ϕ2

2
) = 〈gradϕ2, a gradϕ2〉

and similarly 〈gradϕ2+ε, a gradϕ〉 → 〈gradϕ2, a gradϕ〉, both boundedly and
pointwise on ∇∞. Of course,

Bϕ2(z) = 1 − α − (1 + θ)ϕ2(z), z ∈ ∇∞,

so Bϕ2+ = Bϕ2 on ∇∞. We conclude that

B
(
ϕ

p
2+εϕ

) → ϕBϕ
p
2 + ϕ

p
2 Bϕ + 〈

gradϕ
p
2 , a gradϕ

〉 = B
(
ϕ

p
2 ϕ

)
boundedly and pointwise on ∇∞ (but not on ∇∞). �

We are now ready to state our main result.

THEOREM 5.6. Let ZK be the diffusion process of Proposition 4.1 with initial
distribution νK ∈ P(	K). Let B be given by (2.1)–(2.3) and let Z be the diffusion
process corresponding to the Feller semigroup generated by the closure in C(∇∞)

of B, with initial distribution ν ∈ P(∇∞). If νK ◦ ρ−1
K ⇒ ν, then

ρK

(
ZK(·)) ⇒ Z(·) in C∇∞[0,∞).

If in addition ν(∇∞) = 1, then the convergence holds in C∇∞[0,∞).

PROOF. First, we prove convergence in D∇∞[0,∞). The proof of this claim
is in three steps:

(i) Every limit point of {ρK(ZK(·))} is a solution of the martingale problem
for B as an operator on D0(B).

(ii) Every limit point of {ρK(ZK(·))} is a solution of the martingale problem
for B as an operator on D(B).

(iii) The martingale problem for B as an operator on D(B) has a unique solu-
tion for every initial distribution ν.

Proof of (i). Let Z be the limit in distribution of an arbitrary subsequence
{ρKh

(ZKh
(·))}; see Lemma 5.1. Since ρKh

(ZKh
(·)) is a solution of the martingale

problem for BKh
,

ϕ
(
ρKh

(
ZKh

(t)
)) −

∫ t

0
BKh

ηKh
ϕ

(
ρKh

(
ZKh

(s)
))

ds =: M(Kh)
ϕ (t)

is a continuous martingale for every ϕ ∈ D0(B).
By Lemma 5.4, M

(Kh)
ϕ converges in distribution to

ϕ
(
Z(·)) −

∫ ·
0
Bϕ

(
Z(s)

)
ds.
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On the other hand, M
(Kh)
ϕ (t) is uniformly bounded for every t , hence the limit is a

martingale.
Proof of (ii). It is enough to prove that(

ϕ
p
2 ϕ

)(
Z(·)) −

∫ ·
0
B

(
ϕ

p
2 ϕ

)(
Z(s)

)
ds =: M(·)

is a martingale for every ϕ ∈ D0(B) and every p ∈ N.
By Lemma 5.3, almost surely we have

(5.14)
∫ ∞

0

(
1 − I∇∞

(
Z(s)

))
ds = 0.

Therefore, by Step 1, for every ε > 0,(
ϕ

p
2+εϕ

)(
Z(t)

) −
∫ t

0
I∇∞

(
Z(s)

)
B

(
ϕ

p
2+εϕ

)(
Z(s)

)
ds = Mε(t)

is a martingale.
It follows from Lemma 5.5 that, almost surely, for all t ≥ 0, Mε(t) converges to(

ϕ
p
2 ϕ

)(
Z(t)

) −
∫ t

0
I∇∞

(
Z(s)

)
B

(
ϕ

p
2 ϕ

)(
Z(s)

)
ds,

which in turn, by (5.14), almost surely, for all t ≥ 0, equals M(t). On the other
hand, for every t ≥ 0, Mε(t) is uniformly bounded, hence M is a martingale.

Proof of (iii). A sufficient condition for uniqueness of the solution to the mar-
tingale problem for B is that, for each λ > 0, R(λI − B), where R denotes the
range and I is the identity operator, is separating, that is, such that, for any pair
of probability measures μ,ν ∈ P(∇∞),

∫
∇∞ f (z)μ(dz) = ∫

∇∞ f (z)ν(dz) for ev-
ery f ∈ R(λI − B) implies μ = ν [see, e.g., Costantini and Kurtz (2015), Corol-
lary 2.14]. In the present setup, since the closure of B generates a strongly con-
tinuous contraction semigroup on C(∇∞) by Petrov (2009), then, for each λ > 0,
R(λI − B) is dense in C(∇∞) [see, e.g., Proposition 1.2.1 in Ethier and Kurtz
(1986)], therefore, the condition is satisfied.

Finally, the convergence holds in C∇∞[0,∞) ⊂ D∇∞[0,∞) because the distri-
butions of the processes ρK(ZK(·)) and Z(·) are concentrated on C∇∞[0,∞) and
the Skorokhod topology relativised to C∇∞[0,∞) coincides with the uniform-on-
compact-sets topology on C∇∞[0,∞) [see, e.g., Billingsley (1968), Section 18].
The last assertion of the theorem follows from Ethier (2014) by the same argument.

�

REMARK 5.7. A more careful inspection of the proofs shows that, if the mu-
tation rates are given by (3.7), all the results of this section hold for functions pi

and ri satisfying the conditions of Section 3 [in particular, ri(z) = r(zi)] and the
following set of conditions: For Lemma 5.1, we need only assume

sup
z∈∇K

K∑
j=1

zj rj (z)

K∑
i=1

pi(z)zi = O(1) as K → ∞.
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For Lemma 5.2 with a possibly weaker but still adequate lower bound, it suffices
that

1 − u − ur(u) ≥ 0, u ∈ [0,1],
sup

u∈[0,1]
[
1 − u − ur(u)

]
u = o(1) as K → ∞

and

sup
z∈∇K

K∑
j=1

zj rj (z)p1(z)z1 = o(1) as K → ∞.

For Lemma 5.4 with a possibly slower but still adequate rate of convergence, it is
enough that

sup
z∈∇K

K∑
i=1

[
1 − zi − zir(zi)

]
z1+ε
i = o(1) as K → ∞,0 < ε < 1

and

sup
z∈∇K

K∑
j=1

zj rj (z)

K∑
i=1

pi(z)z
1+ε
i = o(1) as K → ∞,0 < ε < 1.

6. Convergence of stationary distributions. We have seen that, for each
K ≥ 2, ZN

K(�N ·�) ⇒ ZK(·) as N → ∞ (Theorem 4.2) and ρK(ZK(·)) ⇒ Z(·)
as K → ∞ (Theorem 5.6). Now we want to obtain the analogous results for the
stationary distributions. Our Wright–Fisher Markov chain model is irreducible and
aperiodic and, therefore, has a unique stationary distribution μN

K ∈ P(	N
K), which

we regard as belonging to P(	K). Our K-dimensional diffusion process ZK in
	K is ergodic by Theorem 3.2 of Shiga (1981) and, therefore, has a unique station-
ary distribution μK ∈ P(	K). Technically, Shiga’s theorem does not apply to our
model because, although our drift coefficients due to mutation meet his Condition
II, our drift coefficients due to migration,

bi(z) := αpi(z)

K∑
j=1

zj rj (z) − αziri(z),

are not of the form of his drift coefficients due to selection,

bi(z) := zi

(
γi(z) −

K∑
j=1

zjγj (z)

)
.

Nevertheless, our drift coefficients due to migration do satisfy (3.10) and (3.11),
which together with smoothness is all that is needed for Shiga’s proof. Finally, we
denote by PD(θ,α) ∈ P(∇∞) the two-parameter Poisson–Dirichlet distribution,
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which is the unique stationary distribution of Z in ∇∞. We will prove that, for each
K ≥ 2, μN

K ⇒ μK on 	K as N → ∞, and that μK ◦ ρ−1
K ⇒ PD(θ,α) on ∇∞ as

K → ∞. This is the two-parameter analogue of Kingman’s result showing that
the one-parameter Poisson–Dirichlet distribution PD(θ) is the weak limit of the
descending order statistics of the symmetric Dirichlet distribution with parameter
θ/(K − 1). It is not entirely analogous in that the symmetric Dirichlet distribution
with parameter θ/(K − 1) is much more explicit than μK . Nevertheless, it does
allow us to give an interpretation to PD(θ,α) in the context of population genetics.

THEOREM 6.1. For each K ≥ 2, μN
K ⇒ μK on 	K as N → ∞.

PROOF. For fixed K ≥ 2, {μN
K} is relatively compact because 	K is compact.

It is enough to show that, if {Nm} is a subsequence such that μ
Nm

K ⇒ μ as m → ∞,
then μ = μK . Given f ∈ C2(	K),∫

	K

AKf dμ = lim
m→∞

∫
	K

AKf dμ
Nm

K

= lim
m→∞

∫
	K

Nm

(
T Nm

K − I
)
f dμ

Nm

K = 0,

where the second equality uses (4.3). This shows that μ is the unique stationary
distribution of ZK , which we have denoted by μK . �

THEOREM 6.2. μK ◦ ρ−1
K ⇒ PD(θ,α) on ∇∞ as K → ∞.

PROOF. {μK ◦ρ−1
K } is relatively compact because ∇∞ is compact. It is enough

to show that, if {Kh} is a subsequence such that μKh
◦ ρ−1

Kh
⇒ μ on ∇∞ as

h → ∞, then μ = PD(θ,α). First, we show that μ is concentrated on ∇∞. It is
intuitively clear and easy to prove that μK ◦ ρ−1

K , which belongs to P(∇K) but
can also be regarded as belonging to P(∇∞), is the unique stationary distribution
of ρK(ZK(·)); indeed,∫

∇K

BKf d
(
μK ◦ ρ−1

K

) =
∫
	K

(BKf ) ◦ ρK dμK

=
∫
	K

AK(f ◦ ρK)dμK = 0,

provided f ∈ D(BK). Here, we have used (4.6). Lemma 5.2 therefore implies that,
for 2 < m < 3,

0 =
∫
∇Kh

BKh
ηKh

(ϕ2 − ϕm)d
(
μKh

◦ ρ−1
Kh

)
≥

∫
∇∞

[(
1 − α − m(m − 1 − α)

2
ϕm−1

)



WRIGHT–FISHER CONSTRUCTION OF POISSON–DIRICHLET DIFFUSION 1947

−
(
(1 + θ)ϕ2 − m(m − 1 + θ)

2
ϕm

)]
d
(
μKh

◦ ρ−1
Kh

)
−

[
3(θ + α)

2(Kh − 1)
+ α(1 + 2e2)

2(Kh + 1)

]

→
∫
∇∞

[(
1 − α − m(m − 1 − α)

2
ϕm−1

)

−
(
(1 + θ)ϕ2 − m(m − 1 + θ)

2
ϕm

)]
dμ.

In particular, this last integral is nonpositive. Now let m → 2+ to conclude that

(1 − α)

∫
∇∞

(
1 −

∞∑
i=1

zi

)
μ(dz) ≤ 0,

or that μ(∇∞) = 1.
Next, from Lemma 5.4 and μKh

◦ ρ−1
Kh

⇒ μ we get

0 = lim
h→∞

∫
∇Kh

BKh
ηKh

ϕ d
(
μKh

◦ ρ−1
Kh

)
= lim

h→∞

∫
∇∞

Bϕ d
(
μKh

◦ ρ−1
Kh

) =
∫
∇∞

Bϕ dμ

for all ϕ ∈ D0(B). Let ϕ ∈ D0(B) and p ∈ N. Then from Lemma 5.5, we have

0 = lim
ε→0+

∫
∇∞

B
(
ϕ

p
2+εϕ

)
dμ = lim

ε→0+

∫
∇∞

B
(
ϕ

p
2+εϕ

)
dμ

=
∫
∇∞

B
(
ϕ

p
2 ϕ

)
dμ =

∫
∇∞

B
(
ϕ

p
2 ϕ

)
dμ,

implying that
∫
∇∞ Bϕ dμ = 0 for every ϕ ∈ D(B). This tells us that μ = PD(θ,α),

completing the proof. �

7. The special case θ ≥ 0. The arguments of the previous sections assumed
0 ≤ α < 1 and θ > −α, which are the usual parameter constraints for PD(θ,α)

distributions with nonnegative α and ensure that the mutation rate θ + α in (3.7)
is positive. It is interesting to note that if one imposes the stronger requirement
that θ be nonnegative instead of θ > −α, then a modification of the construction
allows us to separate the roles of θ and α, which account for different mechanisms
rather than jointly contributing to the mutation events. To this end, assume θ ≥ 0
and modify (3.7) to

(7.1) uij := θ

2N(K − 1)
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and (5.2) to

ri(z) :=
{[

1 − (1 − zi)
K ]

/zi if zi > 0,

K if zi = 0.

Accordingly, (3.9) becomes

bi(z) := 1

2

[
θ

K − 1
(1 − zi) − θzi + αpi(z)

K∑
j=1

zj rj (z) − αziri(z)

]
.

Similar arguments to those in the proof of Theorem 5.6 still hold in this setting,
and there is an analogue of Remark 5.7. Now, however, θ alone is responsible
for mutation through (7.1), while α acts only through the migration mechanism. In
contrast, the combined action of θ and α in (3.7) is partially remindful of the action
of the same parameters in Pitman’s urn scheme construction of the PD(θ,α) dis-
tribution [see, e.g., Pitman (1995), equation (15)], where θ and α jointly determine
the probability of observing a new type in the sequence.
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