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The Network Physiology field frames the multi-scale multi-dimensional nature of the body system
emerging in the interaction among organs, which interplay via hemodynamic and metabolic
functions under hormonal and neuronal controlling communication (Bashan et al., 2012; Ivanov
and Bartsch, 2014; Bartsch et al., 2015; Ivanov et al., 2016; Lin et al., 2016). Thus, while the Network
Physiology models networks consisting of organs (nodes) that are heterogeneous and connected by
systems (connectors) of a still different nature, the brain is made up of elements that are at the same
time nodes (soma of the neuron) and connectors (axons), so that the communicative—necessary
and sufficient—nature confers to the sets of neurons the status of Network. Here we refer to
Neuronal Networks [NN], which structurally include at least one node receiving inputs from
the environment, and one node producing outputs to the environment; the NN connections are
necessarily both negative and positive; every NN’s node “necessarily” produces a pattern-OUT
when the pattern-IN arrives, overall resulting in a specific local time course of the electrical
neuronal activity, the local neurodynamics.

Here, grounding on existing knowledge, we propose a unique functional organizing
principle—the feedback-synchrony-plasticity triad—which, governing the neuronal networks
at multiple scales, emerges as a potential explanatory framework for the fractal properties
exhibited by neurodynamics. In a translational perspective, via the strategy of “listening”
to the body-brain organization by non-invasive electrophysiological techniques (electro- and
magneto-encephalography and electromyography) integrated with “intervening” by non-invasive
brain stimulation techniques, we exploited the communication means used by neuronal networks
to enhance the capability of fighting symptoms secondary to neurodynamics dysfunctions. In other
words, we introduce precision approaches to electroceuticals, i.e., the cure of ailments by means of
electrical signals (Reardon, 2014).

THE FEEDBACK-SYNCHRONY-PLASTICITY TRIADIC PRINCIPLE
(FeeSyCy) GOVERNS THE BODY-BRAIN SYSTEM

We consider the whole brain as a neurons’ ensemble which coordinates the interaction of
the body brain network with the environment, where input depends on the output and
the other way round, the output depends on the input, working in a feedback loop. Via
somatic, proprioceptive (Rossi et al., 1998; Fink et al., 2014), visual and auditory sensory
receptors, our motor actions produce from the environment feedback, that our brain shapes
dependently on the desired goal (Friston, 2018). This feedback loop stimulates our brain
neurons inducing locally specific dynamic synchronizations among the nodes of dedicated
functional networks (Tecchio et al., 2008; Gandolla et al., 2014). Such synchronizations
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within the network’s subsystems imply a desynchronization of
those very subsystems with the wider regions they are part of,
resulting in a reduction of the resting-state high power of the
cortical activity paced within the thalamocortical loops (Gent
et al., 2018), e.g., alpha reactivity (Klimesch, 1999). In turn,
these modulations of synchrony engage the system in adaptations
either sustaining the execution as planned or enabling proper
corrections (Fink et al., 2014). In this process, our neurons
implement output changes following a key rule (Kandel and
Schwartz, 1985): if two input signals reach the neuron together,
the neuron increases its probability to fire (Hebb, 1949), that
is to produce an action potential transmitting a message. Some
authors indicate that the Hebbian rule subtends main trial-
and-error (Hoerzer et al., 2014) and imitation (Keysers and
Gazzola, 2014) learningmechanisms. This continuous adaptation
capability shapes the ability of our neurons to change their
output according to what is required, quantified depending on
the distance between the expected outcome and the current
one. When the distance is small, behavioral adaptations emerge
through the current network setup [working adaptation (Wolpert
et al., 2011)]. When the distance is big, new skill acquisitions
emerge through even huge structural changes (plastic adaptation,
i.e., learning). A richness and complexity of molecular and
cellular phenomena and of signaling, in continuous discovery,
underlie the cellular and network modifications that implement
the plastic adaptations. Plasticity mechanisms occurring at the
synapses’ level with non-unitary interplaying potentiation and
depression phenomena (Malenka and Bear, 2004) are integrated
by intrinsic plasticity mechanisms (Zhang and Linden, 2003)
and changes in myelin multi-laminar sheaths that modulate
the timing of information transmission between relay points
through neural circuits, inducing changes in spike arrival-time,
with which a high degree of precision controls the probability
of activation (Gibson et al., 2014; Fields, 2015). It is supposed
that Hebbain rules acting in day time, are supported during
sleep spontaneous activity, by renormalizations of net synaptic
strengths (Tononi and Cirelli, 2014) implementing homeostatic
plasticity (Turrigiano and Nelson, 2004).

Notably, the feedback-synchrony-plasticity (FeeSyCy) triadic
principle that governs motor control, controls the whole body-
brain system. We can recognize some paradigmatic examples of
the breakup of one of the three links in the FeeSyCy chain, which
generates the breakup of the whole process.

Feedback Link Breakup
The lack of auditory training and feedback condemned for
centuries deaf individuals, despite owning intact motor executive
functionality, to the inability to develop linguistic production,
that is it condemned them to live as a deaf-mute (Sacks, 1989).
The role of feedback is strongly proven by deaf people who grow
nowadays. Starting from the last century, the teaching models
and techniques -guided by neuroscientific comprehension–have
definitely revolutionized the condition of deaf people, who
now can, in parallel to the sign language, achieve an excellent
production of language vocal expression by exploiting during
their development the feedback about their produced words

properly translated in signals from the spared sensory channels,
mainly the visual one.

Synchrony Link Breakup
In dystonic individuals, despite proper sensory stimuli being
transmitted via intact sensory systems, the impaired intracerebral
synchronizations subtending the sensorimotor integration
(Melgari et al., 2013), impairs the motor control (Abbruzzese
and Berardelli, 2003).

Plasticity Link Breakup
Schizophrenic individuals are able to move and receive
proper sensory feedback from the environment but cannot
engage in proper adaptation due to neuronal inability to involve
the metabolic chains and adapt the cells via plasticity (Ramocki
and Zoghbi, 2008).

THE FeeSyCy TRIADIC PRINCIPLE
MANIFESTS ITSELF RECURSIVELY AT
MULTIPLE SCALES

Single Neurons’ Network
In in-vitro primary cell culture of single cortical pyramidal
neurons of postnatal rats, the synaptic changes implementing
long-term potentiation and depression emerged as a function
of incoming activity (Turrigiano et al., 1998; Sjöström and
Nelson, 2002). Synaptic potentiation increases the postsynaptic
firing rates in correlation with presynaptic activity, producing
a positive feedback loop. Multiplicative scaling of synaptic
strengths preserves relative differences between inputs, allowing
a non-saturated implementation of Hebbian modifications
(Hebb, 1949).

Neuronal Pools’ Network
In functioning of multiple brain areas networks, a parallel
capturing of bottom-up patterns of activation in sensory-
motor areas occurs together with a top-down processing that
selects sensory-motor activations to implement long-lasting
storage. As memories organize themselves in central structures,
they implement an active selection of sensory experience,
proprioception and emotional knowledge for further learning
(Barsalou, 1999).

Body-Brain Network
Deepening the paradigmatic example of motor execution, skilled
actions require the actual gathering of sensory information,
which is processed extracting what is relevant to the planned
action. Such feedback comes from different types of information
that the motor system uses as a learning signal, including
error-based, reinforcement, observational and use-dependent
information. In all cases, motor learning occurs implementing
adaptations dependent on the distance between the expected and
occurring inputs (Wolpert et al., 2011).

We can recognize an expression at the whole system level of
the multi-scale recursive FeeSyCy principle in the human gait
showing fractal dynamics (Hausdorff et al., 1996; Phinyomark
et al., 2020) and also across species, in experimental data about
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food-searching strategies in insect, mammal and bird species
(Edwards et al., 2007).

WORKING AT MULTIPLE SCALES, THE
FeeSyCy PRINCIPLE SUBTENDS A
FRACTAL NEURODYNAMICS

When a system presents the whole structure that is made up
of single blocks, which are similar to the whole, and are in
turn made of smaller blocks, similar to it and to the whole
structure, it is a fractal. Its name comes from a non-integer
number that quantifies its dimension. In our case, FD estimates
on a time window the distance between the amplitudes of
successive neuronal electrical activity points, in relationship with
the time sampling.

Brain neurodynamics displays the so-called “power law” (He,
2011), i.e., the power of the signal generated by a neuronal
population follows an exponential behavior. Among the multiple
signals with a spectrum that distributes as power law, we
propose the hypothesis that brain signals are fractal (Buzsaki and
Mizuseki, 2014).

The findings from our laboratory support this hypothesis.
We observed that the fractal dimension (FD) of EEG signals
successfully senses the modulation of the brain activity in
physiological conditions, related to aging (Zappasodi et al.,
2015; Smits et al., 2016), circadian rhythm (Croce et al., 2018),
behavioral states (Cottone et al., 2017) and neuronal networks’
functional role (Marino et al., 2019), and the alterations of the
brain activity in clinical conditions (Zappasodi et al., 2014; Smits
et al., 2016; Porcaro et al., 2019). Notably, beyond being sensitive
to the networks’ state, FD offers a tool to parcel the cortex on the
base of the local neurodynamics, complementing the Brodmann’s
cytoarchitectonics criterion (Cottone et al., 2017) (Figure 1).

NEURONAL NETWORK SPOKEN
LANGUAGE AND ELECTROCEUTICALS

Nowadays the ability to develop therapeutic procedures by
intervening on the body physiology by electric signals gives
rise to the innovative branch in the medical field: the
Electroceuticals (Reardon, 2014). Parallel to the need for
technological advancements, they require further knowledge
about the correct signals to be provided to the appropriate targets.
We propose here a hypothesis on this matter, in the case of
neuromodulation, the change of neuronal excitability.

By linking theoretical and experimental studies, the
neuroscientific community is revealing network dynamics
properties attuned with FeeSyCy mechanisms (Destexhe and
Marder, 2004; Deco et al., 2011) that inspired our model of
communication within neuronal networks. The model states
that every NN—were nodes can be made of neurons, groups of
neurons or wider brain regions—develops a “language” shared
by its nodes made of exchanged electric pattern, which dynamics’
shape brings information (word, Neuronal Network Spoken
Language). Notably, when assessing the fractal dimension of the
bipolar EEG whole-brain signals we sensed phenomena sensed
even by other measures. Noteworthy, when we assessed local
neuronal ensemble neurodynamics, the fractal dimension, and
not other measures, sensed in resting-state tiny changes with
clinical relevance (Porcaro et al., 2019).

The neuroscientific community states that the efficacy of
neuromodulation, the change of neuronal electric excitability,
depends on the frequency of the stimulation in a region-
dependent manner (Brinkman et al., 2016; Fusco et al., 2018),
revealing that the intrinsic dynamics of the stimulation target
enhances neuromodulation capability. In a seminal non-invasive
transcranial electric stimulation (tES) study (Cottone et al., 2018),
we proved that a current whichmimics the endogenous dynamics

FIGURE 1 | The neurodynamics complexity measured via its fractal dimension (FD) is a single number enabling to characterize the state of a neuronal network node,

even at rest. FD of the neurodynamics (2 s in each state) increases when passing from relax in absence of any stimuli (Left) to selective sensory perception, to active

sensorimotor control (Right). The FD of a node mirrors its structural specificity: here, the primary somatosensory hand area (S1, blue) has smaller FD than primary

motor hand area (M1, red) in all network states. Both the state-dependency and the cortical district-dependency are statistically significant in the 20 healthy

volunteers’ population, as reported in Cottone et al. (2017), where the data come from.
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of the target neuronal pools, neuromodulates more efficiently
than the sinusoid at a locally-tuned frequency, suggesting that
structured patterns transmit entrainment more than a non-
structured stationary signal.

Near and more long-term future will see further
electroceutical personalizations, by developing tools to
“speak” the neuronal network language, thus better tuning
the neuromodulation to the desired neuronal pool target and
obtaining higher efficacy in compensating symptoms secondary
to alterations of the neurodynamics, like depression, addiction,
pain, fatigue.

This nature of the body-brain in continuous adaptive
communication with the environment makes a continuously
changing structure that is “to be is to become”.
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