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ABSTRACT:

Point clouds obtained via Terrestrial Laser Scanning (TLS) surveys of historical buildings are generally transformed into semantic-
ally structured 3D models with manual and time-consuming workflows. The importance of automatizing this process is widely
recognized within the research community. Recently, deep neural architectures have been applied for semantic segmentation of
point clouds, but few studies have evaluated them in the Cultural Heritage domain, where complex shapes and mouldings make
this task challenging. In this paper, we describe our experiments with the DGCNN architecture to semantically segment historical
buildings point clouds, acquired with TLS. We propose a variation of the original approach where a radius distance based technique
is used instead of K-Nearest Neighbors (KNN) to represent the neighborhood of points. We show that our approach provides better
results by evaluating it on two real TLS point clouds, representing two Italian historical buildings: the Ducal Palace in Urbino and
the Palazzo Ferretti in Ancona.

1. INTRODUCTION

Built Cultural Heritage management and preservation requires
the creation of accurate and rich digital representations of his-
torical buildings. Laser scanning has become a widely used
technique to obtain accurate digital representations of 3D scenes
and is commonly adopted by architects, archaeologists and schol-
ars. The obtained digital representations come in the form of
point clouds, which, however, lack of semantic information and
are often insufficient to conduct further analysis and studies.
More informative and structured representations are needed,
and are usually derived relying on knowledge representation
standards like the Building Information Model (BIM), as done,
for example in (Quattrini et al., 2017a) and (Quattrini et al.,
2017b), where annotated BIM models drive a semantic aware
user interface to meaningfully explore architectural heritage.
The process of transforming a point cloud to BIM is referred
to as Scan-to-BIM and is usually carried out manually through
a careful and time-consuming work.

For this reason, the interest in finding viable ways to partially
automate the Scan-to-BIM process is gaining growing interest
within the research community. A central problem in this con-
text is that of separating a point cloud into components that rep-
resent single classes of objects of interest. In the case of histor-
ical buildings, it is desirable to automatically segment the 3D
point cloud into specific architecture elements, referring to ro-
bust and consolidated thesaurus. The interest in this kind of task
is witnessed by a number of recent research efforts, which at-
tempt at addressing it with algorithmic workflows (Murtiyoso,
Grussenmeyer, 2020a) or leveraging machine learning methods
based on hand-crafted features (Grilli et al., 2019b).

The task of classifying points in a point cloud according to
some types of 3D objects is accounted as semantic segment-
ation and is of interest to a variety of research areas, as, for
example, autonomous driving and robot scene interpretation.
The recent advances in deep learning (DL), have driven the
⇤ Corresponding author

research in this area and in the last years several deep neural
architectures have been proposed that attempt at semantically
segment 3D point clouds, directly operating on the coordinate
representation of 3D scenes. Examples are PointNet (Qi et al.,
2017a), the pioneer study in this area, its subsequent improve-
ment, Pointnet++ (Qi et al., 2017b), the Dynamic Graph Con-
volutional Neural Network (DGCNN) architecture proposed in
(Wang et al., 2019), which attempts at generalizing the previous
approaches into a common formal framework, and PointCNN
(Yu et al., 2019).

While such neural architectures have been extensively tested
on standard benchmark datasets of indoor scenes (as the S3DIS
dataset (Armeni et al., 2017)), few attempts were done to invest-
igate their use in historical buildings TLS point clouds (Mal-
inverni et al., 2019), (Pierdicca et al., 2020a). While classic
ML approaches often require feature engineering on a case by
case basis (Grilli et al., 2019b), DL approaches attempt at auto-
matically extracting (hidden) feature, thus possibly providing a
uniform method that can be applied to a variety of case studies.

In this paper we describe our experiments with the DGCNN
architecture to semantically segment historical buildings TLS
point clouds. We propose a variation of the original approach
(Wang et al., 2019) where a radius distance based technique is
used instead of K-Nearest Neighbors (KNN) to represent the
neighborhood of points. We show that our approach provides
better results by evaluating it on two real TLS point clouds,
representing two Italian historical buildings: the Ducal Palace
in Urbino and the Palazzo Ferretti in Ancona.

2. RELATED WORKS

In this section we provide an overview of the state of the art in
deep learning approaches for semantic classification of dense
point clouds. Then we restrict to the Cultural Heritage field
and overview some of the Machine Learning (ML) efforts in
achieving semantic segmentation of architectural elements.
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DL algorithms have been used in several application domains to
semantically segment 3D point clouds (Xie et al., 2020, Zhang
et al., 2019). However, the cultural heritage environment is still
lacking in studies that use this methodology in the processing
of 3D point clouds. A significant advantage is that this large
amount of raw data represented by the 3D point clouds can be
managed directly by the DL algorithms without using interme-
diate processing to obtain a more regular structure before clas-
sification. In this regard, the first algorithm was presented in
the work (Qi et al., 2017a) in which the points belonging to the
cloud are considered individually. Subsequently, an advanced
version of this approach was presented (Qi et al., 2017b), which
also exploits the local information of the points considering the
nearby points and obtaining better results in terms of classi-
fication. A first attempt to use PointNet++ architecture to se-
mantically segment 3D point clouds of CH dataset is presented
by Malinverni et al. (Malinverni et al., 2019). The work aims at
demonstrating the effectiveness of the method even in an area
that has not been yet explored, considering a set of CH data
suitably created and annotated manually by the domain experts.
The Point Clouds Convolutional Neural Network (PCNN) im-
plemented in the work of (Atzmon et al., 2018) is a novel ar-
chitecture that uses a Convolutional Neural Network (CNN) to
elaborate 3D point clouds. It is based on two operators: exten-
sion and restriction, one the opposite of the other, to classify
the 3D points cloud. Novel point-based approaches to semantic
segmentation have been recently proposed, often extending the
previous architectures proposed in this field. According to (Guo
et al., 2020), they can be divided into Point-wise MLP architec-
tures, e.g. (Jiang et al., 2018), named PointSIFT and inspired by
the 2D shape descriptor SIFT, Convolution based, as PointConv
(Boulch, 2020), and Graph Based.

Dynamic Graph Convolutional Neural Network (DGCNN) is
one of the first approaches in the latter category. DGCNN (Wang
et al., 2019) is based on the EdgeConv operation. EdgeConv is
a model that creates edge features and describes the neighbour-
hood relation among points, without generating point features
from their embeddings. This module is designed to be invariant
to permutation and ordering of neighbours. DGNN architecture
was also used in CH context in the work proposed by (Pier-
dicca et al., 2020b). The aim is to make a semantic segment-
ation of 3D Point Clouds using an augmented DGCNN model
by adding features like normal and colour. The advantages is
to better manage CH elements with complex geometries, struc-
tures extremely variables and defined with a high level of detail.
They make also a comparison between other DL methods.

In (Grilli et al., 2019c), the authors, taking into account the be-
nefits of using ML and DL technologies, performed a compar-
ison of performance in the classification of two different CH
datasets. They highlight that the use of ML approaches (Ran-
dom Forest and One-versus-One) allows to obtain excellent per-
formance in terms of classification, even if there is no correla-
tion between the characteristics. Although ML techniques are
less recent than DL techniques, there are a limited number of
applications in the literature that use ML-based methods to se-
mantically segment 3D point clouds in the CH domain. How-
ever, according to the study proposed by (Grilli, Remondino,
2019), these methods have made great progress in this direction.
After exploring the applicability of supervised ML approaches
to cultural heritage, the authors propose a standardized pipeline
with reference to the different case studies. In this context, the
work proposed by (Oses et al., 2014) has two main objectives:
the first is to provide a framework that extracts geometric prim-

itives from a masonry image and second to make an extraction
and a selection of statistical features for the automatic cluster-
ing of masonry. They make a combination between an image
processing and ML methodologies for the classification of ma-
sonry walls and then compare the performances between five
different ML algorithms in the classification task. In this ap-
proach the main problem is that each block of the wall is not
separately characterized. To overcome this limitation the work
of (Riveiro et al., 2016) presents a new automatic segmentation
algorithm of masonry blocks departing from a 3D point cloud
acquired by LiDAR technology. The image processing is based
on an optimization of the watershed algorithm, that is used to
improve segmentation algorithms in other works (Barsanti et
al., 2017, Poux et al., 2017).

In their research Grilli et al., (Grilli et al., 2018) use the UV
maps of 3D models of DCH goods as input of supervised ML
classification algorithms. In order to verify the efficiency of
this method, the authors make a comparison of several clas-
sifier considering three different case studies. The research
of (Grilli et al., 2019a) is another application of a supervised
ML classifier (RF) used to classify a 3D points cloud of CH
field. The authors evaluate the relationship between covariance
features and architectural elements, in particular determining a
relation between the feature search radii and the size of the ele-
ment. Successively, the work (Grilli, Remondino, 2020) makes
an analysis of the previous approach demonstrating its ability
to generalise between different never seen architectural scenes.
The research conducted by (Murtiyoso, Grussenmeyer, 2020b)
has the aim to help the manual point clouds labeling of large
training data set required from ML algorithms. Moreover, the
authors introduce a series of functions that allow the automatic
processing of some problems of segmentation and classifica-
tion of point clouds for CH goods. Due to the complexity of the
problem, the project considers only some important classes but
it is suitable for different types of heritage.

3. MATERIALS AND METHODS

3.1 Dataset

In the framework of the on going project CIVITAS (ChaIn for
the excellence of reflectiVe socIeties to exploiT digital culturAl
heritage and museumS), the 3dimensional digitization of the
Ducal Palace at Urbino is carried out mainly based on TLS and
photographic data capturing.

At the present survey phase, the total of acquired points is 1.790
mln (Nespeca, 2018, Clini et al., 2020), the comprehensive model
for this large-complex building serves to develop innovative re-
searches and tests facing the challenges in CH field. Although
the whole numerical model refers to the complete Palace, in the
current experiment only the part of the point cloud related to
the Courtyard of Honour was exploited (Table 1).

The point cloud of the Ducal Palace is a main reference data
set, acquired with different sensors and technologies, the cur-
rent work refers to point cloud carried out by two laser scanners
(Leica ScanStation C10 and a Leica ScanStation P40) moun-
ted on a tripod. This acquisition was performed by setting dif-
ferent levels of resolution according to the complexity of the
rooms and their decorative elements (see Figure 1), optimiz-
ing scanning times. Considering that one of the challenges of
the project was to validate workflows from Scan to segmen-
ted, informed and semantically reality-based models, signific-
ant parts of the point cloud were selected and compared. In
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Ducal Palace at Urbino

Whole point cloud Annotated point cloud
(Courtyard of Honor)

Number of points 1224 mln 17.3 mln
max alignment error 0.006 m 0.008 m
min alignment error 0.001 m 0.003 m
RMS 0.005 m 0.004 m

Palazzo Ferretti
Whole point cloud Annotated point cloud

Number of points 1.273 mln 8,4 mln
Number of points 1273 mln 3.8 mln
max alignment error 0.008 m 0.005 m
min alignment error 0.003 m 0.001 m
RMS 0.007 m 0.007 m

Table 1. Number of points, max/min alignment error and RMS
of the two TLS point clouds considered in this study.

Figure 1. Two views of the point cloud of the Laurana’s
Courtyard of Honour: general perspective and detail, in which

the more fine architectural features are readable

order to verify the effectiveness of the automatic classification,
the Laurana’s Courtyard of Honour was chose as testing area.
Future work, on the side of data acquisition, is planned using
different mapping systems (such as Kaarta) and a photogram-
metric flight with UAVs in order to cover the inaccessible parts
and roofs of the building. In fact, a secondary goal of the pro-
ject was to test strategies, improving and comparing LODs and
required resources/tools in the different phases of work. Data
obtained by Terrestrial Laser Scanner (TLS) and by photogram-
metry are currently often integrated in order to obtain models
able to serve for different purposes , with detailed analysis of
some portions and users interactions with elements of interest.

Another dataset selected for testing the neural network, was
the Palazzo Ferretti’s point cloud considering its architectural
style and the presence of significant mouldings and architec-
tural classes related to the Renaissance Age. In fact, in the Scan
to BIM process the recognition of very refined details with com-
plex characteristics is a major obstacle. The TLS survey opera-
tions of Palazzo Ferretti was carried out in 2014 for developing
structural analysis. It consisted in 49 stations (58 scans) for the
external survey of the building plus 20 stations and scans for

the inner survey, involving the ground and the first floor. The
obtained point cloud after alignment and cleaning operations is
made up of 1.2 billion points (see table 1). Finally, before feed-
ing the data to the neural networks we reduced the point clouds,
by randomly sampling points from surfaces with a density of
1000 points per m2, obtaining approximately 17.3 mln point
points for the Ducal Palace courtyard and 8.4 mln points for
Palazzo Ferretti.

3.2 DGCNN with radius-based EdgeConv

The DGCNN model, introduced in (Wang et al., 2019), is based
on the EdgeConv operation, which is implemented with a Mul-
tilayer Perceptron (MLP) fed with the edge features of a point:
the distance vectors between the point and its neighbour points.
In this way the learned point features take into account its sur-
rounding points, thus being able to learn different shapes and to
map them to different types of objects.

In the original design (Wang et al., 2019), the edge features are
calculated from the K-Nearest Neighbours (KNN) of a point.
As suggested by recent studies (Hermosilla et al., 2018), this
method might not be optimal when the point cloud is charac-
terized by non uniform density, as generally happens for TLS.
In Figure 3 we show a fragment of the point cloud of the Ducal
Palace of Urbino, where two windows were captured with dif-
ferent density. Using KNN the point neighbourhood cover a
small area when the local density is high and a smaller one
when points are more scattered. This means that different edge
features can be derived from two point that belong to the same
class (window). Aiming at overcoming this issue, we propose a
variation of the DGCNN architecture (that we call RadDGCNN

in this paper), where points neighborhood is based on the ra-
dius distance. As the neighbour points cover the same area for
all points, independently from the local density, more repres-
entative features could possibly be learned. In our solution, for
each point, all the points at distance D < R are selected, then
K points are randomly sampled and used as input to the Edge-
Conv operation.

The deep learning architecture used in our experiments is de-
picted in Figure 2. The input point cloud is processed by three
EdgecConv operations, extracting hierarchical local features of
points. Then the output of each EdgeConv for each point is
concatenated and global features are learnt by a MLP layer, to
finally produce a category prediction for each point in input.
The architecture differs from the baseline DGCNN architecture
in the EdgeConv block, based on radius distance, and in the
adoption of a pseudo-random rotation.

As the DGCNN architecture suffers from sensibility to the ori-
entation of shapes to be learned, in our experiments we use rota-
tion to augment the dataset. In particular, we rotate each block
around the up direction only and we perform, for each point, a
rotation of a multiple of 90 degrees and a random one. This is
motivated by simple considerations on the domain, where these
constraints clearly reflect domain rules (e.g. walls are often po-
sitioned at 90 degrees from each other, architectural elements
have always the same orientation with respect to the up dir-
ection). In this way we aim at optimizing the training phase,
letting the system learn from meaningful variations of the input
data.

4. EXPERIMENTS AND RESULTS

In our experiments we evaluated the DGCNN and RadDGCNN
approaches on two point clouds: Ducal Palace of Urbino (PDU)
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Figure 2. The architecture of the the RadDGCNN used in our experiments.

Nearest
Neighbours

Radius

Figure 3. KNN vs. Radius-based neighborhood

and Palazzo Ferretti (PF), using half of the scene to train the net-
work and the remaining for testing. In both cases we segmented
the whole scene into blocks of dimension 1x1x1 meters, and for
each block we sampled 4096 points. Such a scene segmentation
step, usually applied in literature to experiment with DGCNN
and other point based deep networks, is required because the
MLP network needs a fixed number of points for each data ex-
ample to be processed and, furthermore, processing the whole
scene as a single data example would be too computationally
expensive. The number of points for each class obtained after
the segmentation and sampling for the two test sets used in our
experiment is shown in Figure 4

The number of points representing neighbourhoods (K) was
set to 20, as done in (Wang et al., 2019). In the case of Rad-
DGCNN, the radius R was experimentally set to 0.1. Each
point was represented with a 9 dimension vector encoding ori-
ginal XYZ coordinates, point color (expressed in HSV format)
and normalized XYZ coordinates within each block. Regarding
DGCNN network hyperparameter, we adopted the same setting
used in (Wang et al., 2019) and trained the networks for 200
epochs.

Results are reported in 3 and 4, where the proposed architecture
is compared with the DGCNN architecture adopted in (Wang
et al., 2019). As shown, the use of radius-based EdgeConv
provides better segmentation accuracy in almost all considered
classes, leading to a overall accuracy increase of 1.8% in the
case of PDU, and 1% in the for PF.

As an additional experiment, we tried to combined the two
approaches using a simple multi-classifier architecture, where
each point is processed by the two trained networks and the
best output probability is selected (Combined column in the
tables). In the PDU experiment, the combined model slightly

Figure 4. Number of points per class in the two test point clouds.

improves mean IoU and accuracy for some classes (e.g. pillar
and floor), while is overcome by RadDGCNN with respect to
other classes, e.g., column, thus leaving the overall accuracy al-
most unchanged. In the PF experiment, however, the improve-
ment provided by the combined approach is larger in overall
accuracy (+1.7%) as well as in mean IoU (+1.9%). This indic-
ates that a simple combination of pre-trained models can be, in
some cases, effective in boosting results.

In general, the results obtained are sensibly better in the PDU
experiment (as also intuitively shown in Table 2). This is pos-
sibly due to the PDU scene being more symmetric if compared
to the PF scene, thus resulting in more regular shapes to be
learned. We can see that, as expected, more regular, repeatable
or recognizable shapes, like wall and columns are better recog-
nized. However, we think results are promising even in highly
diverse shapes as those belonging to moulding, doors and win-
dows.

In Figure 5 and 6 we report the confusion matrix of the clas-
sification results using the combined method on the PDU and
PF scene, respectively. As one can see, in both the scenes, a
number of classes (e.g. windows/doors, moulding and other)
are often confused with walls. A possible reason for this is that
the dataset is highly unbalanced and the wall class has lot more
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Table 2. Visualization of the result of the automatic segmentation of Ducal Palace at Urbino courtyard (left) and a view of the Palazzo
Ferretti facade (right).

DGCNN RadDGCNN Combined
classes precision recall f1-score IoU precision recall f1-score IoU precision recall f1-score IoU
column 0.7454 0.6751 0.7085 0.5486 0.8424 0.8601 0.8511 0.7409 0.7766 0.7866 0.7816 0.6415

window/door 0.9154 0.6821 0.7817 0.6416 0.8912 0.7024 0.7856 0.6470 0.9267 0.7016 0.7986 0.6647
wall 0.8441 0.9207 0.8808 0.7869 0.8942 0.9084 0.9012 0.8202 0.8677 0.9239 0.8949 0.8098

pillar 0.8636 0.6649 0.7513 0.6017 0.7836 0.7094 0.7446 0.5931 0.8733 0.7001 0.7772 0.6356
floor 0.9580 0.9943 0.9758 0.9681 0.9117 0.9864 0.9476 0.9528 0.9679 0.9969 0.9822 0.9650

moulding 0.8258 0.7296 0.7747 0.6322 0.8339 0.8005 0.8169 0.6904 0.8577 0.7702 0.8116 0.6829
vault 0.9371 0.9640 0.9504 0.9054 0.9294 0.9744 0.9513 0.9072 0.9407 0.9722 0.9562 0.9160
other 0.6781 0.7742 0.7230 0.5661 0.6825 0.7568 0.7177 0.5597 0.7308 0.7946 0.7614 0.6147

micro avg 0.8726 0.8907 0.8894
macro avg 0.8477 0.8008 0.8193 0.7063 0.8519 0.8383 0.8431 0.7389 0.8677 0.8308 0.8455 0.7413

weighted avg 0.8729 0.8726 0.8698 0.8898 0.8907 0.8892 0.8897 0.8894 0.8874

Table 3. Results of the semantic segmentation of the Ducal Palace at Urbino scan.

DGCNN RadDGCNN Combined
classes precision recall f1-score IoU precision recall f1-score IoU precision recall f1-score IoU
ashlar 0.4712 0.2445 0.3220 0.1919 0.5557 0.3553 0.4335 0.2767 0.5772 0.3174 0.4096 0.2575

roof 0.9658 0.9833 0.9745 0.9502 0.9999 0.9725 0.9860 0.9724 0.9996 0.9812 0.9903 0.9808
window/door 0.6929 0.6564 0.6742 0.5085 0.8016 0.6201 0.6992 0.5376 0.7975 0.6811 0.7347 0.5806

wall 0.8231 0.8744 0.8480 0.7361 0.8353 0.8723 0.8534 0.7443 0.8377 0.8924 0.8642 0.7609
floor 0.9272 0.9655 0.9460 0.8975 0.9117 0.9864 0.9476 0.9004 0.9361 0.9932 0.9638 0.9302

moulding 0.8118 0.6520 0.7232 0.5664 0.7374 0.7153 0.7262 0.5701 0.7985 0.7073 0.7501 0.6002
vault 0.6420 0.8573 0.7342 0.5800 0.7103 0.7897 0.7479 0.5973 0.7255 0.8501 0.7829 0.6432
other 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

micro avg 0.8058 0.8152 0.8325
macro avg 0.6667 0.6542 0.6527 0.5538 0.6940 0.6639 0.6742 0.5748 0.7090 0.6778 0.6870 0.5942

weighted avg 0.8021 0.8058 0.7999 0.8090 0.8152 0.8097 0.8266 0.8325 0.8267

Table 4. Results of the semantic segmentation of the Palazzo Ferretti scan.
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a) Palazzo Ducale

DGCNN RadDGCNN
classes precision recall f1-score IoU precision recall f1-score IoU

accuracy 0.8769 0.8893
macro avg 0.8423 0.8084 0.8221 0.7101 0.8433 0.8366 0.8377 0.7321

b) Palazzo Ferretti

DGCNN RadDGCNN
classes precision recall f1-score IoU precision recall f1-score IoU

micro avg 0.8040 0.8338
macro avg 0.6644 0.6404 0.6374 0.5493 0.7890 0.6928 0.7145 0.6086

Table 5. Example of results with different values of K and R (K=40, R=0.2), for the two scenes (Ducal Palace, a), and Palazzo Ferretti,
b))

Figure 5. Confusion matrix of the combined approach on the
PDU scene.

points if compared to other classes. In the PDU test dataset,
there are around 1.4 million points belonging to the class wall,
while only 460 k points for mouldings and 74 k for the class
other. In the case of the PF scene, we can observe that the clas-
sifier fails in detecting ashlar and often classify it as wall. This
is somehow expected, as ashlars are in fact similar to walls, thus
more examples of the class would be probably needed to prop-
erly train the network. We also note that the other class, which
simply collect elements that are not classified, is, as expected,
hard to recognize (especially in the PF scene), as it lacks of dis-
tinct characteristics and a sufficient number of data examples.

Finally, we would like to point out that, beside networks regu-
lar hyper-parameters tuning, the choice of neighbourhood to be
considered in EdgeConv operation, might lead to different res-
ults. In the case of DGCNN, as the learning is driven by KNN,
the value of K can be changed to spatially enlarge or restrict the
neighbourhood used to extract hidden features from points. In
the case of Radius distance, one can leverage a different para-
meter, R, which allows to choose a specific neighbourhood ra-
dius. While investigating the optimal choices based on the con-
sidered point clouds is out of the scope of this study, we show
as an example, in Table 5, the results obtained with a different
choice of parameters, where the point neighborhoods have been
extended to consider more surrounding points. Specifically, we
set K to 40 for both DGCNN and RadDGCNN, and R to 0.2
for RadDGCNN. While in the case of the PDU, where results
were already better, there is no significant difference, on the PF
scene the accuracy of our method increases (approximately by

Figure 6. Confusion matrix of the combined approach on the PF
scene.

2%). An interesting direction to investigate is that of under-
standing how to optimally tune such parameters, e.g. driven by
the peculiarities of the specific data at hand.

5. CONCLUSIONS AND FUTURE WORKS

In this paper we focused on evaluation of DGCNN based tech-
niques in the historical building domain. We therefore evaluated
our method under a simple and directly measurable condition:
we learn from a portion of a scene and we predict the remaining
part. While this setting allows us to draw preliminary conclu-
sions regarding the ability of semantically segmenting architec-
tural objects, this is surely a simplified situation.

Even if the setting can be of a certain interest in practice, as
automatically process a partially annotated scene can alone sens-
ibly reduce annotation time consumption, more generalization
has to be achieved by predicting totally unknown scenes. How-
ever, this requires enough annotated point cloud data to properly
train the network, which can be not trivial to obtain. An inter-
esting research direction is that of using synthetic data to form a
critical mass of annotated point clouds to learn from. This idea
was recently explored by our research group in (Morbidoni et
al., 2020).

In conclusion, we think that results provided by our experiments
are promising and motivate further studies in this direction. Fu-
ture works include to deeply investigate the application of more
solid domain grounded constraints and data processing tech-
niques, as well as the possibility to build such knowledge into
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the deep learning models. An other aspect to be addressed is
that of understanding the importance of single features. For ex-
ample, in the present experiments we used HSV encoded color.
Further experiments are planned to quantify its effective contri-
bution to the the classification results, and to measure perform-
ances in situations where color is not available.
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