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Abstract: The main reason why peritoneal dialysis (PD) still has limited use in the management
of patients with end-stage renal disease (ESRD) lies in the fact that the currently used glucose-
based PD solutions are not completely biocompatible and determine, over time, the degeneration
of the peritoneal membrane (PM) and consequent loss of ultrafiltration (UF). Here we evaluated
the biocompatibility of a novel formulation of dialytic solutions, in which a substantial amount of
glucose is replaced by two osmometabolic agents, xylitol and L-carnitine. The effect of this novel
formulation on cell viability, the integrity of the mesothelial barrier and secretion of pro-inflammatory
cytokines was evaluated on human mesothelial cells grown on cell culture inserts and exposed to
the PD solution only at the apical side, mimicking the condition of a PD dwell. The results were
compared to those obtained after exposure to a panel of dialytic solutions commonly used in clinical
practice. We report here compelling evidence that this novel formulation shows better performance in
terms of higher cell viability, better preservation of the integrity of the mesothelial layer and reduced
release of pro-inflammatory cytokines. This new formulation could represent a step forward towards
obtaining PD solutions with high biocompatibility.
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1. Introduction

PD is an established home care, cost-effective kidney replacement therapy, for patients
suffering from end-stage renal disease. PD uses the peritoneum as a biological dialysis
membrane [1] and its blood depuration mode (dialytic exchange) is based on the exchange
of solutes and removal of fluid from the blood in the peritoneal capillaries, through the
infusion of 2 L of a PD solution into the peritoneal cavity via an implanted intra-abdominal
catheter. Then, the effluent is drained after a dwell time (4 to 8 h) before fresh dialysate is
re-infused either manually (Continuous Ambulatory PD; CAPD) with four exchanges in
average per day or employing a cycler (Automated PD; APD) during the night (in average
8 h). The composition of the PD solution includes physiological concentrations of chloride,
calcium, sodium, magnesium, a pH buffer (lactate and/or bicarbonate) and an osmotic
agent to remove excess fluid from the patient via both the water-exclusive aquaporin
and the small-pore, solute-coupled fluid pathways [2]. The main osmotic agent used in
standard PD solution is glucose, due to its efficiency, low cost and acceptable safety profile.
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PD offers several advantages as compared to hemodialysis, including better preserva-
tion of residual renal function, a more gradual and continuous solute and fluid clearance
from the blood, minimal cardiac stress and similar survival rate [3]. However, PD is pre-
scribed only to a minority of ESRD patients [1,4] because of the limited biocompatibility
of the PD solutions, resulting in functional and/or structural injuries of mesothelial cells
and peritoneal leukocytes [5]. The progressive damage to the PM is characterized by
inflammation, neoangiogenesis, and fibrosis [6,7]. It is evidenced by fast peritoneal solute
transport rate, progressive decline of UF capacity, which is associated with poor patient
survival [8].

Severe transformation of the peritoneum, including progressive loss of the mesothelial
cell layer, a massive increase in submesothelial thickness, and rapidly-progressing, severe
peritoneal vasculopathy, is observed in patients under chronic PD with standard PD so-
lutions [7]. PD solutions toxicity causes early and pronounced peritoneal inflammation,
involving the invasion of the PM with macrophages and leucocytes, being the release of in-
flammatory cytokines another major driver of structural and functional deterioration [9,10].
Another key element of PM transformation is epithelial (mesothelial) to mesenchymal
transition (EMT), featured by a migration of mesothelial cells into the submesothelium
and transition to a myofibroblast cell type, and triggered by profibrotic and inflammatory
cytokines [11,12]. Myofibroblasts can secrete inflammatory, proangiogenic, and profibrotic
cytokines and extracellular matrix components [12]. The number of EMT cells in the
submesothelium rapidly increases with the duration of PD treatment [9].

Though several potential factors have been claimed to be responsible for the poor
biocompatibility of PD solutions, glucose is thought as the main culprit behind adverse
events occurring locally and systemically during the PD lifetime of patients. Thus, several
alternatives were examined over the years, but only two agents are currently used in
glucose-free dialysates for clinical practice: icodextrin and amino acids (AA). It should be
noted, however, that both solutions only replace up to 50% of daily glucose absorption [13].
Icodextrin is a glucose polymer derived from starch which allows a slow but sustained
peritoneal UF and is indicated for use during a single long dwell per day [14]. A recent
systematic review and meta-analysis showed that the use of icodextrin-containing PD
solution, compared to a glucose-only PD regimen, improves peritoneal UF and reduces
episodes of fluid overload [15]. However, this acidic PD solution has been associated with
increased local and systemic inflammation [16,17]. AA-based solutions, with a pH of 6.6,
have been developed in order to improve the dietary protein intake as well as the metabolic
status of PD patients, though their use is limited to a single daily exchange due to the risk of
acidosis and azotemia-related side effects [18]. The biocompatibility of AA-based solution
remains uncertain, and experimental studies and findings in humans do not unanimously
show improved peritoneal biocompatibility [19].

Reduced exposure of the PM to glucose is one of the key objectives of the current
research in PD. A novel and tantalizing strategy is represented by the use of osmo-metabolic
agents in the PD solutions [20,21]. This novel composition of PD solutions would ensure
not only a reduction in the intraperitoneal glucose load without compromising UF, but also
the independent mitigation of underlying metabolic disorders. L-carnitine has a molecular
weight of 161.2 Da, is highly water-soluble, and is chemically stable in aqueous solutions,
which suggest its suitability in PD fluid as a prototypical osmo-metabolic agent [22]. Several
in vitro and in vivo investigations have indicated PD solution containing L-carnitine to be
more biocompatible than standard glucose-based solutions [21,22]. In addition, our results
in CAPD patients indicate that L-carnitine has potential use as a new osmotic agent in
PD solution [23], and that L-carnitine-containing solution significantly improves insulin
sensitivity and better maintains diuresis when compared to glucose-based solutions [24].
Of note, in all studies performed so far, the addition of L-carnitine to the PD solution has
proven to be safe and well-tolerated by patients, without adverse events attributable to
the treatment [22]. Osmo-metabolic agents may be used alone, or in combination, in order
to maximize their therapeutic effects. L-carnitine and D-xylitol are a concrete example of
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such a combination. Xylitol (molecular weight 151.2 Da) is a five-carbon sugar alcohol
involved in the pentose phosphate shunt, and has low glycemic properties [25]. In clinical
trials [26], the use of xylitol-containing PD fluid proved to be safe, maintained peritoneal
UF, and significantly improved glycemic control. Recently, we developed new PD solutions
containing L-carnitine (1.24 mmol/L), xylitol (46 or 98.6 mmol/L), and a low amount of
glucose (27.7 mmol/L) [21].

We previously reported that PD solutions containing xylitol and L-carnitine signifi-
cantly improved endothelial cells viability in vitro, compared with conventional PD solu-
tions [21].

In the present study, we compared the effects of this novel formulation of PD solutions
to a wide number of commercial PD solutions, on human mesothelial cells. We demon-
strated that this formulation improves cell viability, the integrity of mesothelial layer, and
reduces the release of pro-inflammatory cytokines.

2. Results

2.1. Effect of Exposure to Different PD Solutions on Cell Viability and Transepithelial Electrical
Resistance (TEER)

Human Mesothelial Cells (HMC) were cultured to confluence on extracellular matrix-
coated inserts and exposed to the PD solutions only at the apical side, thus mimicking the
condition of an 8 h PD dwell. Cell viability was evaluated after 8 h of exposure to different
commercial PD solutions and compared to that of novel experimental solutions in which
part of the glucose was substituted by xylitol and L-carnitine (glucose-sparing + L-carnitine).
The same formulation without L-carnitine was also tested (glucose-sparing – L-carnitine).
A positive control of cell viability was represented by cell monolayers exposed to culture
medium at the apical side and a negative control was represented by cells exposed to 5 µM
staurosporine to induce apoptosis.

As reported in Figure 1a, cell viability decreased with increasing glucose concen-
trations (Low, Medium and High glucose concentration). As for Physioneal 40®, com-
pared to control cells (set as 100% of cell viability), only the high-glucose formulation
induced a strong, significant reduction of cell viability (67.38 ± 5.4%). As for Dianeal
PD4®, both medium- and high-glucose solutions induced a significant reduction of cell
viability (78.49 ± 3.62% and 72.89 ± 2.3%, respectively) compared to control. A dramatic
reduction of cell viability was observed in cells exposed to high-osmolarity BicaVera® PD
solution (49.95 ± 3.72%). No statistically significant reduction of cell viability was observed
in cells exposed to icodextrin-based (Extraneal®) and AA-based (Nutrineal®) solutions
(83.46 ± 10.21% and 84.37 ± 4.12%, respectively). Strikingly, although in glucose-sparing
solutions (- L-carnitine), a significant reduction of cell viability was observed in medium-
and high-osmolarity solutions (79.97 ± 3.75% and 64.52 ± 3.71%, respectively), the pres-
ence of L-carnitine seemed to increase the biocompatibility of the solution. In fact, cell
viability after exposure to high osmolarity solution (+ L-carnitine) was the highest (77.54 ±
4.21%), compared to all high osmolarity solutions and significantly higher compared to
the same formulation without L-carnitine (64.52 ± 3.71%). This result might indicate an
additional protective effect of L-carnitine on cell viability, at least after short-term exposure
(8 h) to high osmolarity PD solutions.

Another interesting observation arising from these experiments is that high osmo-
larity BicaVera®, buffered at pH 7.4 by bicarbonate, is the PD solution with the lowest
biocompatibility in this in vitro test.

As a direct index of mesothelial integrity, we measured the transepithelial electrical
resistance (TEER) upon HMC exposure to all PD solutions reported above. TEER of HMC
monolayers was measured before and 4 h after exposure to PD solutions at the apical
side. Variations in TEER were expressed as % of the value measured before exposure to
PD solutions. As reported in Figure 1b, in control cells, in which culture medium was
maintained in the apical side, TEER did not significantly change during the 4 h interval.
Instead, compared to control cells, TEER was significantly decreased in cells treated with
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high osmolarity Physioneal 40® (−9.6 ± 2.29%) and Dianeal PD4® (−7.4 ± 1.21%), medium
and high osmolarity BicaVera® (−6.4 ± 2.25% and −12 ± 1.79%, respectively). Also,
exposure to glucose-free PD solutions Extraneal® and Nutrineal® induced a statistically
significant reduction of TEER (−6.4 ± 2.46% and −6.4 ± 0.68%, respectively) compared to
the control group. Strikingly, the glucose-sparing solutions (± L-carnitine), even at high
osmolarity, induced only a slight, non-significant reduction of TEER compared to control.
The presence of L-carnitine might produce an additional protective effect, although not
statistically significant.

Figure 1. Effects of PD solutions on cell viability and TEER in HMC. Cells were exposed to low,
medium and high (L, M, H) osmolarity glucose-based solutions (Physioneal 40®, Dianeal PD4®,
BicaVera®), to glucose-free solutions (Extraneal®, Nutrineal®), and to low, medium and high (L, M, H)
osmolarity glucose-sparing XyloCore solutions (± L-carnitine) for 8 h. (a) MTT assay was performed
to evaluate cell viability. Cells incubated with Prigrow I medium were used as a control, and their
cell viability set to 100%. Staurosporine (5 µM) served as a negative control of cell viability. (b) TEER
was measured on each monolayer before and after incubation with PD solutions. Reductions of
TEER (∆TEER) were expressed as % of the value measured before exposure to the PD solutions.
Significance was analyzed using a one-way ANOVA. Values are expressed as mean ± SEM. (n = 5).
* p < 0.05; ** p < 0.01; *** p < 0.001 indicate statistical significance respect to control cells by one-way
analysis of variance (ANOVA) with Dunnett’s multiple comparison test; # p < 0.05; ## p < 0.01;
### p < 0.001 values calculated by one-way analysis of variance (ANOVA) with Sidak’s multiple
comparisons test, indicating how much the results differ within the same formulation as the glucose
concentration varies. § p < 0.05; §§ p < 0.01; §§§ p < 0.001; values calculated by one-way analysis of
variance (ANOVA) with Sidak’s multiple comparisons test, indicating how much the results differ
from other treatment with the same concentration of glucose and same osmolarity. $ p < 0.05 values
calculated in HMC incubated ± L-carnitine by t-test.

2.2. Effect of Exposure to Different PD Solution on Tight Junctions’ Integrity

Observation of cell monolayers under a bright-field microscope indicated that reduc-
tion of TEER, in monolayers exposed to high osmolarity PD solutions, was likely related
to increased intercellular spaces without an evident detachment of cells from the culture
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inserts. We then measured the integrity of HMC epithelial barrier by evaluating the lo-
calization of the epithelial tight junction marker ZO-1 by immunofluorescence confocal
analysis as reported in Figure 2.

Figure 2. Immunofluorescence analysis of tight junction marker Zo-1 in HMC, grown on permeable
supports and exposed for 8 h to different PD solutions at the apical side. HMC monolayers grown on
permeable supports were incubated for 8 h at the apical side with high osmolarity glucose-based
PD solutions (Physioneal 40®, Dianeal PD4® and BicaVera®), glucose-free Extraneal®/Nutrineal®

and high osmolarity glucose-sparing PD solutions (± L-carnitine). Cells were immunostained with
anti Zo-1 antibodies (green) and scanned by laser confocal microscopy. Nuclei were stained with
propidium iodide (red). Scale bars = 10 µm.

HMC monolayers were either left in culture medium (control) or incubated for 8 h
at the apical side with all the high osmolarity solutions used in the study plus Extraneal®

and Nutrineal®. Cells were then fixed and subjected to immunostaining with anti Zo-1
antibodies and nuclei were counterstained with propidium iodide. Confocal microscopy
showed that ZO-1 was organized to form apical rings in control cells and became discontin-
uous after incubation with glucose-based solutions. In particular, the tight junction marker
was strongly reduced after incubation with Physioneal 40® and Dianeal PD4® and almost
disappeared after incubation with BicaVera®. A milder effect was induced by glucose-
free solutions (Extraneal® and Nutrineal®). Interestingly, treatment with glucose-sparing
solutions did not alter ZO-1 expression that was apparently comparable to control cells.
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2.3. Effect of Exposure to Different PD Solution on Pro-Inflammatory Cytokines

Next, we tested whether the exposure of HMC monolayers to different PD solutions
could affect the release of different inflammatory cytokines. Considering the results ob-
tained from the MTT test, TEER and immunofluorescence, we limited the analysis to high
osmolarity PD solutions only.

As shown in the heatmap reported in Figure 3, we found that Physioneal 40® and
BicaVera® induced a strong release of different pro-inflammatory cytokines compared to
Dianeal PD4® and glucose-sparing PD solutions. Interestingly, the apical release of IL-2,
a pivotal growth factor regulating the proliferation of T lymphocytes [27], was very low in
cells exposed to Dianeal PD4® and glucose-sparing PD solutions. The release of IL-12p70,
one of the key factors in the activation of dendritic cell response [28,29], was higher in
cells exposed to Physioneal 40®/BicaVera® than in cells exposed to glucose-sparing or
Dianeal PD4® solutions; the same effect was seen on the production of TNF-α, which
induces maturation of dendritic cells. IL-17A was lower in HMC monolayers exposed
to Dianeal PD4® and glucose sparing PD solutions than in monolayers exposed to other
PD solutions. Another important function of mesothelial cells is their ability to produce
chemotactic factors for circulating leucocytes. As seen in Figure 3, we also found that HMC
produced high levels of IP-10, a chemoattractant for monocyte/macrophages, T cells, NK
cells and dendritic cells, upon exposure to Physioneal 40®/BicaVera® [30]; on the contrary,
glucose-sparing or Dianeal PD4® solutions limited the release of IP-10 and RANTES being
the latter another chemotactic factor to T cell, eosinophils and basophils [31].

Figure 3. Cytokines, chemokines and growth factors released from the apical side by HMC incubated
with high osmolarity PD solutions. A heatmap shows the result of a quantitative 27-plex Luminex
assay. The concentration (pg/ml) increases as the color changes from red to violet.

Angiogenic growth factors such as FGF basic and VEGF [32] were released in relatively
high levels in cells incubated with BicaVera®, at medium levels with Physioneal 40®, low
levels with Dianeal PD4® and even lower levels with glucose-sparing +L-carnitine solutions.

Finally, we also found that HMC could release high levels of growth factors in presence
of Physioneal 40®/BicaVera®, such as GM-CSF (leucocytes), and PDGF-BB (fibroblast);
interestingly, the glucose-sparing PD solutions or Dianeal PD4® were capable to hamper the
release of these growth factors that are involved in the inflammatory response during PD.
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3. Discussion

Limited progress has been made in the last 50 years of peritoneal dialysis, regarding
glucose replacement with a novel osmotic agent. Glucose-based solutions are still the most
used and PD treatment still confers serious local and systemic toxicity.

In this work, we analyzed the response of human immortalized mesothelial cells
grown as a monolayer to short-term exposure (8 h) to PD solutions with different compo-
sition. Specifically, we compared the effects induced by conventional glucose-based PD
solutions (Physioneal 40®, Dianeal PD4® and BicaVera®), glucose-free solutions (Extraneal®

and Nutrineal®) and a novel formulation of glucose-sparing solutions in which part of the
glucose is substituted by xylitol with the addition of L-carnitine.

Here, for the first time, we aimed to recreate in vitro a mesothelium-like structure,
using a cell line of human mesothelium, grown to confluence on porous cell culture inserts
previously coated with a layer of an extracellular matrix. Cells were exposed to different PD
solutions only at the apical side, as it happens during PD, and we evaluated cell viability,
the integrity of the cell monolayer and the release of pro-inflammatory cytokines with a
multidisciplinary approach. To the best of our knowledge, this is the first biocompatibility
study in which mesothelial cells are exposed apically to PD solutions, thus recapitulating a
condition more similar to PD in vivo and allowing transepithelial water and solutes fluxes.

A number of observations in both humans and animals indicated that hypertonic
concentrations of glucose and glucose degradation products (GDP), along with acidic pH,
are harmful to mesothelial cells function and viability [33].

Icodextrin-based PD solution may, in principle, protect PM from glucose and GDP, but
there is some concern that icodextrin can induce a subclinical inflammatory response at both
peritoneal and systemic level [33]. As for AA-based PD solutions, clinical observations and
human studies have provided inconsistent results. Patients receiving AA-based solutions
maintained a better nutritional state although the survival was comparable to controls
receiving glucose-based solutions [34].

The fact that severe peritoneal damage is still observed in patients infused with
low-GDP PD solutions, suggests that glucose per se has a deteriorating effect on the PM.
A number of studies have shown direct adverse effects of high glucose concentrations on
cellular function [35,36]. It has been demonstrated that high glucose in the conventional PD
solutions induces cellular reactive oxygen species (ROS) in human peritoneal mesothelial
cells and induces fibronectin expression, thus favoring the pathogenesis of peritoneal
fibrosis [37]. Importantly, glucose may alter the expression of intercellular junctions within
the mesothelium by decreasing the expression of junction-associated proteins such as
zonula occludens protein 1 (ZO-1), E-cadherin, and β-catenin [38,39]. High osmolarity itself
is also a key factor affecting the biocompatibility of PD solutions [40,41].

In this study, we used a new formulation that combines two osmotic agents, xylitol
and L-carnitine, replacing a substantial part of glucose to improve the PD solution biocom-
patibility. We decided to leave some glucose in the PD solution as it is still a key nutrient
for this category of patients often affected by malnutrition. The other reason was not to
overexposed patients to xylitol as a very high concentration, over 150 g of intraperitoneal
daily load [33], may have some adverse effects. However, it should be taken into account
the current formulation of our glucose-sparing PD solution would get rid up to 80% of the
glucose currently used in PD therapy as an osmotic agent.

By simulating an 8-h dwell, exposing the apical side of a HMC monolayer to PD
solutions, we verified whether these solutions maintain a high percentage of cell viability.
Interestingly, we observed that all the PD solutions currently used in clinical practice signif-
icantly reduce cell viability especially in the formulation with the highest osmolarity, with
the worst performance shown by BicaVera which has the highest osmolarity (511 mOsm/l),
compared to others (around 480 mOsm/l) and is buffered with bicarbonate. Among the
glucose-sparing solutions, the addition of L-carnitine further increased cell viability of
the highest osmolarity formulation. The beneficial effect provided by the addition of
L-carnitine in PD solutions is known at the systemic level [22].
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The new solutions were tested in cultured human umbilical vein endothelial cells
(HUVECs) obtained from healthy and gestational diabetic mothers. In both cell types,
the tested solutions did not induce cytotoxicity, nitro-oxidative stress, and inflammation
caused by the neutral pH glucose-based PD solutions [21]. This suggests that a small
amount of glucose may be maintained in the formulation of the PD solution, in order to
take advantage of its UF ability and energy-providing potential.

However, the local effect on mesothelial cells has not been deeply investigated so
far. An intriguing hypothesis that could explain the cytoprotective effect of L-carnitine in
mesothelial cells exposed to high osmolar stress might involve the non-neuronal cholinergic
system. We previously reported that human peritoneum mesothelial cells express the
organic cation transporter OCTN1, implicated in the release of acetylcholine (Ach) outside
the cell [42]. L-carnitine could be acetylated to acetylcarnitine in the mitochondria and
provide acetyl groups for Ach biosynthesis which, in turn, would be transported outside
the cell by OCTN1. Mesothelial cells expressα-7 nicotinic Ach receptors [43], and it has
been demonstrated the existence of a cholinergic autocrine loop that can regulate cell
growth [44,45]. Therefore, L-carnitine might boost Ach production and provide an anti-
inflammatory effect [46], proliferation [44,45], and all the protective effects attributed to
AChRs stimulation [47].

Another key parameter that we considered in our study is the effect of PD solutions
on mesothelial integrity. Intact mesothelium provides in vivo resistance against solute
permeation. Damage of intercellular junctions leads to an increase in the solute perme-
ability. High glucose concentration, along with high osmolarity, damage intercellular
junctions in human peritoneal mesothelial cells [38,48]. These changes are accompanied by
a reduction in the TEER and increase in paracellular transport [49]. In this work, we pro-
vide compelling evidence that this novel formulation of PD solutions better preserves the
integrity of mesothelial cells layer compared to conventional PD solutions. The drop in
TEER was, in fact, particularly evident in HMC monolayers exposed to Physioneal 40®,
Dianeal PD4®, and BicaVera® and the effect seemed to be proportional to the glucose
concentration. Interestingly, also Extraneal® and Nutrineal® induced a significant drop
in TEER. Conversely, after exposure to glucose-sparing solutions, the drop in TEER was
not statistically different from control monolayers, even when HMC were exposed to the
high osmolarity solutions. Addition of L-carnitine showed a small additional ameliorative
effect, although it was not statistically significant. Our glucose-sparing solutions were the
ones with the best ability to preserve the integrity of mesothelial monolayer, as indicated
by immunofluorescence analysis of Zo-1. Consistent with previous studies [38,50], the
present research demonstrates that high concentrations of glucose in PD solutions induced
mesothelial barrier disruption with a loss of epithelial tight junctions proteins such as ZO-1.
Tight junctions’ integrity was preserved by exposure to our novel solutions and this might
explain the effect on the TEER. Albeit obtained in an in vitro system, these results may
have major implications in vivo. In fact, the high paracellular permeability is a feature
of the so-called “high transporter” PD patients [51], in which the rapid dissipation of the
osmotic gradient between the dialysis solution and the blood, leads to poor ultrafiltration.
In this scenario, these new PD solutions, while preserving the integrity of the mesothelium,
would guarantee better UF.

Moreover, the disruption of intercellular junctions and loss of apical–basolateral polar-
ity in mesothelial cells trigger EMT, a process involving mesothelial cells transformation
into fibroblast-like cells with increased migratory, invasive and fibrogenic features [52,53].
This novel formulation of PD solutions could prevent demesothelization, peritoneal hyper-
permeability and a progressive reduction of UF. In addition, in this work, we evaluated the
secretion of a panel of 27 cytokines, chemokines and growth factors released in response
to exposure to all high osmolarity PD solutions. Interleukin-6 (IL-6) is a key player in
modulating inflammation and can be secreted by mesothelial cells [54] in response to
IL-1β [55]. In our assay, IL6 production seemed to be unaffected by the composition of
the PD solutions. Mesothelial cells in vivo can produce TNFα in response to bacterial
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infection [56]. In our in vitro system, TNFα release is reduced by the novel PD solution for-
mulation. Previous studies [57–59] demonstrated that exposure of the PM to PD solutions
in mice increased the Th17 response and a consequent IL-17A production. Interestingly,
IL-17A neutralization diminished peritoneal inflammation and fibrosis caused by chronic
exposure to dialysis fluids in mice, thus suggesting that IL-17A could be a good therapeu-
tic target to preserve the PM integrity in PD patients. In our hands, HMC released the
lowest amount of IL-17A when exposed to the novel formulation of xylitol + L-carnitine
solution. In response to pro-inflammatory mediators, mesothelial cells are able to secrete
the chemokines RANTES and IP-10, recruiting leukocytes from blood vessels into the
peritoneum, that is considered a diagnostic feature of peritonitis in PD patients [60,61].
We found decreased concentrations of these chemokines in response to exposure to the
novel solutions. We also found that the release of VEGF is very low when the cells were
exposed to novel PD solution formulations compared to conventional ones. This is very
interesting since it has been demonstrated that mesothelial cells that underwent EMT are
the main source of VEGF in PD patients [62]. Ogata and collaborators [63] demonstrated
that exposure to high glucose levels caused a concentration-dependent increase of FGF
basic mRNA expression and secretion by human peritoneal mesothelial cells, indicating
that mesothelial cells are one of the peritoneal sources of this factor. Strikingly, in our study,
the lowest level of FGF basic is secreted by HMC exposed to the novel PD solution. The
role of PDGF-BB in PD is not fully understood. Patel and colleagues [64] demonstrated
that overexpression of PDGF-BB in rat peritoneal tissue induces a “non-invasive” EMT
process, characterized by angiogenesis without fibrosis. Anyhow, we found the lowest
release of PDGF-BB by HMC cells exposed to our novel PD solution.

In conclusion, our data clearly demonstrate that mesothelial cells can release increased
amounts of different pro-inflammatory and pro-fibrotic factors upon exposure to glucose-
based PD solutions. We identified pro-inflammatory cytokines, leucocytes growth factors
and chemokines activating several immune cells such as T lymphocytes and dendritic
cells. In addition, the release of vascular and fibroblast growth factors could have a central
role in the pathogenic alteration of peritoneum leading to irreversible changes in cellular
responses to classical PD solutions. On the contrary, the use of our innovative PD solutions
showed a limited capacity to induce the activation of the inflammasome in mesothelial
cells, thereby maintaining proper cellular homeostasis.

Two clinical trials with the new osmo-metabolic formulation are under advanced
development. FIRST (efficacy and safety assessments of a peritoneal dialysis solution
containing glucose, xylitol and L-Carnitine compared to standard PD Solutions in CAPD)
is an ongoing 1-month study (NCT04001036), whereas the ELIXIR trial (a study to Evaluate
the efficacy and safety of Xylocore, a glucose sparing experimental solution for PD) is
a planned international multicenter 6-month study, (NCT03994471). These studies will
examine the safety, tolerability, and efficacy of the new PD solutions based on L-carnitine,
xylitol and low-glucose not only on preservation of PM and residual kidney function, but
also on underlying comorbidities able to increase cardiovascular risk.

The comparison of dialysis solutions currently used in clinical practice provides in-
teresting points of discussion. In our experiments, BicaVera® (neutral pH, bicarbonate
buttered) appears to be less biocompatible than Physioneal 40® (neutral pH and bicarbon-
ate/lactate buffered) and Dianeal PD4® (acidic pH and lactate buffered).

It should also be taken into account that the effect of the pH of peritoneal dialysates on
peritoneal membrane morphology is still debated, with functional relevancy predominantly
derived from experimental studies. Recent human studies by automated quantitative
histomorphometry and molecular analyses on peritoneal tissue biopsies obtained from
children with ESRD prior to and during maintenance PD with low GDP and neutral pH
fluids have shown the same submesothelial fibrosis, loss of mesothelium, and advanced
vasculopathy observed with conventional PD solutions (high GDP and acidic pH) [10].
Actually, a more evident increase in micro-vascular density correlating with an increase in
small solute transport was seen with low GDP, neutral pH PD solutions when compared
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to conventional PD solutions. Though conclusions need to be drawn with caution, it
has to be noted that clinical trials of low GDP, neutral pH PD solutions have failed to
demonstrate a significant benefit with regards to peritoneal membrane function and UF
capacity, suggesting that the presence of glucose as the main osmotic agent in PD therapy
is the real culprit of the morphological changes observed in both low GDP, neutral pH and
high GDP, acidic pH PD solutions [19,65,66].

4. Materials and Methods
4.1. Cell Culture

The Immortalized Human Mesothelial Cells-SV40 (HMC) were purchased from Ap-
plied Biological Materials (ABM, Richmond, BC, Canada). Cells were isolated from the
human mesentery mesothelium and immortalized with recombinant lentiviruses carrying
SV40 large T antigen. Cells were maintained in Prigrow I medium with 0.86 g/L glucose
(cat. #TM001, Applied Biological Materials, Richmond, BC, Canada) supplemented with
10% fetal bovine serum, 100 i.u./mL penicillin, 100 µg/mL streptomycin, according to sup-
plier indications. Cells were grown on 25 cm2 or 75 cm2 extracellular matrix-coated flasks
(cat. #G299, Applied Biological Materials, Richmond, BC, Canada) at 37 ◦C in a humidified
incubator and a 5% CO2 atmosphere. Culture medium was changed every 2–3 days and
cells were subcultured when they became around 80% confluent. For all experiments,
HMC were grown as monolayers on 24 wells permeable supports (cat. #353095 Transwell
0.4 µm pore size; Costar, Cambridge, MA, USA) previously coated with a thin layer of
extracellular matrix (cat. #G422, Applied Biological Materials, Richmond, BC, Canada) at
a density of 2.2 × 105 cells/cm2. Experiments were generally performed five days after
seeding when the cell monolayers reached high TEER.

4.2. Measurements of Transepithelial Electrical Resistance (TEER)

The transepithelial electrical resistance (TEER) was routinely measured with an Ep-
ithelial Voltohmmeter EVOM (World Precision Instruments, Sarasota, FL, USA) according
to the manufacturer’s protocol. The EVOM system includes a pair of STX2 chopstick
electrodes and allows non-destructive measurements of TEER. A TEER value used as blank
was obtained measuring the electrical resistance across an insert without cells and then
subtracted from the TEER values recorded across each monolayer. The final resistance
value for unit area was obtained from each sample resistance multiplied for the surface
area of the filter membrane (~0.3 cm2). The TEER across the HMC monolayers started to
increase after 1 day of culture and the maximum value (~35 Ω·cm2) was achieved between
day 3 and 5, after which the TEER progressively decreased. The values of TEER obtained in
our measurements are in agreement with previous reports on sheep and human mesothe-
lium. TEER measured before exposure to different PD solutions was set as 100% for each
monolayer. Variations of TEER were expressed as %.

4.3. PD Solutions Used in the Study
4.3.1. Glucose-Based Solutions

• Physioneal 40® (Baxter Healthcare Corp., Deerfield, IL, USA); pH = 7.4, bicarbonate and
lactate-buffered; Low glucose (1.36%), Medium glucose (2.27%) and High glucose (3.86%);

• Dianeal PD4® (Baxter Healthcare Corp., Deerfield, IL, USA); pH = 5–6.5, lactate-
buffered; Low glucose (1.36%), Medium glucose (2.27%) and High glucose (3.86%);

• BicaVera® (Fresenius Medical Care, Bad Homburg, Germany); pH = 7.4, bicarbonate-
buffered; Low glucose (1.5%), Medium glucose (2.3%) and High glucose (4.25%).

4.3.2. Glucose-Free Solutions

• Nutrineal® (Baxter Healthcare Corp., Deerfield, IL, USA), pH = 5–6, lactate-buffered,
1.1% amino acids;

• Extraneal® (Baxter Healthcare Corp., Deerfield, IL, USA), pH = 6.6, lactate-buffered,
7.5% icodextrin.
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4.3.3. Glucose-Sparing Solutions

• XyloCore, pH = 5.5, lactate-buffered; Low Strength: 0.7% Xylitol, 0.5% Glucose, and
± 0.02% L-carnitine, Medium Strength: 1.5% Xylitol, 0.5% Glucose, and ± 0.02%
L-carnitine, High Strength: 2.0% Xylitol, 1.5% Glucose, and ± 0.02% L-carnitine

For detailed composition of each PD solution see Table 1.

Table 1. Composition of PD solutions.

GLUCOSE- BASED PD SOLUTIONS

Physioneal 40® Dianeal PD4® BicaVera®

mMol/L LOW MEDIUM HIGH LOW MEDIUM HIGH LOW MEDIUM HIGH

Sodium 132 132 132 132 132 132 134 134 134
Calcium 1.25 1.25 1.25 1.25 1.25 1.25 1.75 1.75 1.75

Magnesium 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.5 0.5
Chloride 95 95 95 95 95 95 104.5 104.5 104.5
Glucose 75.5 126 214 75.5 126 214 83.25 126.1 235.9
Xylitol - - - - - - - - -
Lactate 15 15 15 40 40 40 - - -

Bicarbonate 25 25 25 - - - 34 34 34
Icodextrin - - - - - - - - -

Aminoacids - - - - - - - - -
L-carnitine - - - - - - - - -
Osmolarity
(mOsmol/L) 344 395 483 344 395 483 358 401 511

pH 7.4 7.4 7.4 5–6.5 5–6.5 5–6.5 7.4 7.4 7.4

GLUCOSE- FREE
PD SOLUTIONS GLUCOSE-SPARING PD SOLUTIONS

Extraneal® Nutrineal® − L-CARNITINE + L-CARNITINE

mMol/L Icodextrin
7.5% Amino acids 1.1% LOW MEDIUM HIGH LOW MEDIUM HIGH

Sodium 133 132 134 134 134 134 134 134
Calcium 1.75 1.25 1.75 1.75 1.75 1.75 1.75 1.75

Magnesium 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5
Chloride 96 105 103.5 103.5 103.5 103.5 103.5 103.5
Glucose - - 27.7 27.7 83 27.7 27.7 83
Xylitol - - 46 98.6 125 46 98.6 125
Lactate 40 40 35 35 35 35 35 35

Bicarbonate - - - - - - - -
Icodextrin 7.5 (%) - - - - - - -

Aminoacids - 87.16 - - - - - -
L-carnitine - - - - - 1.24 1.24 1.24
Osmolarity
(mOsmol/L) 284 365 351.9 404.5 486.2 351.9 404.5 486.2

pH 5–6 6.6 5.5 ± 0.5 5.5 ± 0.5 5.5 ± 0.5 5.5 ± 0.5 5.5 ± 0.5 5.5 ± 0.5

4.4. Immunofluorescence and Confocal Microscopy

HMC were grown as monolayers on permeable filter supports for 5 days and then ex-
posed to: high osmolarity Physioneal 40®, Dianeal PD4®, BicaVera®, Nutrineal®, Extraneal®,
glucose-sparing solutions ± L-carnitine for 4 h at 37 ◦C in the incubator. After each treat-
ment, monolayers were fixed in cold methanol (−20 ◦C) for 5 min, rinsed with phosphate-
buffered saline (PBS) and blocked using 1% bovine serum albumin in PBS for 45 min at
room temperature. After blocking, monolayers were incubated with the mouse antibody
anti ZO1 (ZO1-1A12 cat. # 33-9100, dil. 1:1000; Thermo Fisher Scientific, Waltham, MA,
USA), overnight at 4 ◦C in blocking buffer.

After three washes in PBS, cells were incubated with Alexafluor 488-conjugated
secondary antibodies (Thermo Fisher Scientific, Waltham, MA, USA) for 1 h at room
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temperature, followed by washes with PBS and staining with propidium iodide (500 nM,
Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) in SSC 2X (0.3 M NaCl, 0.03
M sodium citrate, pH 7.0) for 5 min. Monolayers were than washed several times with
2X SSC buffer and mounted in PBS/glycerol (1:1) containing 1% n-propylgallate, pH 8.0.
Specimens were examined with a confocal laser-scanning fluorescence microscope (Leica
SP5, Leica Microsystems, Milan, Italy).

4.5. MTT Assay

The effect of commercial PD solutions versus glucose-sparing solutions on HMC
viability was assessed by the MTT assay. Cells were cultured as described above. On the
day of the experiment, the culture medium in the apical side was replaced by 400 µl of
different PD solutions, while the bottom of each well still contained 1ml of culture medium.
Control cells maintained the culture medium in the apical compartment. As a negative
control, we treated the cells with staurosporine, a protein kinase inhibitor commonly used
to induce widespread apoptosis. Monolayers were exposed to PD solution for 4 h at
37 ◦C in the incubator. This allows us to mimic the in vivo condition during PD in which
mesothelial cells are bathed by the PD solutions only at the apical side. TEER measurements
were performed on each monolayer before and after incubation with each PD solution.
Following incubation, 40 µL of tetrazolium MTT (5 mg/mL) (3-(4, 5-dimethylthiazolyl-2)-2,
5 diphenyltetrazolium bromide) were added in the apical compartment and cells were
incubated at 37 ◦C for an additional 4 h. During the reaction, the yellow tetrazolium
salt MTT is converted to purple formazan crystals by intracellular reducing equivalents
produced by metabolically active cells. Subsequently, 440 µL of acidic isopropanol (0.04 N
HCl in isopropanol) were added to each insert and mixed thoroughly to dissolve the
generated formazan crystals. The spectrometric absorbance value of the wells was read at
595 nm and 620 nm using a microplate reader (Bio-Rad, Hercules, CA, USA). Cells viability
upon different PD solutions was expressed as the percentage of control cells.

4.6. Cytokines Profiling Assay

A Luminex assay (#M500KCAF0Y, Bio-Plex Pro 27 Plex Human Cytokine kit, Bio-Rad
Laboratories, Hercules, CA, USA) enabling the simultaneous measurement of 27 secreted
cytokines in the conditioned media of HMC was performed. The panels included the
following 27 biomarkers:

Cytokines: IL-1β, IL-1 receptor antagonist (IL-1Ra), IL-2, IL-4, IL-5, IL-6, IL-7, IL-8,
IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, IFN-γ, tumor necrosis factor alpha (TNF-α);

Chemokine: Eotaxin, interferon-induced protein 10 (IP-10), monocyte chemoattractant
protein 1 (MCP-1), macrophage inflammatory protein 1 alpha and 1 beta (MIP-1α and
MIP-1β), regulated on activation T cell expressed and secreted (RANTES);

Growth factors: fibroblast growth factor (FGF Basic), granulocyte colony-stimulating
factor (G-CSF), granulocyte-macrophage CSF (GM-CSF), platelet-derived growth factor BB
(PDGF-BB), vascular endothelial growth factor (VEGF).

Cells were cultured as described above. On the day of the experiment, the apical
culture medium was replaced by different PD solutions as previously described and the cell
monolayers incubated for 8 h. Apical media from each well were collected; FBS was added
to apical samples at same concentrations of the culture medium; samples were centrifuged
at 1000× g for 15 min at 4 ◦C to remove any precipitate and stored at −80 ◦C until use.
Briefly, a mixture of recombinant analyte standards was diluted in culture medium and a
standard curve composed of 8 points was prepared. Standards, blanks, and samples (50 µL)
were added to a test 96 well plate containing antibodies that were chemically attached to
fluorescent-labeled microbeads and were incubated in the dark under shaking (900 rpm for
30 min) at room temperature. After washing steps, the biotinylated detection antibodies
were added to each well, and the plate was incubated in the dark for 30 min at RT with
continuous shaking. The plate was washed again, and streptavidin-phycoerythrin (50 µL)
was added to each well and incubation continued in the dark for 10 min at RT with shaking.
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Assay buffer (125 µL) was added to each well of the plate before being read on a BioPlex
Magpix Multiplex Reader (Bio-Rad Laboratories, Hercules, CA, USA). Each sample was
analyzed in duplicate and the data automatically analyzed and processed using Bio-Plex
Manager 6.0 software (Bio-Rad Laboratories, Hercules, CA, USA).

4.7. Statistical Analysis

All MTT and TEER experiments were repeated at least five times, and the results are
presented as mean ± standard error of the mean (SEM). Statistical analysis was performed
by one-way analysis of variance (ANOVA) with Dunnett’s test (comparing all groups
to control) or with Sidak’s test (for multiple comparisons) to compare the effects of the
different PD solutions. A two-tailed unpaired t-test was used to compare data sets in
glucose-sparing solutions with and without L-carnitine using GraphPad Prism version 8.0
for Windows (GraphPad Software, San Diego, CA, USA). Significance was defined as a
p-value < 0.05.

5. Conclusions

Our results indicate that a new formulation of glucose-sparing PD solutions with
xylitol and L-carnitine might represent a step forward in the search of a more biocompatible
dialytic solution in PD.

Although obtained in an in vitro system, these results indicate that the main draw-
backs associated with conventional glucose-based PD solutions, namely the loss of mesothe-
lial cells, fibrosis, vasculopathy, and inflammation, might be prevented by those solutions.
Clinical trials are under advanced development. Nonetheless, the mechanism through
which L-carnitine plays a protective role of on the mesothelium deserves further investiga-
tion at subcellular level.
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