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In this work, the use of Information Geometry tools in Shape Analysis is investigated.
Landmarks of complex shapes are represented as probability distributions in a statistical
manifold where geodesics with respect to different Riemannian metrics could be defined.
Geodesics are considered both for studying the shape evolution in time and for deriving
shape distances to be used in shape clustering.
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1. Introduction

In this paper a review of some recent results,
obtained in the field of Shape Analysis by using
Information Geometry tools, is presented [1–3].

Shape Analysis is of interest in various fields
such as morphological-metrics, computer vision
and medical imaging. Objects whose shapes are
described by landmarks [4–7] are considered.
These objects can be obtained from medical
imaging procedures, curves defined by manually
or automatically assigned feature points or by a
discrete sampling of the object contours. For a
planar shape, it is assumed that each landmark
is modeled via a bivariate Gaussian density,
where the means are the geometric coordinates
and capture uncertainties that arise in landmark
placement while the variances derive from the
natural variability across the population of
shapes. According to Information Geometry, the
space of bivariate Gaussian densities represents
a statistical manifold [8, 9] with the local
coordinates given by the model parameters. We
consider different Riemannian metrics, mostly the
Fisher-Rao metric but also that inducing the
Wasserstein distance. These will give different
kinds of geodesics. In the first case the geodesics
are related with the minimization of information
in the Fisher sense, while in the second case with
the minimal transportation cost. Geodesics can be
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used to reconstruct the evolution of the landmarks
of the shape in time. Next, distances between
landmarks induced by the geodesics (geodesic
distances) are defined. These distances are then
assumed for shapes clustering.

2. Mathematical tools: geometri-
cal structures for manifolds of
probability distributions

A "manifold" is a geometric object which
is locally Euclidean, i.e. described by local
coordinates. The dimension of the manifold
coincides with the dimension of the Euclidean
space defined to identify it locally. Such Euclidean
space represents also the tangent space of the
manifold at any point. If the changes of local
coordinates are differentiable we say that the
manifold is a differential manifold. For example,
a sphere is a bi-dimensional differential manifold
because locally it is identifiable with a piece of
plane then we can locally represent every point
by a couple of real numbers.

From Differential Geometry we know that
a Riemannian metric on a differential manifold
X is induced by a metric matrix g, which
defines an inner product at any tangent space
of the manifold as follows: 〈u, v〉 = uT gijv with
associated norm ‖u‖ =

√
〈u, u〉. The length of a

path γ between two points P,Q of the manifold
is calculated by using the inner product:

Length of γ =

∫
‖γ′(t)‖dt.
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Then the distance d between two points P,Q of
X is given by the minimum of the lengths of all
the smooth paths γ joining these two points

d(P,Q) = minγ{Length of γ}.

A curve that encompasses this shortest path is
called a Riemannian geodesic and the previous
distance is named geodesic distance. We remark
that in general the concept of geodesic is related
to connections defined on a manifold. If a
connection is not Riemannian then a geodesic is
different from a shortest path.

Let P a family of probability density
functions p(x | θ) parameterized by θ ∈ Rk.
It is well known that we can endowed it of a
structure of manifold, called statistical manifold,
whose local coordinates are the parameters of the
family. As an example we consider the family of
p-variate Gaussian densities:

f(x | θ = (µ,Σ))

= (2π)−
p
2 (det Σ)−

1
2 exp{−1

2
(x− µ)TΣ−1(x− µ)}

where x = (x1, x2, . . . , xp)
T , µ = (µ1, µ2, . . . µp)

T

is the mean vector and Σ the covariance matrix.
Note that the covariance matrix is symmetric and
positive defined then the parameter space has
dimension k = p + p(p+1)

2 . In particular we are
interested in the case p = 2.

Two geometrical structures have been
extensively studied for a manifold of probability
distributions. The most famous is induced by the
Fisher information matrix

hij(θ) =

∫
p(x | θ) ∂

∂θi
ln p(x | θ) ∂

∂θj
ln p(x | θ)dx

and it is called the Fisher–Rao metric. The
other one is based on the Wasserstein distance of
optimal transportation. In the statistical manifold
of bivariate Gaussian densities, we will consider
these two different Riemannian metrics which in
turn induce two types of geodesic distances.

As regard to the Fisher–Rao metric gF , the
closed form of the geodesic distance between two
densities with diagonal covariance matrices is the
following [10]:

dF (θ, θ′) =

√√√√√2

2∑
i=1

ln
|( µi√

2
, σi)− (

µ′i√
2
,−σ′i)|+ |(

µi√
2
, σi)− (

µ′i√
2
, σ′i)|

|( µi√
2
, σi)− (

µ′i√
2
,−σ′i)| − |(

µi√
2
, σi)− (

µ′i√
2
, σ′i)|

2

(1)

where θ = (µ,Σ) with µ = (µ1, µ2) and Σ =
diag(σ21, σ

2
2), θ′ = (µ′,Σ′) with µ′ = (µ′1, µ

′
2) and

Σ′ = diag(σ′1
2, σ′2

2).
For general Gaussian densities, where

Σ could be any symmetric positive defined
covariance matrix, a closed form for the associated
geodesic distance is not available. Thus, unless
one makes use of numerical approximations, there
is the need to diagonalize first the covariance
matrix. As regard to the Riemannian metric gW
which induces the Wasserstein distance [11], for
Gaussian densities the explicit expression of the

distance is the following:

dW (θ, θ′) = ‖µ− µ′‖

+tr(Σ) + tr(Σ′)− 2tr(
√

Σ
1
2 Σ′Σ

1
2 ) (2)

where ‖.‖ is the Euclidean norm and Σ
1
2 is defined

for a symmetric positive definite matrix Σ so that
Σ

1
2 · Σ

1
2 = Σ. It is important to remark that, if

Σ = Σ′, the Wasserstein distance reduces to the
Euclidean distance.

Otto proved that, with respect to the
Riemannian metric which induces the Wasserstein
distance, the manifold of Gaussian densities
has non-negative sectional curvature. It follows
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that the Wasserstein metric is different from
the Fisher-Rao metric. Indeed, for example in
the univariate case, the statistical manifold of
Gaussian densities with the Fisher-Rao metric is
equivalent to the upper half plane Θ = {θ =
(µ, σ) : σ > 0} with the hyperbolic metric g11 =
g22 = 1

σ2 and g12 = g21 = 0. It is well known that
this manifold has constant negative curvature,
the geodesics are semicircles with the center on
the µ-axes or vertical lines and its isometries are
conformal maps.

3. Modeling complex shapes

Consider a geometric object, as for example
a flat fish or a skull. The "shape" of the object is
defined as the class of equivalence obtained under
similarity transformations, which are translations,
rotations and scaling [12]. The main aims in
order to study shapes are to reconstruct their
evolution in time and to classify them. For
example we can be interested in the shape of a
particular species along its growth or to classify
the shapes in different groups. Data from a shape
are often realized as a set of points, as you
can see on the left side of figure 1. In medical
imaging, shadows and noise make the contour of
the object not clear. Usually, experts identify a
finite number of points, called landmarks. The
landmark coordinates depend on the registration
of the object in a coordinate system. [5, 13]. A
realistic drawing of a cross-sectional rat cranium
with eight landmarks is represented in figure 2.

Suppose to have a population of n planar
objects Sj , j = 1, . . . , n, consisting of a
fixed number K of landmarks labeled on
some common coordinate system. Denote the
landmarks Euclidean coordinates of the j-th
object Sj with µj = (µj1, µj2, ..., µjK) where
µjk = (µjk1, µ

j
k2), k = 1, . . . ,K. The mean shape

is defined as µ̄ = 1
n

∑n
j=1 µj . For the k-landmark,

an estimate of the coordinates covariance matrix
Σk is given by

Σk =
1

n

n∑
j=1

(µjk − µ̄k)(µjk − µ̄k)T

where µ̄k denotes the k-th landmark coordinates

FIG. 1. (color online) On the left side, Real data; on
the right side, Geodesics from the model.

FIG. 2. (color online) Realistic drawing of a cross
section of a rat cranium with the eight landmarks used
in the analysis.

of the mean shape. Let S be a given shape from
the population:

S = {µ1, µ2, . . . , µK} (3)

with generic element µk = (µk1, µk2) for k =
1, . . . ,K. Assuming a diagonal covariance matrix
[2], the k-th landmark may be represented by a
bivariate Gaussian density as follows:

f(x | θk = (µk,Σk)) = (2π)−1

×(det Σk)
− 1

2 exp{−1

2
(x−µk)TΣ−1k (x−µk)} (4)
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with x being a generic 2-dimensional vector and
Σk given by

Σk = diag(σ2k1, σ
2
k2) (5)

where σ2
k = (σ2k1, σ

2
k2) is the vector of the

variances of µk.
In the previous representation, the means

represent the geometric coordinates of the
landmark, which capture uncertainties that arise
in landmark placement due to measurement
errors. The variances are hidden coordinates
reflecting natural variability across the population
of shapes. Equation (4) assigns to the k-th
landmark both the coordinates θk = (µk, σk) on
the 4-dimensional manifold which is the product
of two upper half planes. Then, Riemannian
metrics may be defined on the Gaussian densities
manifold, where we are modelling the shapes. The
induced geodesics may be used to reconstruct the
intermediate shapes from those at two different
times and also to predict, for a short time,
the evolution of the shape from its past. In
[1], the geodesics are determined by the Fisher-
Rao metric. They minimize the information in
the Fisher sense and are obtained as product
of two geodesics in the hyperbolic plane. As an
application, the rat calvarial data set [4] was
used. It corresponds to 8 landmarks digitized in
two dimensions on the skull midsagittal section
of 21 rats, which have been collected at ages of
7, 14, 21, 30, 40, 60, 90, 150 days. In figure 3, the
geodesic paths (solid lines) are displayed from the
mean shape at time t = 14 days (dash-dotted line)
to the mean shape at time t = 21 days (dashed
line).

Besides, in figure 4, the observed (dashed
lines) and estimated (solid lines) mean shapes
from day 21 to day 150 are displayed.

The model works also starting from "non-
geometrical" coordinates of an object, as we
showed for Keratoconus which is a pathology
affecting the corneal shape, producing serious
problems to the vision. Corneal tomography
gives numerical data of the axial and tangential
algorithms which we can use as coordinates of
cornea points. Therefore we proposed to apply
our model in order to reconstruct the intermediate
steps from an initial situation to the outbreak of
the disease.
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FIG. 3. (color online) Mean shape at time t = 14 days
(dash-dotted line); mean shape at time t = 21 days
(dashed line); geodesic paths (solid lines) from t = 14
to t = 21.
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FIG. 4. (color online) Rat data set: observed (dashed
lines) and estimated (solid lines) mean shapes from
time t = 21 to day t = 150 days.

The geodesic distances can be used for
cluster analysis of shapes, as it will be shown in
the following section.

4. Clustering of shapes

In classical Shape Analysis, Procrustes
methods [14] are used to compare shapes of
different objects. Precisely on some common
coordinates system, two objects are scaled,
rotated and translated so that their landmarks
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FIG. 5. (color online)The left panel shows original
configurations of two triangle classes, while the right
panel shows the two shapes registered with Ordinary
Procrustes Analysis

lie as close as possible to each other with
respect to the Euclidean distance. In other words,
the minimization problem regarding the sum
of the Euclidean distances of the corresponding
landmarks of the two objects has to be solved.
Such minimum is called the Procrustes distance
of the two shapes. For example, the left panel
of figure (5) shows the original configurations of
triangles while in the right panel there are the
two triangles obtained using ordinary Procrustes
Analysis. Let S and S′ two planar shapes
registered on a common coordinate system and
parameterized as follows: S = (θ1, . . . , θK) and
S′ = (θ′1, . . . , θ

′
K). The geodesic distances between

landmarks allow to define a distance of the two
shapes S and S′. Precisely a shape metric, for
measuring the difference between S and S′, can
be obtained by taking the sum of the geodesic
distances between the corresponding landmarks
of the two shapes, according to the following
definition:

D(S, S′) =
K∑
k=1

d(θk, θ
′
k). (6)

Then a clustering of shapes, using in turn, as
distance d, the distance dF induced from Fisher-
Rao metric and the Wasserstein distance dW , can
be done following the standard methodology. In
[2], the proposed methodology has been applied
for clustering shapes of a series of specimens
belonging to three different flatfishes species. For

the experiment, the scheme of 21 landmarks was
digitized for each individual of the three species,
as in figure 6.

 FIG. 6. (color online) Landmark configuration
collected on (a) Platichthys flesus, (b) Pleuronectes
platessa, and (c) Solea solea. 1, snout tip; 2, 3 and
4, points of maximum curvature of the peduncle; 5,
insertion of the operculum on the lateral profile; 6,
posterior extremity of premaxillar; 7 and 8, centers
of the eyes; 9, beginning of the lateral line; 10 and
11, superior and inferior insertion of the pectoral fin;
12-16, semi- landmarks collected on dorsal fin; 17-20,
semi-landmarks collected on anal fin; 21, insertion of
first ray of the pelvic fin.

Pairwise distances of all shapes were
computed with respect to different metrics:
Procrustes distance dP and Fisher-Rao geodesic
distances using isotropic covariance matrix, dR,
and diagonal covariance matrix, dF . The isotropic
case requires the choice of the free parameter
σ2. In order to test the sensitiveness of the final
clustering with respect to changes in the value of
σ2, three different values of σ2 were considered
and given by the first (dR1), the second (dR2) and
the third quartile (dR3) of the variances of the
landmarks. The obtained distance matrices were
then used in a hierarchical clustering algorithm
and results, for each distance considered in the
paper, are reported in terms of confusion matrices
(Table 1). The results show that the specimens
of S. solea, which represent the out-group, were
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correctly identified by the clustering procedure
independently of the selected distance measure.
In contrast, a variable number of miss-classified
specimens of P. flesus and P. platessa was
always present. Some specimens of P. flesus were
preferentially classified as P. platessa when the
Fisher-Rao distance with σ2 given by the second
quartile (dR2) was used, while the opposite miss
classification (specimens of P. platessa classified
as P. flesus) was more rare.

The behaviour of the clustering has been
further evaluated by the aRand index [15] and
classification error. Results for the solutions with
three clusters are reported in Table 2 and show
that the shape metric with the varying variance
representation leads to the best performance in
recovering the true cluster structure. Only 4 fishes
were miss-classified with the Fisher-Rao distance
dF which takes into account the variances of
the landmarks coordinates. Indeed, figure 7 gives
evidence of some differences in the landmarks
variability both along the horizontal axis and the
vertical axis. For example, a larger variability is
observed at landmarks n. 9, 13, 14, 15, 18, 19
and 20 of the S. solea species. The distance dR
assumes an isotropic covariance matrix and could
be regarded as a fixed variance model. It does
not consider these differences since it assumes
the same variability for each landmark both in
the horizontal and the vertical directions. This
distance results in a worse cluster recovery with
different behaviours depending on the value of
the free parameter σ2. In particular, as the value
of the free parameter σ2 increases, the ability to
recognize the true cluster structure increases. For
this particular data set, the Procrustes distance
turns out to have a very poor performance in
terms of cluster recovery.

5. K-means clustering algorithm

In [3] the shape distances derived from
Fisher-Rao metric and Wasserstein distance are
implemented in two different generalized K-means
algorithms, Type 1 and Type 2. While in the Type

 

FIG. 7. (color online) The full Procrustes mean
shapes: (a) Platichthys flesus, (b) Pleuronectes
platessa, and (c) S. solea. Vectors drawn from the
mean to the full Procrustes coordinate of each
landmark.

1 algorithm the landmark coordinates variances
are assumed isotropic across the clusters, in Type
2 the variances are allowed to vary among the
clusters. The task is clustering a set of n shapes,
S1, S2, . . . , Sn into G different clusters, denoted as
C1, C2, . . . , CG.

5.1. Type 1 algorithm

1 Initial step:
Compute the variability of the k-th
landmark coordinates σ2

k = (σ2k1, σ
2
k2), for

k = 1, . . . ,K.
Randomly assign the n shapes,
S1, S2, . . . , Sn into G clusters,
C1, C2, . . . , CG.
For g = 1, . . . , G calculate the cluster
center cg = (θg1, . . . , θ

g
K) with k-th
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component θgk = (µgk, σ
2
k) obtained as

θgk = 1
ng

∑
i∈Cg

θik, where ng is the number
of elements in the cluster Cg and θik
is the k-th coordinate of Si given by
θik = (µik, σ

2
k).

2 Classification:
For each shape Si, compute the distances
to the G cluster centers c1, c2, . . . , cG.
The generic distance between the shape Si
and the cluster center cg is given by:

D(Si, cg) =

K∑
k=1

d(θik, θ
g
k).

Assign Si to cluster h that minimizes the

Table 1. Confusion matrices returned by the clustering
algorithm based on the different distances. The
outputs of the clustering procedure are in rows, the
reference in columns.

dF
P. flesus P. platessa S. solea

P. flesus 60 3 0
P. platessa 1 60 0
S. solea 0 0 14

dR1

P. flesus P. platessa S. solea
P. flesus 60 13 0
P. platessa 1 50 0
S. solea 0 0 14

dR2

P. flesus P. platessa S. solea
P. flesus 55 3 0
P. platessa 6 60 0
S. solea 0 0 14

dR3

P. flesus P. platessa S. solea
P. flesus 60 4 0
P. platessa 1 59 0
S. solea 0 0 14

dP
P. flesus P. platessa S. solea

P. flesus 27 1 0
P. platessa 34 62 0
S. solea 0 0 14

distance:

D(Si, ch) = min
g
D(Si, cg).

3 Renewal step:

Compute the new cluster centers of the
renewed clusters c1, . . . , cG.
The k-th component of the g-th cluster
center cg is defined as θgk = 1

ng

∑
i∈Cg

θik.

4 Repeat 2 and 3 until convergence.

5.2. Type 2 algorithm

1 Initial step:
Randomly assign the n shapes,
S1, S2, . . . , Sn into G clusters,
C1, C2, . . . , CG.
In each cluster compute the variability
of the k-th landmark coordinates
σ2
gk = (σ2gk1 , σ

2
gk2

), for k = 1, . . . ,K
and g = 1, . . . , G.
Calculate the cluster center cg =
(θg1, . . . , θ

g
K) with k-th component θgk =

(µgk, σ
2
gk) obtained as θgk = 1

ng

∑
i∈Cg

θik
for g = 1, . . . , G, where ng is the
number of elements in the cluster Cg
and θik = (µik, σ

2
gk) for i ∈ Cg.

2 Classification:
For each shape Si, compute the distances
to the G cluster centers c1, c2, . . . , cG.
The generic distance between the shape Si
and the cluster center cg is given by:

D(Si, cg) =
K∑
k=1

d(θik, θ
g
k).

Assign Si to cluster h that minimizes the
distance:

D(Si, ch) = min
g
D(Si, cg).

Nonlinear Phenomena in Complex Systems Vol. 23, no. 2, 2020
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Table 2: a-Rand index and number of miss-classified fishes.

Shape distance dF dR1
dR2

dR3
dP

aRand-index 0.896 0.667 0.775 0.871 0.349

Number of missclassified fishes 4 14 9 5 35

3 Renewal step:
Update the variability of the k-th landmark
coordinates in each cluster by computing
σ2
gk = (σ2gk1 , σ

2
gk2

), for k = 1, . . . ,K and
for g = 1, . . . , G.
Calculate the new cluster centers of the
renewed clusters c1, . . . , cG.
The k-th component of the g-th cluster
center cg is defined as θgk = 1

ng

∑
i∈Cg

θik.

4 Repeat 2 and 3 until convergence.

6. Conclusions

In this paper, Information Geometry tools
are used to study complex shapes described

by a finite number of landmarks. In particular
shape distances derived from the Fisher-Rao and
Wasserstein metrics are defined. The aim is to
cluster shapes and compare the discriminative
power of such distances with respect to a K-
means algorithms. More general shape measures,
for example induced by α-divergences, will be
object of a future work.
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