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Abstract: This study reports on the synthesis, structural assessment, microbiological screening against
several strains of H. pylori and antiproliferative activity against human gastric adenocarcinoma (AGS)
cells of a large series of carvacrol-based compounds. Structural analyses consisted of elemental
analysis, 1H/13C/19F NMR spectra and crystallographic studies. The structure-activity relationships
evidenced that among ether derivatives the substitution with specific electron-withdrawing groups
(CF3 and NO2) especially in the para position of the benzyl ring led to an improvement of the
antimicrobial activity, whereas electron-donating groups on the benzyl ring and ethereal alkyl chains
were not tolerated with respect to the parent compound (MIC/MBC = 64/64 µg/mL). Ester derivatives
(coumarin-carvacrol hybrids) displayed a slight enhancement of the inhibitory activity up to MIC
values of 8–16 µg/mL. The most interesting compounds exhibiting the lowest MIC/MBC activity
against H. pylori (among others, compounds 16 and 39 endowed with MIC/MBC values ranging
between 2/2 to 32/32 µg/mL against all the evaluated strains) were also assayed for their ability to
reduce AGS cell growth with respect to 5-Fluorouracil. Some derivatives can be regarded as new
lead compounds able to reduce H. pylori growth and to counteract the proliferation of AGS cells,
both contributing to the occurrence of gastric cancer.

Keywords: carvacrol; Helicobacter pylori; AGS cells; semi-synthesis; drug resistance; dual agent; coumarin

1. Introduction

Carvacrol is a naturally occurring monoterpene phenol abundant in several medicinal plants
(especially within the Labiatae and Apiaceae families) which, besides its odoriferous and flavoring
function, exhibits antimicrobial, food preserving, antioxidant and anticancer activities [1,2]. More in
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detail, carvacrol and its derivatives were shown to exert an interesting antimicrobial and antibiofilm
effects against a large panel of Gram-positive and Gram-negative bacteria and fungi [3–5]. Its mechanism
of action, albeit not yet fully elucidated, could involve structural and functional alterations of the
membrane, dysregulation of nucleic acids, altered metabolism and ATP production.

Carvacrol and carvacrol-producing plants (Satureja spp., Thymus spp., and Origanum spp.) were
also studied for their ability to inhibit Helicobacter pylori (H. pylori) growth, evidencing the possibility to
introduce chemical modifications of this lead compound to improve this biological activity and/or to
enhance its poor pharmacokinetic profile [6].

H. pylori, a microaerophilic Gram-negative bacterium, colonizes about the 50% of the world’s
population representing the causative agent of the development of chronic gastritis, peptic ulcer
and gastric cancer [7]; for the latter, it has been recognized as a class I carcinogen by the World
Health Organization. Gastric cancer represents the third most common cancer worldwide [7,8] and
epidemiological studies demonstrated that the eradication of H. pylori induces a decrease of incidence of
such malignancy [9]. The triple therapy, consisting of a proton-pump inhibitor (PPI) and two different
antimicrobial drugs, represented the anti-H. pylori standard therapy for the last 20 years. The failure of
the above-mentioned therapy may be due to an increased antibiotic resistance to clarithromycin [10]
and levofloxacin, two of the antimicrobials used in the triple therapy. In particular, levofloxacin
was introduced a decade ago as an alternative to clarithromycin [11]. Recently, a bismuth-based
quadruple therapy consisting of PPI plus a standardized three-in-one capsule, bismuth subcitrate
potassium, metronidazole, and tetracycline has been recommended [12,13] as the first-line treatment
of multidrug-resistant H. pylori strains, in particular in areas of high clarithromycin resistance [14].
The increase of the failure rates of the triple therapy in many countries such as in Europe, Korea, Japan,
and China, [15] induced the scientific community to evaluate new therapeutical approaches in order to
decrease the development of the antibiotic resistance phenomenon. Therefore, the study of the potential
anti-H. pylori activity of carvacrol and its derivatives could be a starting point useful to assess the
therapeutic efficacy of alternative compounds inspired by natural scaffolds [16]. Moreover, carvacrol
was shown to exert anti-inflammatory (COX inhibition), antinociceptive and antiulcer activities in vitro
and in vivo [17,18], which are useful to reduce damages correlated to H. pylori colonization of the
human gastric mucosa and associated pathogenesis, whereas the potential of plant essential oils in
anticancer treatment has recently obtained many research efforts to overcome drug resistance and
multiple side effects. For these reasons, several authors also evaluated the antiproliferative efficacy of
carvacrol against human gastric adenocarcinoma (AGS) cells in vitro and in Wistar rats in vivo [19].

Starting from these premises and keeping in mind that the development of drugs from plant
secondary metabolites is a topic of the most recent ongoing research and engages large-scale
pharmacological screenings of extracts and active compounds, we aimed at designing a large library
of carvacrol-based derivatives possessing multiple tuneable functional groups for their chemical
modulation to desired properties and assuring the broadest chemical diversity. Indeed, natural product
derivatives could shed light on new therapeutic agents against human diseases due to the modulation of
the physical-chemical, toxicological and drug-like characteristics of their natural parent compound [20].
This is very important when addressing pathologies such as gastric cancer where a pluralism of
causative factors must be faced by a feasible research strategy which can evolve a multi-targeted
perspective (one molecule acting on separate targets of the disease). Moreover, this approach can
overcome issue related to combination therapy and the possibility of drug-drug interactions.

2. Results and Discussion

2.1. Chemistry

For the synthesis of the compounds 1–46 we followed the synthetic approach reported in the Schemes 1
and 2, taking advantage of the hydroxyl portion of carvacrol in order to synthesize ethers and esters
with modified hydrophilic/hydrophobic parameters. Ether derivatives 1–12, 14–34, 36, 37 and 40–42
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(Scheme 1A) have been synthesized by reacting the carvacrol with the proper bromide; these reactions
were performed in N,N’-dimethylformamide (DMF), in the presence of potassium carbonate (K2CO3)
and under nitrogen (N2) atmosphere. Some of the products obtained in this step were further
employed for additional structural modifications obtained through ester hydrolysis, nitro reduction
and sulfur oxidation.
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oxidation to compounds 38 and 39.
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In particular, compound 12 was involved in a multistep synthesis. Firstly, it was hydrolyzed in mild
conditions using lithium hydroxide (LiOH), in a mixture of water and methanol (in the ratio 50:50, v:v)
at room temperature (RT), to provide the carboxylic acid derivative 13. Secondly, it was reacted with
3-nitrophenylhydrazine in ethanol to achieve the corresponding acetohydrazide 46 (Scheme 1B).

The NO2 group, located at the para position of the benzyl moiety of compound 34, was reduced
with sodium dithionite (Na2S2O4), leading to the p-NH2 derivative 35 (Scheme 1C). Derivative
37, obtained from the reaction between carvacrol and (4-(bromomethyl)phenyl)(methyl)sulfane,
was treated with m-chloroperbenzoic acid (mCPBA) in dichloromethane (DCM). This reaction led to
the two oxidized forms of sulfane (sulfoxide and sulfone, respectively the compounds 38 and 39) in the
same step, by modulating the amount of the oxidant agent (mCPBA) added [21]. For the synthesis of
the ester compounds 43–45, we synthesized the coumarin-3-carboxylic acids at first, which were then
used in a condensation reaction with carvacrol (Scheme 2). Through the Knoevenagel condensation
between the properly substituted 2-hydroxybenzaldehyde and the diethyl malonate, we obtained the
esters A–C [22]. The removal of the ester function through hydrolysis was performed using 10% NaOH
solution and afforded the carboxylic acid derivatives A1–C1. Finally, coupling of carvacrol with the
proper coumarin-3-carboxylic acid, using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and
1-hydroxybenzotriazole (HOBt) as condensing agents in 4-methylmorpholine (NMM), gave the title
compounds 43–45. The selection of this nucleus and its substituents was suggested by the good results
obtained in the evaluation of H. pylori strains previously published by some of us [23].

The compounds were stable in their solid state at room temperature. The structures were
confirmed by spectral studies (1H, 13C, and 19F NMR), whereas the purity of these compounds was
confirmed by combustion analysis, X-ray diffraction studies (for compound 34), TLC parameters and
melting point evaluation.

2.2. X-ray Diffraction Analysis

Crystals of compound 34 (Figure 1) were obtained by slow evaporation from an ethyl
acetate/n-hexane mixture. Information about the crystal data, experimental collection conditions
and refinement as well as the structural geometric parameters are available in the Cambridge
Crystallographic Data Centre in CIF format and in the Supporting information (Tables S1–S4).
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Figure 1. (A): ORTEP structure of compound 34; (B) Crystal structure of carvacrol-based compound 34.

2.3. Pan Assay Interference Compounds (PAINS) Evaluation

All designed inhibitors have been analyzed by means of three different theoretical tools, such as
ZINC PAINS Pattern Identifier [24], False Positive Remover [25], and FAF-Drug4 [26]. Our compounds
were not reported as potential PAINS or covalent inhibitors by none of the considered algorithms.

2.4. Biological Assay

After a proper purification and characterization, the compounds were subjected to in vitro
biological experiments to assess their inhibitory activity against H. pylori growth and AGS cells aiming
at discovering the structural requirements to achieve a dual agent.

2.4.1. In Vitro Inhibitory Activity against H. pylori Strains

Disposing of all envisioned products, the in vitro inhibitory activity against nine strains of
H. pylori (one reference strain and eight clinical isolates) characterized by a different antibiotic
susceptibility pattern was evaluated and the data reported in Table 1. The susceptibility pattern followed
the breakpoints as classified in the international EUCAST (European Committee on Antimicrobial
Susceptibility Testing) guidelines for H. pylori strains.

The parent compound, carvacrol, displayed MIC and MBC values in the range 16–64 and
32–64 µg/mL, respectively. All the chemical modifications can be grouped into four classes to define
robust structure-activity relationships (SARs):
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Table 1. MIC and MBC values for carvacrol (parent compound) and its semi-synthetic derivatives (1–46) against nine strains of H. pylori. Antibiotic susceptibility is
reported for each H. pylori strain.

H. pylori Strains
MIC/MBC (µg/mL)

F4 190 23 110 R NCTC
11637 F1 F34/497 F40/499 F40/442

Carvacrol 64/64 64/64 64/64 64/64 64/64 64/64 16/32 32/64 32/64
1 128/128 >128/>128 >128/>128 128/128 >128/>128 128/128 128/128 64/64 64/64
2 64/64 64/128 >128/>128 64/64 128/>128 64/64 32/64 32/64 64/64
3 64/128 64/64 128/>128 64/64 64/64 64/64 32/64 64/64 64/64
4 128/128 128/128 128/128 128/128 128/128 128/128 128/128 128/128 128/128
5 64/64 64/64 64/64 64/64 128/128 64/64 64/64 64/64 64/64
6 16/32 32/32 32/64 64/128 64/64 32/32 32/32 16/16 32/32
7 32/32 32/64 64/128 64/128 64/64 32/32 32/32 64/64 64/64
8 64/64 64/64 64/64 64/128 64/64 64/64 64/64 64/64 64/64
9 8/8 32/32 32/64 32/32 32/32 16/16 8/8 16/16 16/16

10 128/128 128/128 128/128 128/128 128/128 128/128 128/128 128/128 128/128
11 128/128 128/128 128/128 128/128 128/128 128/128 128/128 128/128 128/128
12 64/64 32/32 128/128 64/64 64/64 64/64 64/64 32/64 64/64
13 >128/>128 >128/>128 >128/>128 >128/>128 >128/>128 >128/>128 128/128 128/128 128/128
14 64/64 64/64 64/64 64/64 64/64 64/64 64/64 64/64 64/64
15 64/128 64/64 32/32 64/64 64/64 32/64 32/32 32/32 32/32
16 8/16 8/16 32/32 8/8 32/32 4/8 2/2 8/8 4/8
17 32/32 32/32 16/16 32/32 32/32 16/16 8/32 16/16 16/16
18 32/32 32/64 32/32 64/128 32/64 16/32 16/16 16/16 16/16
19 32/64 >128/>128 >128/>128 >128/>128 128/128 32/32 16/32 64/128 64/128
20 16/32 128/128 32/64 128/>128 64/64 32/32 16/32 64/64 64/64
21 16/32 32/32 32/64 32/64 32/64 32/32 16/32 32/32 32/32
22 >128/>128 >128/>128 >128/>128 >128/>128 >128/>128 128/>128 >128/>128 >128/>128 >128/>128
23 64/64 32/32 64/64 32/64 64/64 64/64 64/64 32/32 32/64
24 32/32 64/128 32/32 64/64 64/128 32/32 128/128 32/32 32/32
25 64/64 32/32 64/64 64/64 64/64 64/64 32/64 32/64 32/64
26 32/32 32/32 32/32 32/32 32/64 16/16 32/64 16/16 16/16
27 32/64 32/32 64/64 32/32 64/64 32/64 32/32 32/32 32/32
28 16/16 16/16 32/64 16/32 16/32 8/8 32/64 8/8 8/16
29 16/64 32/64 64/64 64/64 64/64 64/64 16/32 64/64 16/32
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Table 1. Cont.

H. pylori Strains
MIC/MBC (µg/mL)

F4 190 23 110 R NCTC
11637 F1 F34/497 F40/499 F40/442

30 32/64 64/128 64/128 64/128 64/128 64/64 32/32 32/64 32/64
31 32/32 16/32 32/64 16/16 64/64 16/32 64/64 8/16 16/32
32 16/32 64/64 64/64 64/64 32/64 32/32 16/16 32/64 16/32
33 8/8 4/4 8/8 4/4 4/4 8/8 8/8 8/8 8/8
34 8/8 4/4 4/4 4/8 4/4 4/4 4/4 4/4 4/4
35 4/8 16/16 32/64 16/16 32/64 4/4 2/2 16/16 16/16
36 8/16 4/4 8/8 8/8 8/8 8/8 8/8 8/8 8/8
37 32/64 64/64 64/64 64/64 64/64 32/64 32/32 64/64 32/64
38 8/8 4/4 8/8 4/4 8/8 4/4 2/2 8/8 8/8
39 2/2 4/4 2/2 4/4 2/2 2/2 2/2 2/2 2/2
40 8/8 8/16 8/16 8/16 8/16 4/4 4/4 4/4 4/4
41 >128/>128 >128/>128 >128/>128 >128/>128 >128/>128 >128/>128 >128/>128 >128/>128 >128/>128
42 16/16 16/32 32/32 32/32 32/32 32/32 16/32 32/32 16/16
43 32/32 64/128 128/>128 128/>128 128/>128 32/32 64/128 32/32 32/32
44 32/32 32/32 32/32 32/32 32/32 32/32 32/32 32/32 32/32
45 32/32 32/128 64/>128 32/128 64/128 32/32 32/32 32/32 32/32
46 64/128 32/64 32/64 32/64 32/64 64/128 64/>128 32/64 64/128

Antibiotic
susceptibility

MTZ+ MTZ− MTZ− MTZ+ MTZ+ MTZ− MTZ+ MTZ+ MTZ+
CLR+ CLR− CLR− CLR− CLR− CLR+ CLR+ CLR+ CLR−
AMX− AMX− AMX− AMX− AMX− AMX− AMX− AMX− AMX−

MTZ+ = metronidazole resistant (MIC > 8 µg/mL); MTZ− = metronidazole susceptible (MIC ≤ 8 µg/mL); CLR+ = clarithromycin resistant (MIC > 0.25 µg/mL); CLR− = clarithromycin
susceptible (MIC≤ 0.25 µg/mL); AMX+ = amoxicillin resistant (MIC > 0.125 µg/mL); AMX−= amoxicillin susceptible (MIC≤ 0.125 µg/mL). Compounds selected for in vitro anti-proliferative
activity assays against AGS cells are highlighted in grey.
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(1) Alkyloxy derivatives 1–13: In general, these derivatives were characterized by an increasing
alkyl chain, linear or branched, saturated or unsaturated, functionalized with additional moieties
(cyano, ketone, ester, carboxylic acid). None of these modifications led to an improvement of the
inhibitory activity with respect to the parent compound. Only derivatives 2 (OPr) and 3 (OBu)
slightly presented MIC values comparable to carvacrol against two strains (F34/497 and F40/499),
whereas compounds 6 (O-crotyl) and 9 (O-geranyl) were endowed with inferior MIC and MBC
values up to 16 and 8 µg/mL, respectively, toward all the strains;

(2) Benzyloxy derivatives 14–40 and 46: The simplest representative of this class (14, O-benzyl)
had an anti-H. pylori activity comparable to carvacrol, whereas other substitutions on the aryl
ring such as 3,4-diCl, 2,6-diF, 3-F, 3-OCH3, 2-Cl-4-OCH3, 2-Br, and 4-Br were detrimental or
didn’t produce a strong increment of the antimicrobial activity. Conversely, some substituents,
especially in the para position of the aryl ring, such as CF3, Ph, CN, NO2 and NH2 were promising
to show improvements. Indeed, CF3 could act as a bioisostere of the NO2 group and in both
series we can highlight the following activity order: p > m > o. The presence of a fluorine atom or
a trifluoromethyl group into an organic scaffold can lead to changes in the physical, chemical and
biological properties, often associated with an increase lipophilicity and electronegativity but a
relatively small size, which can favour entry into the cell membranes. The presence of two CF3

in compound 22 didn’t synergistically contribute to an improved inhibitory action. As regards
sulfur-based compounds (37–39) we highlighted a better activity with a higher sulfur oxidation
state (ArSO2CH3 > ArSOCH3 > ArSCH3). Unfortunately, the introduction of bromine atoms
in compounds 30 and 31 reduced the inhibitory effect likely due to their low ability to act as
H-bond acceptors and their higher atomic radius, both determining a negative steric constrain.
Moreover, electron-donating groups were not tolerated.

(3) Bicyclic and heteroaryl derivatives 41 and 42: The change of the benzyl group into a naphthalene
led to a total loss of inhibitory activity, whereas phthalimide can be tolerated;

(4) Coumarin ester derivatives 43–45: These compounds imparted a slight improvement of the
anti-Helicobacter activity against all the strains with respect to carvacrol. These results were in
accordance with those obtained with the same substitution pattern previously published by
us [23,27].

Regarding the mechanism of action, it is reasonable to consider these compounds as good
bactericidal inhibitors, being the value of MBC/MIC ratio between 1 and 2.

2.4.2. Effects of Carvacrol and Its Derivatives on Cell Viability of AGS Cell Line

As a follow-up study, the selection of the candidates for biological assays was guided by the
anti-Helicobacter pylori activity (Table 1, compounds highlighted in gray). AGS cells, were incubated
for 24 h with the specified molecules or with 0.1% DMSO vehicle (control). Data shown are the
means ± SD of three experiments with quintuplicate determinations. Carvacrol showed cytotoxic
effects by reducing cell viability of AGS cells (IC50 = 300 ± 6.5 µM) in a dose-dependent manner
after treatment. Out of 17 carvacrol derivatives, only five (16, 21, 35, 38 and 39) demonstrated a
dose-dependent inhibitory effect on cell viability inferior to carvacrol. All of them possessed an IC50

value higher than the reference drug (5-Fluorouracil, IC50 = 82.3 ± 5.6 µM) (Table 2).
More in detail, carvacrol was a medium potency anti-proliferative agent against AGS cells.

From the results shown in Table 2, it is possible to highlight that the introduction of alkyl substituents
(compounds 6 and 9) or coumarin rings (compounds 43–45) directly connected to the carvacrol
oxygen led to a loss of inhibitory activity. The presence of a benzyl moiety, especially meta or para
substituted, exerted some improvements. In particular, 4-CF3, 3-CH3, 4-SOCH3 and 4-SO2CH3 brought
to compounds endowed with a stronger effect with respect to carvacrol. Other clear SAR trends are
not observable. These small and easily accessible molecules are promising motifs in the development
of dual agents able not only to reduce H. pylori growth, but also to counteract the proliferation of AGS
cells at higher concentration.
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Table 2. IC50 values are expressed as mean ± standard deviation (SD) of three experiments with
quintuplicate determinations.

Compound IC50 (µM) a

Carvacrol 300 ± 6.5
6 530 ± 16
9 527 ± 8.0
16 209 ± 9.4
17 366 ± 13
20 na
21 179 ± 9.0
29 na
32 382 ± 13
33 615 ± 9.6
34 na
35 283 ± 12
38 217 ± 7.6
39 209 ± 10
42 722 ± 8.5
43 na
44 na
45 na

5-Fluorouracil (5-FU) 82.3 ± 5.6
a Data are expressed as mean ± SD, n = 3; na: not active at the maximum concentration tested (800 µM).

3. Materials and Methods

3.1. Chemistry

Unless otherwise indicated, all reactions were carried out under a positive pressure of nitrogen
in washed and oven-dried glassware. All the solvents and reagents were directly used as supplied
by Sigma-Aldrich (Milan, Italy) without further purification. Where mixtures of solvents are
specified, the stated ratios are volume:volume. All melting points were measured on a SMP1
melting point apparatus (Stuart®, Staffordshire, UK) and are uncorrected (temperatures are reported in
◦C). Structural analysis consisted of elemental analysis, 1H-/13C-/19F NMR spectra and crystallographic
studies. 1H and 13CNMR spectra were mainly recorded at 300 MHz and 75 MHz (Mercury spectrometer,
Varian, Santa Clara, CA, USA), while some compounds were analysed at 400 MHz and 101 MHz
on a Bruker spectrometer (Milan, Italy), using CDCl3 and DMSO-d6, as the solvents at room
temperature. Conversely, 19F spectra were recorded on a Bruker AVANCE 600 spectrometer at
564.7 MHz, using CDCl3 as the solvent. All the compounds were studied at the final concentration
of ~25 mg/mL. 1H and 13C chemical shifts are expressed as δ units (parts per millions) relative to the
solvent signal, whereas 19F chemical shifts are expressed as δ units relative to an external standard
(CF3COOH, δ −76.55 ppm). 1H spectra are described as follows: δH (spectrometer frequency, solvent):
chemical shift/ppm (multiplicity, J-coupling constant(s) in Hertz (Hz), number of protons, assignment).
13C spectra are described as follows: δC (spectrometer frequency, solvent): chemical shift/ppm
(assignment) and are fully proton decoupled. 19F spectra are described as follows: δF (spectrometer
frequency, solvent): chemical shift/ppm (multiplicity, J-coupling constant(s) in Hertz, number of
fluorine, assignment). Multiplets are abbreviated as follows: br—broad; s—singlet; d—doublet;
t—triplet; q—quartet; td—triplet of doublets; m—multiplet. The exchangeable protons (OH, NH2)
were assessed by the addition of deuterium oxide. The processing and analyses of the NMR data
were carried out with MestreNova. Preparative chromatography was carried out employing silica gel
(high purity grade, pore size 60 Å, 230–400 mesh particle size). All the purifications and reactions were
carried out by thin layer chromatography (TLC) performed on 0.2 mm thick silica gel-aluminium backed
plates (60 F254). Spot visualization was performed under short- and long-wavelength (254 and 365 nm,
respectively) ultra-violet irradiation. Where given, systematic compound names were generated
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by ChemBioDraw Ultra 14.0 following IUPAC conventions. Microanalyses were performed with a
Perkin-Elmer 260 elemental analyzer (PerkinElmer, Inc., Waltham, MA, USA) for C, H and N and the
results were within ±0.4% of the theoretical values. NMR spectra of all new compounds have been
reported in the Supplementary Materials.

3.2. Synthesis of Carvacrol Derivatives

3.2.1. General Procedure for the Synthesis of Compounds 1–12, 14–34, 36, 37, and 40–42

To a stirring solution of carvacrol (1 equiv.) in dry DMF (10 mL) was added freshly ground and
anhydrous potassium carbonate (K2CO3, 1.2 equiv.). The suspension was stirred for 30 min at room
temperature; then, the proper (substituted)benzyl, diarylmethyl, heteroarylmethyl or alkyl bromide
(1.0 equiv.) was added and the reaction stirred until disappearance of the starting reagents, as detected
by TLC. Once the reaction was completed, the mixture was poured into ice-cold water (100 mL) and
extracted with dichloromethane (DCM, 3 × 20 mL). The organics were reunited and added with
anhydrous sodium sulphate (Na2SO4) to remove water. The salt was filtered and washed three times
with small amounts (5 mL) of dry DCM. The organic phase was evaporated in vacuo to afford the
crude extract containing the target molecule that was recovered through column chromatography,
employing silica gel (SiO2) and proper mixtures of n-hexane/ethyl acetate.

3.2.2. Synthesis of Compound 13

To a stirring solution of ethyl 2-(5-isopropyl-2-methylphenoxy) acetate (12, 1.0 equiv.) in 10 mL of
methanol was added dropwise lithium hydroxide (1.2 equiv.) dissolved in 10 mL of water. The reaction
was stirred at room temperature for 24 h; then, the mixture was concentrated in vacuo to remove
methanol and quenched with 3N HCl (15 mL). The precipitate was collected by filtration and washed
with n-hexane to give the title compound 13, without further purification requirements.

3.2.3. Synthesis of Compound 46

To a stirring solution of ethyl 2-(5-isopropyl-2-methylphenoxy)acetic acid (13, 1.0 equiv.) in 10 mL
of THF was added triethyl amine (3.0 equiv.) and ethyl chloroformate (1.2 equiv.). After 30 min,
3-nitrophenylhydrazine (1.3 equiv.) was added and the reaction stirred at room temperature for
3 h. Once the reaction was completed, the mixture was poured on ice-cold water (100 mL) and the
precipitate collected by filtration. Purification through column chromatography (SiO2, n-hexane:ethyl
acetate 2:1) afforded the title compound 46.

3.2.4. Synthesis of Compound 35

To a stirring solution of 4-isopropyl-1-methyl-2-((4-nitrobenzyl)oxy)benzene (compound 34,
1.0 equiv.) in tetrahydrofuran (THF, 15 mL) was added dropwise a freshly prepared solution of sodium
dithionite (5.5 equiv.) dissolved in a basic solution made of water (15 mL) and sodium bicarbonate
(5.5 equiv.). The reaction was stirred at room temperature until completion (assessed by TLC); then THF
was evaporated in vacuo and the aqueous phase extracted with DCM (3 × 20 mL). The organics were
reunited, dried over sodium sulphate and filtered to remove the salt. DCM was evaporated in vacuo to
give the crude extract, that was purified by column chromatography (SiO2, n-hexane:ethyl acetate 5:1)
to afford the amino derivative 35 as an orange viscous oil.

3.2.5. Synthesis of Compounds 38 and 39

To a stirring solution of (4-((5-isopropyl-2-methylphenoxy)methyl)phenyl)(methyl) sulfane
(37, 1 equiv.) in DCM (10 mL) placed on ice/water bath (0–5 ◦C), was added dropwise a freshly
prepared solution of 3-chloroperbenzoic acid (1 equiv.) dissolved in 5 mL of DCM in an ice-bath.
The reaction was followed by TLC and after 8 h another aliquot of 3-chloroperbenzoic acid (1 equiv.
in 5 mL of DCM) was added and the reaction stirred at room temperature for further 24 h. Once the
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reaction completion was reached (appearance on TLC of the two spots relative to sulfoxide and sulfone
derivatives), the mixture was concentrated in vacuo and the two compounds separated by column
chromatography on silica gel (n-hexane:ethyl acetate, 5:1) to give the title compounds 38 and 39.

3.2.6. Synthesis of Intermediates A/A1-C/C1

For the synthesis of the coumarin-3-carboxylic acids A1–C1 we used the synthetic procedures
previously reported by our group [22]. Briefly, the Knoevenagel cyclization between the proper
substituted salicylaldehydes (1 equiv.) and diethyl malonate (1 equiv.) was performed in ethanol
(25 mL) with catalytic amounts of piperidine. The reaction was followed by TLC until disappearance
of their starting reagents. Once the reaction completed, the mixture was poured into ice-cold water
and the solid collected by filtration. The powder was washed with n-hexane to obtain the title ester
compounds A–C.

The corresponding ester (A, B or C, 1 equiv.) was then dissolved in ethanol (10 mL) and hydrolyzed
by using 20% NaOH solution (25 mL). After reaction completion assessed by means of TLC, the ethanol
was evaporated in vacuo. The solution was quenched with 3N HCl (20 mL) leading to precipitation of
the coumarin-3-carboxylic acid, that was collected by filtration and washed with n-hexane, affording the
title compounds A1–C1 without further purification requirements.

3.2.7. Synthesis of Compounds 43–45

To a stirring solution of the proper coumarin-3-carboxylic acid (A1–C1, 1.0 equiv.) in
4-methylmorpholine (NMM, 10 mL) under nitrogen atmosphere, were added portionwise 1-ethyl-3-
(3-dimethylaminopropyl)carbodiimide (EDC, 1.2 equiv.) and 1-hydroxybenzotriazole (HOBt, 1.2 equiv.).
After 1 h, carvacrol (1.0 equiv.) was added and the reaction stirred for further 24 h. At the reaction
completion (by TLC), the mixture was poured on ice-cold water. The precipitate was collected by
filtration and washed with petroleum ether and n-hexane to afford title compounds 43–45 in good
yield and purity.

3.3. Characterization Data for Carvacrol Derivatives

2-ethoxy-4-isopropyl-1-methylbenzene (1). Colourless oil, 66% yield. 1H NMR (400 MHz, CDCl3):
δ 1.29 (d, J = 6.9 Hz, 6H, 2 × CH3), 1.46 (t, J = 7.0 Hz, 3H, CH2CH3), 2.23 (s, 3H, ArCH3), 2.87–2.94
(m, 1H, CH), 4.06–4.11 (m, 2H, OCH2CH3), 6.74 (s, 1H, Ar), 6.76–6.78 (m, 1H, Ar), 7.10 (d, J = 7.5 Hz,
1H, Ar). 13C NMR (101 MHz, CDCl3): δ 15.1 (CH3), 15.8 (CH3), 24.2 (2 × CH3), 34.2 (CH), 63.5 (OCH2),
109.6 (Ar), 117.9 (Ar), 124.2 (Ar), 130.4, 147.8 (Ar), 157.1 (Ar). Anal. Calcd for C12H18O: C, 80.85;
H, 10.18. Found: C, 81.12; H, 10.14.

4-isopropyl-1-methyl-2-propoxybenzene (2). Colourless oil, 56% yield, mp 117–121 ◦C. 1H NMR
(400 MHz, CDCl3): δ 1.12 (t, J = 7.4 Hz, 3H, CH2CH2CH3), 1.31 (d, J = 6.9 Hz, 6H, 2 × CH3),
1.84–1.93 (m, 2H, CH2CH2CH3), 2.26 (s, 3H, ArCH3), 2.89–2.96 (m, 1H, CH), 4.00 (t, J = 6.4 Hz 2H,
OCH2 CH2CH3), 6.75–6.79 (m, 2H, Ar), 7.11 (d, J = 7.5 Hz, 1H, Ar). 13C NMR (101 MHz, CDCl3): δ 10.7
(CH3), 15.8 (CH3), 22.9 (CH2), 24.2 (2 × CH3), 34.2 (CH), 69.4 (OCH2), 109.5 (Ar), 117.8 (Ar), 124.2 (Ar),
130.4 (Ar), 147.9 (Ar), 157.2 (Ar). Anal. Calcd for C13H20O: C, 81.20; H, 10.48. Found: C, 81.33; H, 10.51.

2-(allyloxy)-4-isopropyl-1-methylbenzene (3). Yellow oil, 70% yield. 1H NMR (300 MHz,
CDCl3): δ 1.37 (s, 3H, CH3), 1.41 (s, 3H, CH3), 2.36 (s, 3H, ArCH3), 2.94–3.01 (m, 1H, CH), 4.66–4.69
(m, 2H, CH2), 5.37–5.60 (m, 2H, OCH2), 6.14–6.27 (m, 1H, =CH), 6.83 (s, 1H, Ar), 6.86-6.89 (m, 1H,
Ar), 7.19 (d, J = 7.5 Hz, 1H, Ar). 13C NMR (75 MHz, CDCl3): δ 16.0 (CH3), 24.3 (2 × CH3), 34.3 (CH3),
68.8 (OCH2), 110.0 (Ar), 116.9 (Ar), 118.3 (=CH2), 124.3 (Ar), 130.6 (Ar), 133.9 (=CH), 147.9 (Ar),
156.8 (Ar). Anal. Calcd for C13H18O: C, 82.06; H, 9.54. Found: C, 81.87; H, 9.58.

4-isopropyl-1-methyl-2-(prop-2-yn-1-yloxy)benzene (4). Yellow oil, 74% yield. 1H NMR (300 MHz,
CDCl3): δ 1.35 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.32 (s, 3H, ArCH3), 2.58 (t, J = 2.4 Hz, 1H, ≡CH), 2.9–3.01
(m, 1H, CH), 4.80 (d, J = 2.4 Hz, 1H, OCH2), 6.89 (d, J = 7.5 Hz, 1H, Ar), 6.93 (s, 1H, Ar), 7.17 (d,
J = 7.8 Hz, 1H, Ar). 13C NMR (75 MHz, CDCl3): δ 15.9 (CH3), 24.2 (2 × CH3), 34.2 (CH), 56.01 (OCH2),
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75.26 (Csp), 79.2 (CspH), 110.4 (Ar), 119.2 (Ar), 124.6 (Ar), 130.8 (Ar), 147.9 (Ar), 155.8 (Ar). Anal.
Calcd for C13H16O: C, 82.94; H, 8.57. Found: C, 83.17; H, 8.54.

2-butoxy-4-isopropyl-1-methylbenzene (5). Colourless oil, 78% yield. 1H NMR (400 MHz, CDCl3):
δ 1.07 (t, J = 7.4 Hz, 3H, CH2CH2CH2CH3), 1.32 (d, J = 6.9 Hz, 6H, 2 × CH3), 1.56–1.65 (m, 2H,
CH2CH2CH2CH3), 1.83–1.90 (m, 2H, CH2CH2CH2CH3), 2.27 (s, 3H, ArCH3), 2.90–2.97 (m, 1H, CH),
4.05 (t, J = 6.3 Hz 2H, OCH2 CH2CH3), 6.77–6.80 (m, 2H, Ar), 7.12 (d, J = 7.5 Hz, 1H, 1Ar). 13C NMR
(101 MHz, CDCl3): δ 14.0 (CH3), 15.9 (CH3), 19.5 (CH2), 24.2 (2 × CH3), 31.6 (CH2), 34.2 (CH),
67.6 (OCH2), 109.5 (Ar), 117.8 (Ar), 124.2 (Ar), 130.4 (Ar) 147.8 (Ar), 157.2 (Ar). Anal. Calcd for
C14H22O: C, 81.50; H, 10.75. Found: C, 81.63; H, 10.77.

2-(but-2-en-1-yloxy)-4-isopropyl-1-methylbenzene (6). Pale yellow oil, 69% yield. 1H NMR (300
MHz, CDCl3): δ 1.55–1.58 (m, 6H, 2 × CH3), 2.05 (d, J = 4.8 Hz, 3H, CH3), 2.54 (s, 3H, ArCH3), 3.12–3.19
(m, 1H, CH), 4.76 (d, J = 5.1 Hz, 2H, OCH2), 6.01–6.18 (m, 2H, 2 × =CH), 7.01 (s, 1H, Ar), 7.03 (d,
J = 7.8 Hz, 1H, Ar), 7.35 (d, J = 7.5 Hz, 1H, Ar). 13C NMR (75 MHz, CDCl3): δ 16.2 (CH3), 18.1 (CH3),
24.4 (2 × CH3), 34.5 (CH), 68.8 (OCH2), 110.0 (Ar), 118.3 (Ar), 124.4 (Ar), 127.1 (=CH), 129.4 (=CH),
130.7 Ar), 147.9 (Ar), 157.2 (Ar). Mixture of E/Z isomers with 5.2:1 ratio. For sake of clarity, we reported
only the signals related to the major isomer. Anal. Calcd for C14H20O: C, 82.30; H, 9.87. Found:
C, 82.33; H, 9.88.

4-isopropyl-1-methyl-2-((3-methylbut-2-en-1-yl)oxy)benzene (7). Yellow oil, 71% yield. 1H NMR
(300 MHz, CDCl3): δ 1.29–1.32 (m, 6H, 2 × CH3), 1.81–1.85 (m, 6H, 2 × CH3), 2.26 (s, 3H, ArCH3),
2.87–2.96 (m, 1H, CH), 4.95 (d, J = 6.6 Hz, 2H, OCH2), 5.54–5.58 (m, 1H, =CH), 6.77 (s, 1H, Ar),
6.79–6.80 (m, 1H, Ar), 7.11 (d, J = 7.5 Hz, 1H, Ar). 13C NMR (75 MHz, CDCl3): δ 16.0 (CH3), 18.3 (CH3),
24.2 (2 × CH3), 25.9 (CH3), 34.2 (CH), 65.0 (OCH2), 110.0 (Ar), 118.0 (-CH=), 120.5 (Ar), 124.4 (Ar),
130.4 (Ar), 137.0 (=C), 147.8 (Ar), 157.0 (Ar). Anal. Calcd for C15H22O: C, 82.52; H, 10.16. Found:
C, 82.61; H, 10.13.

4-isopropyl-1-methyl-2-(pentyloxy)benzene (8). Colourless oil, 78% yield. 1H NMR (400 MHz,
CDCl3): δ 1.01–1.06 (m, 3H, CH2CH2CH2CH2CH3), 1.35 (d, J = 6.0 Hz, 6H, 2 × CH3), 1.45–1.61
(m, 4H, 2 × CH2, CH2CH2CH2CH2CH3), 1.86–1.97 (m, 2H, CH2CH2CH2CH2CH3), 2.29 (s, 3H, ArCH3),
2.92–2.99 (m, 1H, CH), 4.06 (t, J = 6.4 Hz 2H, OCH2CH2CH2CH2CH3), 6.78–6.82 (m, 2H, Ar), 7.14 (d,
J = 7.5 Hz, 1H, 1Ar). 13C NMR (101 MHz, CDCl3): δ 14.1 (CH3), 15.9 (CH3), 22.6 (CH2), 24.2 (2 × CH3),
28.5 (CH2), 29.2 (CH2), 34.2 (CH), 67.9(OCH2), 109.5 (Ar), 117.8 (Ar), 124.2 (Ar), 130.4 (Ar) 147.9 (Ar),
157.3 (Ar). Anal. Calcd for C15H24O: C, 81.76; H, 10.98. Found: C, 81.88; H, 11.01.

2-((3,7-dimethylocta-2,6-dien-1-yl)oxy)-4-isopropyl-1-methylbenzene (9). Yellow oil, 74% yield.
1H NMR (300 MHz, CDCl3): δ 1.29–1.31 (m, 6H, 2 × CH3), 1.67 (s, 3H, CH3), 1.74 (s, 3H, CH3), 1.80 (s,
3H, CH3), 2.10–2.20 (m, 4H, 2 × CH2), 2.26 (s, 3H, ArCH3), 2.89–2.94 (m, 1H, CH), 4.62 (d, J = 6.3 Hz,
2H, OCH2), 5.16–5.17 (m, 1H, =CH), 5.55–5.56 (m, 1H, =CH), 6.77 (s, 1H, Ar), 6.77–6.79 (m, 1H,
Ar), 7.10 (d, J = 7.5 Hz, 1H, Ar). 13C NMR (75 MHz, CDCl3): δ 16.0 (CH3), 16.7 (CH3), 17.7 (CH3),
24.2 (2 × CH3), 25.7 (CH3), 26.4 (CH2), 34.2 (CH), 39.6 (CH2), 65.0 (OCH2), 109.9 (Ar), 118.0 (Ar),
120.4 (=CH), 123.9 (Ar), 124.3 (=CH), 130.4 (Ar), 131.7 (=C), 140.1 (=C), 147.7 (Ar), 157.0 (Ar). Mixture
of E/Z isomers with 2:1 ratio. For sake of clarity, we reported only the signals related to the major
isomer. Anal. Calcd for C20H30O: C, 83.86; H, 10.56. Found: C, 84.01; H, 10.51.

2-(5-isopropyl-2-methylphenoxy)acetonitrile (10). Colourless oil, 79% yield. 1H NMR (300 MHz,
CDCl3): δ 1.30 (d, J = 7.2 Hz, 6H, 2 × CH3), 2.33 (s, 3H, ArCH3), 2.97–3.06 (m, 1H, CH), 4.79 (s, 2H,
OCH2), 6.89 (s, 1H, Ar), 6.97–7.00 (m, 1H, Ar), 7.21 (d, J = 7.8 Hz, 1H, Ar). 13C NMR (75 MHz, CDCl3):
δ 15.7 (CH3), 24.1 (2 × CH3), 34.1 (CH), 53.9 (OCH2), 110.5 (Ar), 115.8 (CN), 120.8 (Ar), 124.9 (Ar),
131.3 (Ar), 148.4 (Ar), 154.9 (Ar). Anal. Calcd for C12H15NO: C, 76.16; H, 7.99; N, 7.40. Found: C, 76.27;
H, 8.00; N, 7.38.

1-(5-isopropyl-2-methylphenoxy)propan-2-one (11). Yellow oil, 80% yield. 1H NMR (300 MHz,
CDCl3): δ 1.27 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.31 (s, 3H, CH3), 2.35 (s, 3H, CH3), 2.84–2.94 (m, 1H,
CH), 4.55 (s, 2H, OCH2), 6.60 (s, 1H, Ar), 6.82–6.84 (m, 1H, Ar), 7.13 (d, J = 7.8 Hz, 1H, Ar). 13C NMR
(75 MHz, CDCl3): δ 15.9 (CH3), 24.1 (2 ×CH3), 26.7 (CH3), 34.1 (CH), 73.2 (OCH2), 109.3 (Ar), 119.1 (Ar),
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124.1 (Ar), 130.9 (Ar), 148.1 (Ar), 155.9 (Ar), 206.5 (C=O). Anal. Calcd for C13H18O2: C, 75.69; H, 8.80.
Found: C, 75.84; H, 8.77.

Ethyl 2-(5-isopropyl-2-methylphenoxy)acetate (12). Yellow oil, 77% yield. 1H NMR (300 MHz,
CDCl3): δ 1.28–1.33 (m, 3H, CH2CH3), 1.34 (s, 3H, CH3), 1.36 (s, 3H, CH3), 2.34 (s, 3H, ArCH3),
2.86–2.93 (m, 1H, CH), 4.26–4.33 (m, 2H, CH2CH3), 4.68 (s, 2H, OCH2), 6.67 (s, 1H, Ar), 6.83 (d,
J = 7.8 Hz, 1H, Ar), 7.10 (d, J = 7.8 Hz, 1H, Ar). 13C NMR (75 MHz, CDCl3): δ 14.2 (CH3), 15.8 (CH3),
24.1 (2 × CH3), 34.1 (CH3), 61.0 (CH2CH3), 65.7 (OCH2), 109.7 (Ar), 119.2 (Ar), 124.5 (Ar), 130.8 (Ar),
147.7 (Ar), 156.2 (Ar), 169.1 (Ar). Anal. Calcd for C14H20O3: C, 71.16; H, 8.53. Found: C, 71.22; H, 8.51.

2-(5-isopropyl-2-methylphenoxy)acetic acid (13). Viscous white oil, 91% yield. 1H NMR (300 MHz,
CDCl3): δ 1.23 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.26 (s, 3H, ArCH3), 2.85–2.95 (m, 1H, CH), 4.70 (s, 2H,
OCH2), 6.61 (s, 1H, Ar), 6.81–6.83 (m, 1H, Ar), 7.08–7.11 (m, 1H, Ar). 13C NMR (75 MHz, CDCl3): δ 15.7
(CH3), 24.0 (2 × CH3), 34.0 (CH3), 65.3 (OCH2), 110.0 (Ar), 119.8 (Ar), 124.5 (Ar), 131.0 (Ar), 148.1 (Ar),
155.5 (Ar). Anal. Calcd for C12H16O3: C, 69.21; H, 7.74. Found: C, 69.11; H, 7.71.

2-(benzyloxy)-4-isopropyl-1-methylbenzene (14). Yellow oil, 88% yield. 1H NMR (300 MHz,
CDCl3): δ 1.54 (m, 6H, 2 × CH3), 2.57 (s, 3H, ArCH3), 3.11–3.20 (m, 1H, CH), 5.34 (s, 2H, OCH2),
7.04–7.07 (m, 2H, Ar), 7.37 (d, J = 7.8 Hz, 1H, Ar), 7.54–7.67 (m, 3H, Ar), 7.73 (d, J = 6.9 Hz, 2H, Ar).
13C NMR (75 MHz, CDCl3): δ 16.3 (CH3), 24.4 (2 × CH3), 34.4 (CH), 70.1 (OCH2), 110.2 (Ar), 118.6 (Ar),
124.6 (Ar), 127.5 (2 × Ar), 128.0 (Ar), 128.7 (2 × Ar), 130.8 (Ar), 137.9 (Ar), 148.1 (Ar), 157.1 (Ar). Anal.
Calcd for C17H20O: C, 84.96; H, 8.39. Found: C, 85.01; H, 8.42.

4-isopropyl-1-methyl-2-((2-methylbenzyl)oxy)benzene (15). Yellow oil, 86% yield. 1H NMR
(300 MHz, CDCl3): δ 1.40 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.37 (s, 3H, ArCH3), 2.52 (s, 3H, ArCH3),
2.96–3.10 (m, 1H, CH), 5.16 (s, 2H, OCH2), 6.90–6.95 (m, 2H, Ar), 7.22 (d, J = 7.5 Hz, 1H, Ar), 7.35–7.37
(m, 3H, Ar), 7.50–7.52 (m, 1H, Ar). 13C NMR (75 MHz, CDCl3): δ 16.1 (CH3), 19.1 (CH3), 24.3 (2 × CH3),
34.3 (CH), 68.5 (OCH2), 109.9 (Ar), 118.3 (Ar), 124.5 (Ar), 126.1 (Ar), 128.1 (Ar), 128.5 (Ar), 130.4 (Ar),
130.7 (Ar), 135.5 (Ar), 136.7 (Ar), 148.0 (Ar). Anal. Calcd for C18H22O: C, 84.99; H, 8.72. Found: C, 85.17;
H, 8.70.

4-isopropyl-1-methyl-2-((3-methylbenzyl)oxy)benzene (16). Pale yellow oil, 85% yield. 1H NMR
(300 MHz, CDCl3): δ 1.58 (d, J = 6.9 Hz, 6H, 2 × CH3) 2.60 (s, 3H, ArCH3), 2.67 (s, 3H, ArCH3), 3.16–3.21
(m, 1H, CH), 5.33 (s, 2H, OCH2), 7.07–7.10 (m, 2H, Ar), 7.38–7.43 (m, 2H, Ar), 7.56–7.58 (m, 3H, Ar).
13C NMR (75 MHz, CDCl3): δ 16.4 (CH3), 21.7 (CH3), 24.5 (2 × CH3), 34.5 (CH), 70.2 (OCH2), 110.2 (Ar),
118.6 (Ar), 124.7 (Ar), 128.3 (Ar), 128.7 (Ar), 128.8 (Ar), 130.8 (Ar), 137.9 (Ar), 138.3 (Ar), 148.1 (Ar),
157.2 (Ar). Anal. Calcd for C18H22O: C, 84.99; H, 8.72. Found: C, 85.11; H, 8.73.

4-isopropyl-1-methyl-2-((4-methylbenzyl)oxy)benzene (17). Yellow oil, 73% yield. 1H NMR
(300 MHz, CDCl3): δ 1.61 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.61 (s, 3H, ArCH3), 2.67 (s, 3H, ArCH3),
3.18–3.21 (m, 1H, CH), 5.35 (s, 2H, OCH2), 7.09–7.13 (m, 2H, Ar), 7.42 (d, J = 6.9 Hz, 2H, Ar), 7.50 (d,
J = 8.4 Hz, 2H, Ar), 7.68 (d, J = 7.5 Hz, 2H, Ar). 13C NMR (75 MHz, CDCl3): δ 16.4 (CH3), 21.5 (CH3),
24.6 (2 × CH3), 34.5 (CH), 70.0 (OCH2), 110.1 (Ar), 118.5 (Ar), 124.6 (Ar), 127.7 (2 × Ar), 129.5 (2 × Ar),
130.9 (Ar), 134.9 (Ar), 137.6 (Ar), 148.1 (Ar), 157.3 (Ar). Anal. Calcd for C18H22O: C, 84.99; H, 8.72.
Found: C, 84.88; H, 8.69.

2-((3,5-dimethylbenzyl)oxy)-4-isopropyl-1-methylbenzene (18). Yellow oil, 63% yield. 1H NMR
(400 MHz, CDCl3): δ 1.27–1.30 (m, 6H, 2 × CH3), 2.29–2.30 (m, 3H, ArCH3), 2.38 (bs, 6H, 2 × ArCH3),
2.89–2.93 (m, 1H, CH), 5.05 (s, 2H, OCH2), 6.79–6.83 (m, 2H, 2×Ar), 7.00 (s, 1H, Ar), 7.13 (bs, 3H, 3 × Ar).
13C NMR (101 MHz, CDCl3): δ 16.0 (CH3), 21.4 (2 × CH3), 24.2 (2 × CH3), 34.1 (CH), 70.1 (OCH2),
110.2 (Ar), 118.3 (Ar), 124.5 (Ar), 125.2 (2 × Ar), 129.4 (2 × Ar), 130.5 (Ar), 137.5 (Ar), 138.0 (Ar),
147.9 (Ar), 157.0 (Ar). Anal. Calcd for C19H24O: C, 85.03; H, 9.01. Found: C, 85.23; H, 9.05.

4-isopropyl-1-methyl-2-((2-(trifluoromethyl)benzyl)oxy)benzene (19). Colourless oil, 84% yield.
1H NMR (300 MHz, CDCl3): δ 1.60 (d, J = 6.3 Hz, 6H, 2 × CH3), 2.70 (s, 3H, ArCH3), 3.17–3.26 (m, 1H,
CH), 5.67 (s, 2H, OCH2), 7.13–7.17 (m, 2H, Ar), 7.46 (d, J = 7.2, 1H, Ar), 7.62–7.67 (m, 1H, Ar), 7.81–7.86
(m, 1H, Ar), 8.01 (d, J = 8.1 Hz, 1H, Ar), 8.17 (d, J = 8.1 Hz, 1H, Ar). 13C NMR (75 MHz, CDCl3): δ 16.3
(CH3), 24.3 (2 × CH3), 34.4 (CH), 66.1 (OCH2), 110.2 (Ar), 119.0 (Ar), 123.3 (CF3), 124.5 (Ar), 126.0 (Ar),
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126.1 (Ar), 127.7 (Ar), 128.6 (Ar), 131.0 (Ar), 132.4 (Ar), 136.7 (Ar), 148.3 (Ar), 156.7 (Ar). 19F NMR
(564.7 MHz, CDCl3): δ −58.63 (s, 3F, ArCF3). Anal. Calcd for C18H19F3O: C, 70.12; H, 6.21. Found:
C, 69.98; H, 6.20.

4-isopropyl-1-methyl-2-((3-(trifluoromethyl)benzyl)oxy)benzene (20). Colourless oil, 78% yield.
1H NMR (300 MHz, CDCl3): δ 1.58 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.59 (s, 3H, ArCH3), 3.14–3.23 (m,
1H, CH), 5.36 (s, 2H, OCH2), 7.09 (s, 1H, Ar), 7.11–7.12 (m, 1H, Ar), 7.40 (d, J = 7.5 Hz, 1H, Ar),
7.69–7.74 (m, 1H, Ar), 7.84 (d, J =7.5 Hz, 1H, Ar), 7.90 (d, J = 7.5 Hz, 1H Ar), 8.06 (s, 1H, Ar). 13C NMR
(75 MHz, CDCl3): δ 16.1 (CH3), 24.3 (2 × CH3), 34.4 (CH), 69.2 (OCH2), 110.0 (Ar), 119.0 (Ar), 124.0 (Ar),
124.0 (Ar), 124.1 (Ar), 124.6 (CF3), 124.7 (Ar), 129.2 (Ar), 130.6 (Ar), 131.0 (Ar), 139.0 (Ar), 148.3 (Ar),
156.8 (Ar). 19F NMR (564.7 MHz, CDCl3): δ –60.92 (s, 3F, ArCF3). Anal. Calcd for C18H19F3O: C, 70.12;
H, 6.21. Found: C, 70.35; H, 6.22.

4-isopropyl-1-methyl-2-((4-(trifluoromethyl)benzyl)oxy)benzene (21). Viscous colourless oil,
84% yield. 1H NMR (300 MHz, CDCl3): δ 1.46 (d, J = 7.2 Hz, 6H, 2 × CH3), 2.49 (s, 3H, ArCH3),
3.00–3.12 (m, 1H, CH), 5.30 (s, 2H, OCH2), 6.96 (s, 1H, Ar), 6.98–7.01 (m, 1H, Ar), 7.30 (d, J = 7.5 Hz, 1H,
Ar), 7.74 (d, J = 8.4 Hz, 2H, Ar), 7.82 (d, J = 8.4 Hz, 2H, Ar). 13C NMR (75 MHz, CDCl3): δ 16.1 (CH3),

24.2 (2 × CH3), 34.3 (CH), 69.0 (OCH2), 110.0 (Ar), 118.9 (Ar), 124.5 (Ar), 125.5 (2 × Ar), 125.6 (Ar),
127.3 (Ar), 130.3 (CF3), 130.9 (Ar), 141.9 (Ar), 148.2 (Ar), 156.6 (Ar). 19F NMR (564.7 MHz, CDCl3):
δ −60.77 (s, 3F, ArCF3). Anal. Calcd for C18H19F3O: C, 70.12; H, 6.21. Found: C, 70.17; H, 6.19.

2-((3,5-bis(trifluoromethyl)benzyl)oxy)-4-isopropyl-1-methylbenzene (22). Yellow oil, 80% yield.
1H NMR (400 MHz, CDCl3): δ 1.26–1.28 (d, J =6.8 Hz, 6H, 2 × CH3), 2.30 (s, 3H, CH3), 2.87–2.94 (m,
1H, CH), 5.21 (s, 2H, CH2), 6.78 (s, 1H, Ar), 6.83–6.85 (d, J = 7.6, 1H, Ar), 7.14–7.16 (d, J = 7.6, 1H,
Ar), 7.88 (s, 1H, Ar), 7.97 (s, 2H, 2 × Ar). 13C NMR (101 MHz, CDCl3): δ 15.9 (CH3), 24.1 (2 × CH3),
34.1 (CH), 68.5 (OCH2), 109.9 (Ar), 119.3 (Ar), 121.7 (Ar), 121.9 (Ar), 124.4 (Ar), 124.6 (Ar), 127.1 (Ar),
130.9 (2 × Ar), 132.0 (2 × CF3), 140.3 (Ar), 148.1 (Ar), 156.1 (Ar). 19F (564.7 MHz, CDCl3): δ –66.85 (s, 6F,
2 × ArCF3). Anal. Calcd for C19H18F6O: C, 60.64; H, 4.82. Found: C, 60.80; H, 4.81.

2-((3-fluorobenzyl)oxy)-4-isopropyl-1-methylbenzene (23). Colourless oil, 82% yield. 1H NMR
(300 MHz, CDCl3): δ 1.59–1.63 (m, 6H, 2 × CH3), 2.63 (s, 3H, ArCH3), 3.17–3.24 (m, 1H, CH), 5.34 (s,
2H, OCH2), 7.10–7.14 (m, 2H, Ar), 7.26–7.31 (m, 1H, Ar), 7.41–7.45 (m, 1H, Ar), 7.50–7.63 (m, 3H, Ar).
13C NMR (75 MHz, CDCl3): δ 16.3 (CH3), 24.4 (2 × CH3), 34.5 (CH), 69.2 (OCH2), 110.1 (Ar), 114.2 (Ar),
114.8 (Ar), 118.9 (Ar), 122.7 (Ar), 124.6 (Ar), 130.3 (Ar), 131.0 (Ar), 140.7 (Ar), 148.2 (Ar), 156.9 (Ar) 163.4
(d, C-FJ = 244.9 Hz, C-F). 19F NMR (564.7 MHz, CDCl3): δ −111.26 (td, F-HJ = 9.0 Hz, 6.0 Hz, 1F, ArF).
Anal. Calcd for C17H19FO: C, 79.04; H, 7.41. Found: C, 78.91; H, 7.39.

2-((3,5-difluorobenzyl)oxy)-4-isopropyl-1-methylbenzene (24). Colourless oil, 80% yield. 1H NMR
(400 MHz, CDCl3): δ 1.27–1.29 (d, J = 6.8 Hz, 6H, 2 × 3CH3), 2.31 (s, 3H, CH3), 2.87–2.94 (m, 1H, CH),
5.10 (s, 2H, CH2), 6.75 (s, 1H, Ar), 6.76–6.84 (m, 2H, 2×Ar), 7.01–7.06 (m, 2H, Ar), 7.13–7.15 (d, J = 7.6 Hz,
1H, Ar). 13C NMR (101 MHz, CDCl3): δ 16.0 (CH3), 24.1 (2 × CH3), 34.1 (CH), 68.6 (OCH2), 102.9 (Ar),
109.6 (Ar), 118.9 (Ar), 124.4 (Ar), 130.7 (Ar), 141.8 (Ar), 148.0 (Ar), 156.3 (Ar), 161.9 (Ar), 164.4 (Ar).
19F (564.7 MHz, CDCl3): δ –113.48 (m, 2F, ArF). Anal. Calcd for C17H18F2O: C, 73.89; H, 6.57. Found:
C, 73.94; H, 6.58.

1,3-difluoro-2-((5-isopropyl-2-methylphenoxy)methyl)benzene (25). Colourless oil, 89% yield.
1H NMR (300 MHz, CDCl3): δ 1.65 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.56 (s, 3H, ArCH3), 3.20–3.29 (m, 1H,
CH), 5.50 (s, 2H, OCH2), 7.13–7.19 (m, 3H, Ar), 7.30 (s, 1H, Ar), 7.41 (d, J = 7.5 Hz, 1H, Ar), 7.44–7.54 (m,
1H, Ar). 13C NMR (75 MHz, CDCl3): δ 16.0 (CH3), 24.4 (2 × CH3), 34.5 (CH), 58.4 (OCH2), 110.7 (Ar),
111.5 (Ar), 111.7 (Ar), 113.6 (Ar), 119.3 (Ar), 125.1 (Ar), 130.7 (Ar), 131.0 (Ar), 148.2 (Ar), 157.0 (Ar),
162.3 (d, C-FJ = 248.3 Hz, C-F), 162.3 (d, C-FJ = 249.5 Hz, C-F). 19F NMR (564.7 MHz, CDCl3): δ −112.80
(t, F-HJ = 6.6 Hz, 2F, ArF). Anal. Calcd for C17H18F2O: C, 73.89; H, 6.57. Found: C, 74.00; H, 6.58.

4-isopropyl-2-((3-methoxybenzyl)oxy)-1-methylbenzene (26). Colourless oil, 80% yield. 1H NMR
(400 MHz, CDCl3): δ 1.26–1.29 (m, 6H, 2 × CH3), 2.30 (s, 3H, ArCH3), 2.87–2.92 (m, 1H, CH), 3.86 (s,
3H, OCH3), 5.10 (s, 2H, OCH2), 6.81 (bs, 2H, 2 × Ar), 6.89–6.91 (d, J = 8.4 Hz, 1H, Ar), 7.07 (bs, 2H,
2 × Ar), 7.12–7.14 (d, J = 7.6 Hz, 1H, Ar), 7.32–7.36 (t, J = 8.2 Hz, 1H, Ar). 13C NMR (101 MHz, CDCl3):
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δ 16.0 (CH3), 24.1 (2 × CH3), 34.1 (CH), 55.2 (OCH3), 69.8 (OCH2), 110.0 (Ar), 112.7 (Ar), 113.2 (Ar),
118.4 (Ar), 119.4 (Ar), 124.4 (Ar), 129.5 (Ar), 130.5 (Ar), 139.3 (Ar), 147.9 (Ar), 156.8 (Ar), 159.8 (Ar).
Anal. Calcd for C18H22O2: C, 79.96; H, 8.20. Found: C, 80.11; H, 8.5.

2-((4-chlorobenzyl)oxy)-4-isopropyl-1-methylbenzene (27). Pale yellow oil, 79% yield. 1H NMR
(300 MHz, CDCl3): δ 1.52 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.52 (s, 3H, ArCH3), 3.11–3.20 (m, 1H, CH),
5.24 (s, 2H, OCH2), 7.01–7.04 (m, 2H, Ar), 7.34 (d, J = 7.8 Hz, 1H, Ar), 7.54–7.61 (m, 4H, Ar). 13C NMR
(75 MHz, CDCl3): δ 16.3 (CH3), 24.4 (2 × CH3), 34.4 (CH), 69.2 (OCH2), 110.2 (Ar), 118.8 (Ar), 124.5 (Ar),
128.7 (2 × Ar), 128.8 (2 × Ar), 130.9 (Ar), 133.7 (Ar), 136.4 (Ar), 148.1 (Ar), 156.9 (Ar). Anal. Calcd for
C17H19ClO: C, 74.31; H, 6.97. Found: C, 74.43; H, 7.00.

2-chloro-1-((5-isopropyl-2-methylphenoxy)methyl)-4-methoxybenzene (28). Colourless oil,
82% yield. 1H NMR (400 MHz, CDCl3): δ 1.26–1.28 (d, J = 7.2 Hz, 6H, 2 × CH3), 2.28 (s, 3H,
CH3), 2.87–2.92 (m, 1H, CH), 3.84 (s, 3H, OCH3), 5.13 (s, 2H, CH2), 6.79–6.81 (m, 2H, 2 × Ar), 6.86–6.89
(m, 1H, Ar), 6.99–7.00 (d, J = 2.4 Hz, 1H, Ar), 7.10–7.12 (d, J = 7.6 Hz, 1H, Ar), 7.50–7.52 (d, J = 8.4 Hz,
2H, 2 × Ar). 13C NMR (101 MHz, CDCl3): δ 16.0 (CH3), 24.1 (2 × CH3), 34.1 (CH), 55.6 (OCH3),
66.9 (OCH2), 110.2 (Ar), 112.9 (Ar), 114.8 (Ar), 118.5 (Ar), 124.4 (Ar), 127.3 (Ar), 129.9 (Ar), 130.5 (Ar),
133.5 (Ar), 148.0 (Ar), 156.6 (Ar), 159.7 (Ar). Anal. Calcd for C18H21ClO2: C, 70.93; H, 6.94. Found:
C, 71.10; H, 6.92.

1,2-dichloro-4-((5-isopropyl-2-methylphenoxy)methyl)benzene (29). Colourless oil, 92% yield.
1H NMR (300 MHz, CDCl3): δ 1.59 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.58 (s, 3H, ArCH3), 3.16–3.21 (m,
1H, CH), 5.22 (s, 2H, OCH2), 7.05 (s, 1H, Ar), 7.10 (d, J = 7.5 Hz, 1H, Ar), 7.39 (d, J = 7.5 Hz, 1H, Ar),
7.48–7.52 (m, 1H, Ar), 7.64 (d, J = 8.1 Hz, 1H, Ar), 7.79–7.80 (m, 1H, Ar). 13C NMR (75 MHz, CDCl3):
δ 16.4 (CH3), 24.5 (2 × CH3), 34.5 (CH), 68.5 (OCH2), 110.0 (Ar), 119.1 (Ar), 124.5 (Ar), 126.6 (Ar),
129.2 (Ar), 130.7 (Ar), 131.1 (Ar), 131.8 (Ar), 132.8 (Ar), 138.3 (Ar), 148.2 (Ar), 156.7 (Ar). Anal. Calcd
for C17H18Cl2O: C, 66.03; H, 5.87. Found: C, 65.94; H, 5.88.

2-((2-bromobenzyl)oxy)-4-isopropyl-1-methylbenzene (30). White powder, 61% yield, mp 51–52 ◦C.
1H NMR (300 MHz, CDCl3): δ 1.27 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.32 (s, 3H, ArCH3), 2.83–2.94 (m,
1H, CH), 5.16 (s, 2H, OCH2), 6.79–6.82 (m, 2H, Ar), 7.13 (d, J = 7.8 Hz, 1H, Ar), 7.16–7.23 (m, 1H, Ar),
7.34–7.40 (t, 1H, Ar), 7.60–7.65 (m, 2H, Ar). 13C NMR (75 MHz, CDCl3): δ 16.1 (CH3), 24.2 (2 × CH3),
34.1 (CH), 69.2 (OCH2), 110.1 (Ar), 118.5 (Ar), 122.1 (Ar), 124.4 (Ar), 127.6 (Ar), 128.7 (Ar), 129.0 (Ar),
130.6 (Ar), 132.5 (Ar), 136.9 (Ar), 148.0 (Ar), 156.4 (Ar). Anal. Calcd for C17H19BrO: C, 63.96; H, 6.00.
Found: C, 63.85; H, 5.99.

2-((4-bromobenzyl)oxy)-4-isopropyl-1-methylbenzene (31). Colourless oil, 66% yield. 1H NMR
(300 MHz, CDCl3): δ 1.55 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.56 (s, 3H, ArCH3), 3.12–3.18 (m, 1H, CH),
5.25 (s, 2H, OCH2), 7.04–7.09 (m, 2H, Ar), 7.38 (d, J = 7.2 Hz, 1H, Ar), 7.55 (d, J = 8.1 Hz, 2H, Ar),
7.71–7.75 (m, 2H, Ar). 13C NMR (75 MHz, CDCl3): δ 16.4 (CH3), 21.5 (CH3), 24.5 (2 × CH3), 34.5 (CH),
69.3 (OCH2), 110.0 (Ar), 118.8 (Ar), 121.9 (Ar), 124.5 (Ar), 129.1 (2 × Ar), 130.9 (Ar), 131.9 (2 × Ar),
136.9 (Ar), 148.1 (Ar), 156.9 (Ar). Anal. Calcd for C17H19BrO: C, 63.96; H, 6.00. Found: C, 63.99; H, 6.02.

4-isopropyl-1-methyl-2-((2-nitrobenzyl)oxy)benzene (32). White powder, 91% yield, mp 56–57 ◦C.
1H NMR (300 MHz, CDCl3): δ 1.25 (d, J = 7.2 Hz, 6H, 2 × CH3), 2.32 (s, 3H, ArCH3), 2.86–2.91 (m, 1H,
CH), 5.50 (s, 2H, OCH2), 6.78 (s, 1H, Ar), 6.80–6.83 (dd, J = 1.2 Hz, J = 15 Hz, 1H, Ar), 7.13 (d, J = 7.8 Hz,
1H, Ar), 7.50–7.53 (m, 1H, Ar), 7.69–7.75 (m, 1H, Ar), 7.98–8.01 (m, 1H, Ar), 8.17–8.20 (m, 1H, Ar).
13C NMR (75 MHz, CDCl3): δ 16.1 (CH3), 24.1 (2 × CH3), 34.1 (CH), 66.6 (OCH2), 110.0 (Ar), 118.8 (Ar),
124.2 (Ar), 124.9 (Ar), 128.2 (Ar), 128.5 (Ar), 130.7 (Ar), 134.0 (Ar), 134.4 (Ar), 146.9 (Ar), 148.2 (Ar),
156.1 (Ar). Anal. Calcd for C17H19NO3: C, 71.56; H, 6.71; N, 4.91. Found: C, 71.71; H, 6.70; N, 4.92.

4-isopropyl-1-methyl-2-((3-nitrobenzyl)oxy)benzene (33). Yellow viscous oil, 72% yield. 1H NMR
(400 MHz, CDCl3): δ 1.36 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.38 (s, 3H, ArCH3), 2.96–3.00 (m, 1H, CH),
5.24 (s, 2H, OCH2), 6.88–6.91 (m, 2H, Ar), 7.19 (d, J = 7.5 Hz, 1H, Ar), 7.60–7.65 (m, 1H, Ar), 7.89 (d,
J = 7.5 Hz, 1H, Ar), 8.23 (d, J = 7.5 Hz, 1H, Ar), 8.43 (s, 1H, Ar). 13C NMR (101 MHz, CDCl3): δ 16.1
(CH3), 24.2 (2 × CH3), 34.2 (CH), 68.5 (OCH2), 109.9 (Ar), 119.0 (Ar), 121.9 (Ar), 122.7 (Ar), 124.3 (Ar),
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129.6 (Ar), 130.9, 133.1 (Ar), 139.9 (Ar), 148.1 (Ar), 148.4 (Ar), 156.3 (Ar). Anal. Calcd for C17H19NO3:
C, 71.56; H, 6.71; N, 4.91. Found: C, 71.43; H, 6.73; N, 4.92.

4-isopropyl-1-methyl-2-((4-nitrobenzyl)oxy)benzene (34). Yellow amber powder, 95% yield,
mp 88–95 ◦C. 1H NMR (300 MHz, CDCl3): δ 1.23 (d, J = 6.3 Hz, 6H, 2 × CH3), 2.28 (s, 3H, ArCH3),
2.84–2.88 (m, 1H, CH), 5.19 (s, 2H, CH2), 6.71 (s, 1H, Ar), 6.80 (d, J = 7.8 Hz, 1H, Ar), 7.11 (d, J =7.5 Hz,
1H, Ar), 7.64 (d, J = 8.1 Hz, 2H, Ar), 8.26 (d, J = 8.7 Hz, 2H, Ar). 13C NMR (75 MHz, CDCl3): δ 15.9 (CH3),
24.1 (2 × CH3), 34.1 (CH3), 68.5 (OCH2), 109.7 (Ar), 110.0 (Ar), 119.0 (2 × Ar), 123.8 (2 × Ar), 124.3 (Ar),
127.4 (Ar), 130.8 (Ar), 145.1 (Ar), 148.1 (C=O), 156.2 (C=O). Anal. Calcd for C17H19NO3: C, 71.56;
H, 6.71; N, 4.91. Found: C, 71.63; H, 6.69; N, 4.90.

4-((5-isopropyl-2-methylphenoxy)methyl)aniline (35). Orange viscous oil, 70% yield. 1H NMR
(300 MHz, CDCl3): δ 1.24–1.27 (m, 6H, 2 × CH3), 2.23 (s, 3H, ArCH3), 2.86–2.91 (m, 1H, CH), 3.86 (bs,
2H, NH2, D2O exch.), 4.97 (s, 2H, OCH2), 6.75–6.80 (m, 4H, Ar), 7.09 (d, J = 7.8 Hz, 1H, Ar), 7.28 (d,
J = 8.7 Hz, 2H, Ar). 13C NMR (75 MHz, CDCl3): δ 16.1 (CH3), 24.2 (2 × CH3), 34.2 (CH), 70.1 (OCH2),
110.1 (Ar), 115.1 (2 × Ar), 118.2 (Ar), 124.5 (Ar), 124.6 (Ar), 128.9 (2 × Ar), 130.4 (2 × Ar), 130.8 (Ar),
146.0 (Ar), 147.8 (Ar), 157.1 (Ar). Anal. Calcd for C17H21NO: C, 79.96; H, 8.29; N, 5.49. Found: C, 80.14;
H, 8.27; N, 5.51.

4-((5-isopropyl-2-methylphenoxy)methyl)benzonitrile (36). White powder, 79% yield, mp 74–76 ◦C.
1H NMR (300 MHz, CDCl3): δ 1.21–124 (m, 6H, 2 × CH3), 2.27 (s, 3H, ArCH3), 2.81–2.88 (m, 1H,
CH), 5.14 (s, 2H, OCH2), 6.71 (s, 1H, Ar), 6.79 (d, J = 7.8 Hz, 1H, Ar), 7.11 (d, J = 7.5 Hz, 1H, Ar),
7.58 (d, J = 8.4 Hz, 2H, Ar), 7.70 (d, J = 8.1 Hz, 2H, Ar). 13C NMR (75 MHz, CDCl3): δ 16.0 (CH3),
24.1 (2 × CH3), 34.1 (CH), 68.9 (OCH2), 109.7 (Ar), 111.4 (CN), 118.8 (Ar), 124.3 (Ar), 127.3 (2 × Ar),
130.7 (Ar), 132.4 (2 × Ar), 143.1 (Ar), 148.1 (Ar), 156.2 (Ar). Anal. Calcd for C18H19NO: C, 81.47; H, 7.22;
N, 5.28. Found: C, 71.56; H, 6.71; N, 4.91.

(4-((5-isopropyl-2-methylphenoxy)methyl)phenyl)(methyl)sulfane (37). White powder, 81% yield,
mp 61–62 ◦C. 1H NMR (300 MHz, CDCl3): δ 1.35 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.35 (s, 3H, ArCH3),
2.56 (s, 3H, SCH3), 2.92–2.99 (m, 1H, CH), 5.19 (s, 2H, OCH2), 6.86–6.88 (m, 2H, Ar), 7.18 (d, J = 8.1 Hz,
1H, Ar), 7.35–7.38 (m, 2H, Ar), 7.65 (d, J = 8.7 Hz, 2H, Ar). 13C NMR (75 MHz, CDCl3): δ 15.9 (SCH3),
16.2 (CH3), 24.4 (2 × CH3), 34.3 (CH), 69.6 (OCH2), 110.0 (Ar), 118.5 (Ar), 124.4 (Ar), 126.8 (2 × Ar),
128.0 (2 × Ar), 130.6 (Ar), 134.5 (Ar), 138.0 (Ar), 148.0 (Ar), 156.9 (Ar). Anal. Calcd for C18H22OS:
C, 75.48; H, 7.74. Found: C, 75.37; H, 7.72.

4-isopropyl-1-methyl-2-((4-(methylsulfinyl)benzyl)oxy)benzene (38). Yellow viscous oil, 51% yield.
1H NMR (300 MHz, CDCl3): δ 1.24 (d, J = 6.3 Hz, 6H, 2 × CH3), 2.27 (s, 3H, ArCH3), 2.77 (s, 3H, SCH3),
2.85–2.87 (m, 1H, CH), 5.15 (s, 2H, OCH2), 6.75–6.80 (m, 2H, Ar), 7.09–7.12 (m, 1H, Ar), 7.65 (bs, 4H,
Ar). 13C NMR (75 MHz, CDCl3): δ 16.0 (CH3), 24.1 (2 × CH3), 34.1 (CH), 44.7 (SCH3), 69.1 (OCH2),
109.9 (Ar), 118.7 (Ar), 124.1 (Ar), 124.3 (2 × Ar), 128.0 (2 × Ar), 130.7 (Ar), 141.2 (Ar), 145.0 (Ar),
148.0 (Ar), 156.4 (Ar). Anal. Calcd for C18H22O2S: C, 71.49; H, 7.33. Found: C, 71.35; H, 7.30.

4-isopropyl-1-methyl-2-((4-(methylsulfonyl)benzyl)oxy)benzene (39). Yellow viscous oil,
25% yield. 1H NMR (300 MHz, CDCl3) δ 1.21–1.22 (m, 6H, 2 × CH3), 2.27 (s, 3H, ArCH3); 2.84–2.86
(m, 1H, CH), 3.07 (s, 3H, SO2CH3); 5.17 (s, 2H, OCH2), 6.72 (s, 1H, Ar), 6.79 (d, J = 7.8 Hz, 1H, Ar),
7.09–7.12 (d, J = 7.5 Hz, 1H, Ar); 7.67 (d, J = 8.4 Hz, 2H, Ar), 7.97 (d, J = 8.1 Hz, 2H, Ar). Anal. Calcd for
C18H22O3S: C, 67.89; H, 6.96. Found: C, 68.01; H, 6.99.

4-((5-isopropyl-2-methylphenoxy)methyl)-1,1′-biphenyl (40). White solid, 90% yield, mp = 99–100 ◦C.
1H NMR (400 MHz, CDCl3): δ 1.29–1.31 (d, J = 6.8 Hz, 6H, 2 × CH3), 2.33 (s, 3H, ArCH3), 2.89–2.96
(m, 1H, CH), 5.18 (s, 2H, OCH2), 6.81–6.85 (m, 2H, 2 × Ar), 7.14–7.16 (d, J = 7.6 Hz, 1H, Ar), 7.38–7.42
(m, 1H, Ar), 7.48–7.52 (m, 2H, 2 × Ar), 7.57–7.60 (d, J = 8.4 Hz, 2H, 2 × Ar), 7.65–7.68 (m, 4H, 4 × Ar).
13C NMR (101 MHz, CDCl3): δ 16.1 (CH3), 24.2 (2 × CH3), 34.2 (CH), 69.7 (OCH2), 110.1 (2 × Ar),
118.4 (2 × Ar), 124.5 (Ar), 127.2 (2 × Ar), 127.3 (2 × Ar), 127.4 (2 × Ar), 127.7 (2 × Ar), 128.8 (Ar),
130.6 (Ar), 126.7 (Ar), 148.0 (Ar), 156.9 (Ar). Anal. Calcd for C23H24O: C, 87.30; H, 7.64. Found: C, 87.47;
H, 7.65.
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1-((5-isopropyl-2-methylphenoxy)methyl)naphthalene (41). Yellow-brown sticky solid, 98% yield.
1H NMR (300 MHz, CDCl3): δ 1.29 (d, J = 7.2 Hz, 6H, 2 × CH3), 2.21 (s, 3H, ArCH3), 2.88–2.97 (m, 1H,
CH), 5.52 (s, 2H, OCH2), 6.80–6.83 (m, 1H, Ar), 6.95–6.96 (m, 1H, Ar), 7.48 (s, 1H, Ar), 7.50 (m, 1H,
Ar), 7.51–7.59 (m, 2H, Ar), 7.66 (d, J = 7.2 Hz, 1H, Ar) 7.86–7.94 (m, 2H, Ar), 8.10–8.14 (m, 1H, Ar).
13C NMR (75 MHz, CDCl3): δ 16.0 (CH3), 24.2 (2 × CH3), 34.2 (CH), 68.6 (OCH2), 110.0 (Ar), 118.4 (Ar),
123.9 (Ar), 124.6 (Ar), 125.3 (Ar), 125.8 (Ar), 126.2 (Ar), 126.3 (Ar), 128.6 (Ar), 128.8 (Ar), 130.6 (Ar),
131.6 (Ar), 132.9 (Ar), 133.7 (Ar), 148.0 (Ar), 156.9 (Ar). Anal. Calcd for C21H22O: C, 86.85; H, 7.64.
Found: C, 86.97; H, 7.66.

2-((5-isopropyl-2-methylphenoxy)methyl)isoindoline-1,3-dione (42). Colourless viscous oil, 88%
yield. 1H NMR (300 MHz, CDCl3): δ 1.23–1.26 (m, 6H, 2 × CH3), 2.18 (s, 3H, ArCH3), 2.80–2.93
(m, 1H, CH), 5.67 (s, 2H, OCH2), 6.79–6.82 (m, 1H, Ar), 7.06–7.04 (m, 1H, Ar), 7.74–7.78 (m, 2H, Ar),
7.88–7.92 (m, 2H, Ar). 13C NMR (75 MHz, CDCl3): δ 15.8 (CH3), 24.1 (2 × CH3), 34.0 (CH), 65.5 (OCH2),
112.6 (Ar), 120.3 (Ar), 123.8 (2 × Ar), 125.5 (Ar), 130.8 (Ar), 131.8 (Ar), 134.5 (2 × Ar), 148.0 (Ar),
154.3 (Ar), 167.2 (2 × C=O). Anal. Calcd for C19H19NO3: C, 73.77; H, 6.19; N, 4.53. Found: C, 73.69;
H, 6.18; N, 4.55.

5-isopropyl-2-methylphenyl 6-methyl-2-oxo-2H-chromene-3-carboxylate (43). White powder, 76%
yield, mp 122–124 ◦C. 1H NMR (300 MHz, CDCl3): δ 1.24 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.22 (s, 3H,
ArCH3 carv.), 2.44 (s, 3H, ArCH3 coum.), 2.89–2.95 (m, 1H, CH), 7.01–7.07 (m, 2H, Ar), 7.17–7.19 (m,
1H, Ar), 7.28–7.31 (m, 1H, Ar), 7.44–7.51 (m, 2H, Ar), 8.69 (s, 1H, =CH). 13C NMR (75 MHz, CDCl3):
δ 16.0 (CH3), 20.8 (CH3 coum.), 23.9 (2 × CH3), 33.6 (CH3), 116.7 (Ar), 117.4 (Ar), 117.6 (Ar), 119.8 (Ar),
124.5 (Ar), 127.2 (Ar), 129.4 (Ar), 131.0 (Ar), 134.8 (Ar), 136.0 (Ar), 148.2 (Ar), 149.0 (Ar), 149.9 (Ar),
153.6 (Ar), 156.8 (C=O), 161.6 (C=O). Anal. Calcd for C21H20O4: C, 74.98; H, 5.99. Found: C, 75.07;
H, 6.00.

5-isopropyl-2-methylphenyl 6-chloro-2-oxo-2H-chromene-3-carboxylate (44). White powder, 70%
yield, mp 114–115 ◦C. 1H NMR (300 MHz, CDCl3): δ 1.24 (d, J = 6.9 Hz, 6H, 2 × CH3), 2.21 (s, 3H,
ArCH3), 2.87–2.92 (m, 1H, CH), 7.00 (s, 1H, Ar), 7.04–7.08 (m, 1H, Ar), 7.19 (d, J = 7.5 Hz, 1H, Ar),
7.34–7.37 (d, J = 8.1 Hz, 1H, Ar), 7.60–7.65 (m, 2H, Ar), 8.64 (s, 1H, =CH). 13C NMR (75 MHz, CDCl3):
δ 15.9 (CH3), 23.9 (2 × CH3) 33.6 (CH), 118.4 (Ar), 118.7 (Ar), 118.8 (Ar), 119.6 (Ar), 124.7 (Ar), 127.1 (Ar),
128.7 (Ar), 130.3 (Ar), 131.0 (Ar), 134.6 (Ar), 148.2 (Ar), 148.3 (Ar), 148.9 (Ar), 153.7 (Ar), 155.8 (C=O),
161.1 (C=O). Anal. Calcd for C20H17ClO4: C, 67.33; H, 4.80. Found: C, 67.40; H, 4.79.

5-Isopropyl-2-methylphenyl 6-bromo-2-oxo-2H-chromene-3-carboxylate (45). White powder, 73%
yield, mp 134–138 ◦C. 1H NMR (300 MHz, CDCl3): δ 1.24 (d, J = 6.3 Hz, 6H, 2 × CH3), 2.21 (s, 3H,
ArCH3), 2.84–2.96 (m, 1H, CH), 7.00 (s, 1H, Ar), 7.05–7.08 (m, 1H, Ar), 7.19 (d, J = 7.5 Hz, 1H, Ar),
7.30 (d, J = 8.7 Hz, 1H, Ar), 7.74–7.80 (m, 2H, Ar), 8.64 (s, 1H, =CH coumarin). 13C NMR (75 MHz,
CDCl3): δ 15.9 (CH3), 23.9 (2 × CH3), 33.6 (CH), 117.5 (Ar), 118.6 (Ar), 118.8 (Ar), 119.3 (Ar), 119.6 (Ar),
124.7 (Ar), 127.1 (Ar), 131.1 (Ar), 131.7 (Ar), 137.4 (Ar), 148.2 (Ar), 148.2 (Ar), 148.9 (Ar), 154.2 (Ar),
155.8 (C=O), 161.0 (C=O). Anal. Calcd for C20H17BrO4: C, 59.87; H, 4.27. Found: C, 59.92; H, 4.28.

2-(5-isopropyl-2-methylphenoxy)-N′-(3-nitrophenyl)acetohydrazide (46). White solid; 62% yield,
mp = 127–128 ◦C. 1H NMR (400 MHz, CDCl3): δ 1.26–1.28 (d, J = 6.8 Hz, 6H, 2 × CH3), 2.34 (s, 3H,
CH3), 2.88–2.95 (m, 1H, CH), 4.76 (s, 2H, OCH2), 6.41–6.42 (bs, 1H, NH, D2O exch.), 6.73 (s, 1H, Ar),
6.89–6.91 (d, J = 7.6 Hz, 1H, Ar), 7.15–7.18 (m, 2H, 2 × Ar), 7.37–7.39 (t, J = 8.0 Hz, 1H, Ar), 7.69–7.71
(m, 1H, Ar), 7.77–7.79 (m, 1H, Ar), 8.33–8.34 (bs, 1H, NH, D2O exch.). 13C NMR (101 MHz, CDCl3):
δ 16.1 (CH3), 24.1 (2 × CH3), 34.1 (CH), 67.4 (OCH2), 108.0 (Ar), 109.9 (Ar), 116.0 (Ar), 119.1 (Ar),
120.2 (Ar), 123.8 (Ar), 130.0 (Ar), 131.2 (Ar), 148.7 (Ar), 148.9 (Ar), 149.2 (Ar), 155.1 (Ar), 169.0 (C=O).
Anal. Calcd for C18H21N3O4: C, 62.96; H, 6.16; N, 12.24. Found: C, 63.05; H, 6.19; N, 12.29.

3.4. Crystal Structure Determination of Compound 34

C17H19NO3, M = 285.33, Monoclinic, space group P 21/c, a = 8.380(1), b = 15.416(1), c = 11.375(1)Å,
β = 95.856(7), V = 1462.6(2)Å3, Z = 4 Dc = 1.296, µ = 0.089 mm−1, F(000) = 608. 9670 reflections
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were collected with a 4.356 < θ < 29.273 range with a completeness to theta 99.1%; 3395 were unique,
the parameters were 190 and the final R index was 0.0619 for reflections having I > 2σI.

A light yellow prismatic shaped crystal (0.07 × 0.06 × 0.03) was used for data collection. Hydrogen
atoms were all assigned in calculated positions and refined as isotropic. No relevant hydrogen
bonds were detected. CCDC 1980137 contains the supplementary crystallographic data for this
molecule. Data can be obtained free of charge from the Cambridge Crystallographic Data Centre [28].
Collection was carried out with a KM4 Xcalibur2 goniometer (Oxford Diffraction, Abingdon, UK)
at 100 K. Mo/Kα radiation (40 mA/−40 KV), monochromated by an Oxford Diffraction Enhance
ULTRA assembly, and an Oxford Diffraction Excalibur PX Ultra CCD were used for cells parameters
determination and data collection. The integrated intensities, measured using the ω scan mode,
were corrected for Lorentz and polarization effects [29]. Direct methods of SIR2004 [30] were used
in solving the structure and the refinement was performed using the full-matrix least squares on
F2 provided, within WinGX v.2013.3 routine [31], by SHELXL2014 [32]. Multi-scan symmetry-related
measurement was used as experimental absorption correction type.

3.5. Anti-Helicobacter Pylori Activity

The MIC determination was performed by modified broth microdilution assay as previously
described [33]. For MBC evaluation 10 µL of suspensions without visible growth were spotted on
Skirrow agar plates surface and incubated for 72 h at 37 ◦C in microaerophilic conditions. The MBC
was defined as the concentration that killed 99.9% of the initial inoculum.

3.6. Cell Lines and Treatments

The human adenocarcinoma gastric cell line (AGS), was derived from an untreated human
adenocarcinoma of the stomach and retained the same cytological characteristics of the malignant cells
obtained from Caucasian patients [34]. The AGS cells (ECACC 89090402) were obtained from CLS
Cell Lines Services GmbH (Epplheim, Germany) and were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with 4.5 g/L glucose, 2 mM L-glutamine and 10% Foetal Bovine
Serum (FBS) (EuroClone S.p.A., Pero, Italy).

Working solutions of carvacrol and its derivatives (6, 9, 16, 17, 20, 21, 29, 32–35, 38, 39, 42–45)
(600 mM) were freshly prepared in dimethyl sulfoxide (DMSO) and in DMEM according to the
experimental design by serial dilutions in complete culture medium. The final concentration of DMSO
in experiments was 0.14%. No toxicity on AGS cells was observed (data not shown). 5-Fluorouracil
was used as positive control.

3.7. Cell Viability

Cell viability was tested by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium)) assay (Promega, Madison, WI, USA). The concentration of carvacrol
and its derivatives for treatments was selected based on concentration—response curves constructed
in preliminary experiments (data not shown). Briefly, AGS cells were seeded in 96-well plates
(6 × 103 cells/well) and treated for 24 h with different concentrations (50–800 µM) of specific molecules
(5 replica wells for each treatment condition).

Briefly, cells were incubated with the MTS solution for at least 1 h and cell viability was determined
colorimetrically by measuring the absorbance at 490 nm using GloMax-Multi Detection System
(Promega, Madison, WI, USA). Cell viability was expressed as the percentage compared with the
untreated cells designated as 100%. The IC50 value was calculated from the concentration-response
curves by nonlinear regression analysis [35].

3.8. Statistical Analysis

A p value of 0.05 was considered statistically significant. IC50 values was calculated using the
GraphPad Prism 7 software.
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4. Conclusions

Based on the shortlisted hits, a large series of carvacrol-based molecules were designed, synthesized
and evaluated for their ability to act as dual agents (inhibitory action against the growth of H. pylori
and AGS cells) along with the assessment of robust structure-activity relationships. Several hits with
required balance of activities were extrapolated as a result of this study. Moreover, the most active
compounds displayed antimicrobial activity with similar MIC and MBC values toward H. pylori
strains with a different antibiotic susceptibility pattern, thus suggesting a mechanism of action
alternative to metronidazole, amoxicillin and clarithromycin. The most important result is that
the anti-Helicobacter pylori activity was not only strictly related to the presence of an OH moiety,
as reported for the general antibacterial activity of the parent compound. Among the compounds
evaluated, some analogues exhibited MIC/MBC values in the low µg/mL range. In this regard, the most
noteworthy compounds displaying the lowest MIC/MBC activity against H. pylori, such as compounds
16 and 39, also showed good activity against AGS cells (IC50 compound 16 = 209 µM; IC50 compound
39 = 209 µM). Further studies might explain the potential synergistic effects of the combination of these
derivatives with the currently used therapeutics. In addition, the possibility to treat drug resistant
H. pylori strains would be beneficial in the clinical setting due to the high development of resistance
attributed to H. pylori. Finally, whereas the development of biofilms by H. pylori as well as the ability
of the microorganism to enter the Viable But Non-Culturable (VBNC) state represent two different
survival strategies that induce resistance/tolerance of the microorganism or the microbial community
to antimicrobial drugs [36], future studies will be carried out to evaluate the potential activity of such
molecules on both H. pylori biofilm and VBNC state.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8247/13/11/405/s1.
Table S1: Crystal data and structure refinement for compound 34, Table S2: Atomic coordinates (x 104) and
equivalent isotropic displacement parameters (Å2x 103) for compound 34. U(eq) is defined as one third of the
trace of the orthogonalized Uij tensor, Table S3: Bond lengths [Å] and angles [◦] for compound 34, Table S4:
Anisotropic displacement parameters (Å2x 103) for compound 34. The anisotropic displacement factor exponent
takes the form: −2 2[h2a*2U11 + . . . + 2 h k a* b* U12]. 1H, 13C and 19F NMR spectra of new compounds.
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