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Abstract: Superparamagnetic nanoparticles, exposed to
an external variable magnetic field, undergo rapid exci-
tation/relaxation. So-called soft magnets, typically iron-
based, rapidly and completely relax when the magnetic
field returns to zero. Instead, cobalt-based (CoB) hard
magnets retain residual magnetization, a characteristic
related with the procedure for nanoparticles (NPs) produc-
tion. Many researchers are still attracted by the potential
of CoB NPs for theranostics as multifaced signal probes
for imaging, microrobots, enhanced thermo/radiation
therapy, and drug release. Since iron oxide NPs are the
only magnetic NPs approved for human use, they are of
reference for analyzing the potential of the disregarded
CoB NPs. In vitro observed toxicity of CoB NPs, largely
attributable to cobalt ions and other chemical species
released by dissolution, excluded them from further inves-
tigations in humans. Nevertheless, experimental evi-
dences documenting the in vivo toxicity of engineered

CoB NPs remain very few. The surface functionalization
adds newer properties and could improve the biocompat-
ibility of NPs, critical for the clinical exploitation. In our
opinion, it would be worth to further exploit the potential
of finely tunable properties of CoB NPs in in vivo systems in
order to establish a systematic database of properties and
effects suitable for human application.

Keywords: cobalt, magnetism, nanoparticles, safety, synth-
esis, theranostic, toxicity

1 Introduction

The discovery and exploitation of the superparamag-
netism in nanoparticles began with the description of
their ferrofluidic behavior [1] which opened the way to
the development of nanomaterials with impressive che-
mical and physical oddities and exponential increase of
research on their potential applications in biomedicine.
Ferrofluids are colloidal suspensions of very fine (typical
size of 10 nm) magnetic particles dispersed in a polar or
nonpolar liquid carrier [2]. Application of an external
magnetic field to such ferrofluidic materials leads to a
very quick increase in magnetization, which is rapidly
reduced (or abrogated)when themagnetic field is removed.
This behavior is revealed by superparamagnetic iron oxide
(FeO)-based nanoprobes that, when excited, acquire a
sharp appearance relative to the surrounding environment.
For this reason, they attract the interest of researchers as
negative contrast enhancing agents for Magnetic Reso-
nance Imaging (MRI) [3,4]. However, these “soft materials”
show low residual magnetism (Mr) (Figure 1), one main
physical property for this type of medical application.

Moreover, since their early development occurred
more than two decades ago, only one carbohydrate-coated
iron-based nanoprobe has been approved by FDA for clin-
ical use [5]. Nevertheless, uncoated iron oxide nanoprobes
show some degree of toxicity in a therapeutic setting [6].
Furthermore, increased exhaled breath condensate con-
centrations of lipid, nucleic, and protein oxidation
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markers were detected in a dose-response correspondence
to the environmental monitoring concentrations of NPs, in
workers exposed to Fe2O3- and Fe3O4-NPs compared to
control individuals [7]. Besides, cobalt and their oxides,
when organized at the nanoscale, show a steep increase
of the magnetic order and the other related parameters,
so that superparamagnetism appears [8]. Differently from
iron-based, CoB NPs behave magnetically as “hard mate-
rials” and could be worthily used because they own
several specific biochemical and physical properties. For
instance, in MRI applications they do not generate con-
founding signals in the presence of unsaturated hemo-
globin, as certain Fe-based NPs do [9]. Other distinctive
characteristics of CoB NPs (i.e., large magnetic multiaxial
anisotropy, high Curie’s temperature, high chemical stabi-
lity, and mechanical hardness) might purposely be com-
bined with each another to confer to them special “smart”
qualities finalized to diagnostic platforms and therapeutic
approaches, such as drug release or gene-modifying inter-
ventions. Ideally, smart agents should be easy to administer
and have low toxicity, short half-life, and fast clearance
depending on the diagnostic or therapeutic use. How-
ever, also materials with longer half-life should be taken
under consideration to allow the follow-up of the evolu-
tion of lesions in days and up to months. In addition,
magnetic NPs possess juxtaposed superparamagnetic,
thermal, photoacoustic, and electric properties [10]. They
can also be modified with protective and/or functional
(bio)molecules at their surface (preventing dissolution, early
phagocytosis, and toxicity), improving the emitted signal
(radioactive, bioluminescent, or fluorescent) or target-specific
sites (tissues, cells, enzymatic activity, or genome) [11].

Indeed, CoB NPs are attractive under all those regards
and would offer great flexibility of applications in a
variety of experimental settings. Regrettably, CoB NPs
have been addressed by several experimental findings as
more instable and toxic than Fe-based NPs, limiting their
further exploitation in living beings and humans as a
precautious rule. Otherwise, in the present review we cri-
tically reevaluate the current knowledge of the crucial
physical (matter) parameters governing the synthesis of
superparamagnetic of CoB NPs that could be modified/
regulated ad hoc to obtain desired outcomes upon inter-
action with biological systems.

2 The core of superparamagnetic
CoB NPs

The magnetic behavior, along with other various out-
standing features of metallic NPs, arises from a complex
interplay between their chemical nature, lattice symmetry,
and shape; furthermore, size appears to be the most rele-
vant parameter, with larger size determining a more dis-
ordered surface and longer relaxation time [12] (Figure 2).

As bulk material, cobalt is a ferromagnetic metal.
However, when the particle radius is reduced to the
nanosize, cobalt behaves as superparamagnetic material,
due to the quantum effect [13]. If the radius is small
enough, one single NP contains just one magnetic
domain that can be finely tuned for theranostic purposes
[14]. In turn, the value of the critical radius (rc) for a
controllable single magnetic domain is mainly deter-
mined by three physical entities: uniaxial anisotropy
(Ku), vacuum permeability (μ0), and saturation magneti-
zation (Ms) [15], according to:

Figure 1: Simulated hysteresis curve for superparamagnetic soft
(red) and hard (green) NPs. A similar behavior was recorded com-
paring cobalt-ferrite and magnetite NPs [19]. The saturation mag-
netization (Ms), residual magnetization (Mr), and coercivity (Hc) are
indicated.

Figure 2: Magnetic properties of NPs are influenced by various
factors, either intrinsic (upper part) or environmental (lower part).

Cobalt magnetic nanoparticles as theranostics: Conceivable or forgettable?  1523



Ta
bl
e
1:

Ph
ys
ic
al
-c
he

m
is
tr
y
ch

ar
ac
te
ri
st
ic
s
an

d
re
la
te
d
m
ag

ne
ti
c
pa

ra
m
et
er
s
of

C
oB

N
Ps

M
ag

ne
ti
c
Co

B
N
Ps

Ch
em

ic
al

ph
ys
ic
al

ch
ar
ac
te
ri
st
ic
s

M
ag

ne
ti
c
pr
op

er
ti
es

R
ef
.

S
iz
e
(n
m
)

S
ha

pe
Cr
ys
ta
l
sy
m
m
et
ry

Co
er
ci
ti
vi
ty

(H
c,

O
e)

S
at
ur
at
io
n
m
ag

ne
ti
za

ti
on

(M
s,
a
em

u/
g)

R
es

id
ua

l
m
ag

ne
ti
za

ti
on

(M
r,a

em
u/
g)

Ze
ro
va
le
nt

C
o@

C
–

–
–

12
3

12
1

4.
1

[1
40

]
C
o

40
–

–
37

0
13
7

–
[1
41
]

O
xi
de

s
C
o 3
O
4
,
pr
ep

ar
ed

at
17
5°
C

11
S
ph

er
ic
al

C
ub

ic
–

0
.1
37

–
[2
3]

C
o 3
O
4
,
pr
ep

ar
ed

at
20

0
°C

0
.2
25

C
o 3
O
4
,
pr
ep

ar
ed

at
25

0
°C

0
.3
25

Fe
rr
it
es

C
oF
e 2
O
4

25
Te
tr
ag

on
al

C
ub

ic
,
fc
c

1,
20

9
6
4.
0
6

25
[8
9]

C
oF
e 2
O
4
@
A
O
T
(0
.0
5
g)

25
Te
tr
ag

on
al

C
ub

ic
,
fc
c

1,
8
8
0

6
9.
6
2

33
C
oF
e 2
O
4
@
A
O
T
(0
.1
g)

25
Te
tr
ag

on
al

C
ub

ic
,
fc
c

2,
39

9
71
.5
4

38
C
oF
e 2
O
4
@
A
O
T
(0
.2

g)
25

Te
tr
ag

on
al

C
ub

ic
,
fc
c

2,
41
5

73
.7
8

39
C
oF
e 2
O
4
@
A
O
T
(0
.5
g)

25
Te
tr
ag

on
al

C
ub

ic
,
fc
c

2,
55
0

79
.0
5

43
Fe

4
5C
o 5

5
9

S
ph

er
ic
al

C
ub

ic
43

11
1.
6

–
[1
42

]
Fe

4
5C
o 5

5@
gr
ap

hi
te

<1
0

S
ph

er
ic
al

70
14
5

C
oF
e 2
O
4

21
H
ex
ag

on
al

S
pi
ne

l,
cu

bi
c

16
.3

54
.9

15
.7

[1
43

]
C
oF
e 2
O
4
@
PV

P
24

8
3.
2

6
0
.1

26
.7

C
oF
e 2
O
4
@
PE

G
23

8
4

6
3

28
C
oF
e 2
O
4
,
co

-p
re
ci
pi
ta
ti
on

33
S
ph

er
ic
al

S
pi
ne

l,
cu

bi
c

14
92

.6
6
0
.8
5

29
.3
4

[1
44

]
C
oF
e 2
O
4
,
hy

dr
ot
he

rm
al

14
50

7.
7

56
.8
8

21
.4
4

Fe
7
0
C
o 3

0
15

22
0

[1
45

]
C
oF
e 2
O
4
(a
nn

ea
lin

g:
40

0
°C
)

–
–

–
1.
72

5
36

–
[1
46

]
C
oF
e 2
O
4
(a
nn

ea
lin

g:
8
50

°C
)

72
8

6
3

C
oF
e 2
O
4
(a
nn

ea
lin

g:
1,
0
0
0
°C
)

29
8

78
C
oF
e 2
O
4

25
–3

0
Po

ly
he

dr
al

S
pi
ne

l
5.
2

5
–

[1
47

]
C
oF
e 2
O
4
@
PA

90
%

5.
3

6
C
oF
e 2
O
4
@
PA

8
0
%

5.
3

6
C
oF
e 2
O
4
@
PA

70
%

5.
3

7
C
oF
e 2
O
4
@
PA

6
0
%

5.
3

8
C
oF
e 2
O
4
@
PA

6
0
%

5.
4

14
C
oF
e 2
O
4
(3
0
0
K
)

6
S
ph

er
ic
al

S
pi
ne

l,
cu

bi
c

78
52

[1
9]

C
oF
e 2
O
4
(2
.5
K
)

99
6
6

C
oF
e 2
O
4

10
–

C
ub

ic
an

d
he

xa
go

na
l,

m
ix
ed

1.
6
56

31
15

[1
48

]

Zn
0
.5
C
o 0

.5
Fe

2
O
4

3.
9

S
ph

er
ic
al

–
14
.0
2

29
.2

6
8
.8
5
×
10

−
3

[1
49

]
12
.2
7

23
.6

22
.5
6
×
10

−
3

1524  Claudia Petrarca et al.



≈

( )r AK
μ M

9c
u

0 s
2

1
2

Table 1 reports the experimental values of residual
magnetization (Mr) of various different sized CoB NPs
with different oxidation state. Zerovalent Co-NPs show
the smallest radius (<5 nm), corresponding to the lowest
levels of magnetic disorder, conferring better superpara-
magnetic properties, compared with corresponding Co-
oxide NPs [16]. Oxidation reduces the values of satura-
tion magnetization (Ms) of Co-NPs, showing the lowest
values [17]. The critical size for good ferroparamagnetic
properties approximately spans from 5 nm (Co/FePt alloy
NPs) to 20 nm (Fe-oxides) [17], CoFe2O4 NPs and iron-based
NPs having intermediateMs values [18]. The relatively high
energy emitted as heat (thermal energy) allows complete
relaxation of soft magnets when the external magnetic field
ceases (Figure 3a). Systems with randomly distributed
(larger) size or not uniform crystal structure (anisotropic),
such as Fe-based NPs, display a “soft magnet” behavior
[19]. Instead, CoB NPs behave as “hard magnets,” since
they are characterized by uniform size and crystal sym-
metry [20,21] (Figure 3b). Given the dependence of so
many and complex physicochemical properties of NPs,
the volume-to-specific surface area ratio, rather than the
diameter alone, appears to be the most suitable para-
meter to describe the phenomenon of superparamag-
netism. According to the current consensus about the
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. Figure 3: Magnetic relaxation of ferrofluids: stable suspensions of

magnetic nanoparticles (MNPs) are ferromagnetic when an external
magnetic field applies, and return to their original paramagnetic
state, with null residual magnetization, when the external field
ceases. Two mechanisms could interact in the magnetic relaxation
process: (a) intrinsic rotation ofmolecules inside theMNPs, which are
distributed into a single domain. Chemical nature, volume, and tem-
perature are main regulators of the process that depends on the Nèel
relaxation. (b) Extrinsic rotation of MNPs in the colloidal matrix. The
driving Brownian rotational motion of single particles depends on
shape, temperature, size, and opsonization. More details in ref. [138].

Cobalt magnetic nanoparticles as theranostics: Conceivable or forgettable?  1525



definition of NP, the critical limit value does not exceed
60m2 cm−3 [22].

During the demagnetization, heat develops (accord-
ing to Nèel’s relaxation) (Figure 3), which is the main prop-
erty of multifunctional NPs to be useful for theranostics.

CoB NPs, more prone to behave as hard magnets than
their iron-based counterparts, develop higher and more
prolonged temperature rise [23]. Beside size and aniso-
tropy, the magnetization of CoB NPs can be influenced by
additional characteristics, such as shape [24] and vis-
cosity of the external matrix [25] (Figure 2).

The method used to synthetize the CoB NPs deter-
mines their anisotropy degree and, thereof, the critical
size, that greatly varies consequently.

3 Synthesis of magnetic CoB NPs

In order to produce CoB NPs with appealing magnetic prop-
erties for medical purposes, the synthesis process should be
carried on under controlled conditions. Cobalt can crys-
talize in a multiplicity of phases (with similar energy
levels) and oxidizes rapidly at the surface, where the
thin layer of oxide would hamper the completion of the
synthesis reaction and uniformity of the final product,
thus interfering with magnetic properties [26]. The most
relevant methods of CoB NPs synthesis are hereby recalled:
(i) Solvothermal method. It is used for the synthesis of

superparamagnetic zerovalent metallic cobalt NPs
(CoNPs). The process starts with the induction of
a single nucleation, under strictly controlled tem-
perature in a reducing or hypoxic environment.
Uncontrolled surface modification (aggregation of
new nuclei or oxidation) is avoided by constraining
the surface of the growing particles with the addition
of a surfactant to the reaction mixture; then, a reg-
ular lattice of 2 nm spherical NPs with cubic face-
centered symmetry and acting as hard magnets
are produced by adding hydrazine and triethanol-
amine [20] (Figure 4a); 6–9.5 nm NPs with epsilon
symmetry are synthesized in the presence of oleic
acid:trioctylphosphine oxide 5:1 [27,28] (Figure 4b);
5 nm NPs with hexagonal close-packed symmetry
are synthetized in oleic acid:diphenylether 1:1 [29]
(Figure 4c).

(ii) Single nucleation core. The synthesis of Co-oxide or/
Co-ferrite NPs (CoONPs and CoFeNPs) relies on the
same principle of single nucleation core followed
by controlled growth of the crystal, as summarized
in supplementary files (Figures S1 and S2). The

precursor could be an inorganic salt or an organic
compound, such as cobalt nitrate or cobalt acetate,
for cobalt oxide, or salts of iron and cobalt for stoi-
chiometric CoFe NPs. Extremely high temperatures
are required for the nucleation and growth of cobalt-
ferrite NPs (up to 5,500°C), whereas much lower
is needed for cobalt (130–180°C) and cobalt oxide
(50–75°C). The composition of the reaction mixture,
the reaction time, and temperature are the most
important variables to control the final size and the
uniformity of the sample [23,30];

(iii) Sol–gel method. It utilizes a stable dispersion of
micelles that collides, coalesces, and breaks until
a uniform precipitate develops in the presence of
cobalt nitrate. The addition of appropriate solvent
destroys the micelles and produces a final sample

Figure 4: Synthesis of zerovalent CoB NPs via solvothermal route.
(a) 2 nm MNPs with face-centered cubic symmetry and acting as
hard magnets [20]; (b) 6–9.5 nm, epsilon phase [27]; (c) 5 nm,
hexagonal close-packed symmetry [139].

1526  Claudia Petrarca et al.



of monophasic cobalt oxide NPs after calcination at
high temperature [31,32]. Uniform CoFe NPs, smaller
than those produced in aqueous solutions, can be
obtained through a similar procedure [33]. The experi-
mental comparison of the above-described methods,
introducing ad hoc procedural changes (i.e., molecular
ratios in the reaction mixture or lower temperature
of calcination), led to the production of NPs of the
intended size, shape, nanostructure, crystalline sym-
metry, and magnetic properties, confirming the out-
most relevance of rigorous control of the conditions
to get such an accomplishment [8].

(iv) Biosynthetic process. More recently, CoB NPs are
being obtained through procedures as technological
response to the quest for environment-friendly synth-
esis of advanced materials. High superparamagnetic
Co–(Fe)-based NPs of stoichiometric (CoFe2O4) and
nonstoichiometric composition (i.e., magnetite) with a
diameter of 8, 16, and 15 nm, respectively, are produced
by the microorganism Geobacter sulfurreducens [34].
Another new and proficient system is based on the
use of the empty capsid of Cowpea Mosaic Virus as a
nanoshell bioreactor which, filled with 10% in volume
cobalt chloride, allows to build up magnetic NPs
of irregular structure [35]. More recently, Aspergillus
nidulanswas found to be suitable for synthesis of spinel
cobalt oxide nanoparticles at an average size of
20.29 nm in spherical shape with sulfur-bearing
proteins acting as a capping agent for the synthe-
sized nanoparticles [36]. In general, cobaltous nitrate
hexahydrate, cobalt(II) acetate tetrahydrate, cobalt
chloride hexahydrate, and cobalt(II) acetyl acetonate
were used as precursors for the green synthesis of
Co3O4 NPs [37].

3.1 Surface modification

Surface coating or covering with a shell generally increases
the biocompatibility and the stability of NPs, protecting
them from dissolution and oxidation [38]which aremassive
processes for CoB NPs in aqueous medium. The chemical
nature and the amount of the coating can moderately influ-
ence the magnetization, as shown in Table 1.

Organic coating of CoB NPs provides a means to
reduce dissolution and facilitate further functionalization
with targeting molecules [39]. Biehl and coworkers [40]
reviewed the rationale for surface functionalization with
polyzwitterionic molecules concluding that, since the
method of production can modify the performance as

magnetic materials, the functionalized product should
be carefully tested in different environments. Gold shell
provides a hard protection against dissolution and oxida-
tion which enhances the biocompatibility of CoB NPs.
Notably, the shell does not alter per sé the superparamag-
netic behavior of NPs, but the number of particles embedded
inside the shell seems to be important [41,42] (Figure 5a).
Smart materials have been developed with more complex
coatings, such asmultiple layers of polymeric and soft struc-
tures added to a hard golden shell, for the release of drugs
on demand. For instance, drug-loaded NPs reacting to an
oscillating external magnetic field with a spatial distortion
provisionally release the drug when the field ceases [43]
(Figure 5b). In addition, particles shaped in the form of
small caps (nanowontons) behave as sensitive magnetic
and photoacoustic probes: in this case, the protective Au-
coating improved the bioavailability without altering the
richness of the signal [10] (Figure 5c).

More recently, a new material was engineered by
cross-linking Co–Fe NPs to a pH-sensitive hydrogel allowing
rapid magnetization, possibly given by the average orienta-
tion of magnetic polar structures embedded in the gel layer,
driven by pH-driven swelling and showing residual weak
magnetization after shrinking [44]. Notably, drug-loaded

Figure 5: Effect of coating on magnetic properties of cobalt-based
NPs. (a) From the left: zerovalent Co, uncoated particle, large par-
ticle in a thin golden shell, small particle in a golden shell, Co MNP
in a silver shell, Co-oxide MNP. (b) Microcapsules for controlled
release of drugs. The inner core, a cobalt-ferrite magnetic nano-
particle sized 5 nm, is embedded in four layers of organic polymers.
A thin shell of Au and five organic polymeric layers complete the
capsule. If charged with drugs, it reacts to an external magnetic field
with distortion of the capsule, permeabilization of layers, and tun-
able drug release [43]. (c) “Nanowontons,” bare (left) or coated with
Au (right), display magnetic and acoustic properties [10].

Cobalt magnetic nanoparticles as theranostics: Conceivable or forgettable?  1527



magnetic hydrogels can control the release of drugs in
response to a variety of stimuli [45]. An even more tempting
coating could be that made of a magnetic material different
from that employed in the core. Systemswith a ferromagnetic–
antiferromagnetic interface show a shift of the magneti-
zation axis, while the juxtaposition of soft and hard
magnetic phases generated high-performant, permanent
NPs [46,47]. The addition of fluorescent dyes to obtain mul-
tiple signals was proved to be efficient in CoB NPs coated
with a graphene-like surface of carbon, which did not alter
the magnetic properties of the particles and provided a shell
easy to be functionalized [48]. Such NPs are a promising
probe for in vitro assays, with fluorescent signal and recovery
on external magnet. Instead, a shell of silica does not pre-
serve the magnetic signal of Co–Fe NPs functionalized with
multiple fluorescent dyes [49]. The polymeric system made
up with CoO-NPs coated with phosphonomethyl iminodi-
acetic acid had excellent stability in aqueous medium and,
tested in vitro, this material showed anticancer activity
without adverse effect on normal cells [50].

The complexity of this matter, describing the changes
of magnetic order that follow coating and surface func-
tionalization, as well as size, shape, composition, and
methods for preparation, stresses the importance of care-
fully characterizing newer particles, before considering
the exploitation of final products.

4 Cobalt-based NPs as potential
theranostic agents

Nowadays, iron-based NPs are the sole approved for clin-
ical use by the international drug authorizing agencies
and, therefore, the preferred ones for in vivo applications
[4,51,52]. Nevertheless, the ability of MNPs to transduce
external magnetic field energy into a mechanical or
thermal response can be exploited for biomedical appli-
cations, with multifaced working hypothesis: in vivo
imaging, targeted release of drugs, magnetically driven
navigation with delivery of thermo/radio/chemotherapy,
as well as long-term follow-up of localized lesions, patho-
gens, and parasites. In spite of this enormous potential,
only 14 human studies with magnetic nanoparticles, all
iron-based NPs, are retrieved from the Clinical Trials data-
base at this moment [4,53,54] directed to improve imaging
of cancer and treatment of cardiovascular, demyelinat-
ing, and inflammatory nervous diseases (Figure 6 and
Tables S1–S4).

In the meantime, human studies are disallowed for
CoB NPs, whose persistent neglect is consequent of their

supposed high instability and toxicity for the human
organisms, at multiple levels (Figure 6).

Nevertheless, experimental studies are currently car-
ried on to the aim of improving diagnostics and thera-
peutic tools by implementing CoB NPs (Figure 7) as
exposed in the next paragraphs.

4.1 Diagnostic imaging: providing improved
and multiple signal

Although Fe-based NPs are well-established and widely
accepted since long time as paramagnetic probes for clin-
ical applications, CoB NPs, of comparable paramagnetic
properties and even more ductile and appealing as hard
magnets, have been relegated to design/develop research
studies in vitro and in laboratory animals, after toxicity
side effects were accidentally described in those systems.

In fact, CoB NPs have been under investigation for
the possibility of obtaining multiple signals through, for
instance, the functionalization with fluorescent dyes. In
addition to the superparamagnetic signal, high sensitivity
emission signals were detected making them improved
imaging tools [10,49,55]. In a study conducted in rats,
the superparamagnetic signal emitted from CoB NPs could
be further boosted by the luminescent and radioactive
ones by functionalizing the NPs with Ga68 and luciferase
[56]; in experimental biology, rhodamine-coated fluo-
rescent cobalt–ferrite magnetic NPs have been used to
monitor intracellular miR124a during neuronal differen-
tiation of murine P19 cells [56].

4.2 Magnetic driving and navigation of NPs
through the circulation

In a in vivo rodent model, cells loaded with Co–Fe NPs
(enclosed in a silica shell or viral capsid) were able to
migrate from the site of injection to distant tissues under
the guidance of an externally applied magnetic field
and accumulating nearby [57]. However, this cell-based
approach might show limits in larger organisms where
length ofmigration and depth of accumulation are increased
[58]. When a more targeted experiment was performed,
magnetic CoB NPs injected in the tail vein of rats accumu-
lated inside the anterior chamber of the eye, where the
external magnetic field was applied. Therefore, the particles
could certainly navigate a long way through the vascular
bed, but, also in this case, the site of accumulation was
superficial and the size of the animal very small [59]. In
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2011, a significant step was made in the therapeutic field
of tumor targeted with the introduction of magnetic NPs
as drug-containing cargos which could be guided by an
external magnetic field. For the first time, the principles of
microfluidics, robotics, and magnetic driving successfully
cooperated to selectively address chemotherapy at a deep
tumor site, through the circulatory system in living animals.
The Magnetic Resonance Navigation (MRN) technique con-
sisted of directional magnetic driving of a biocompatible
fluid of 500 µm polymeric capsules filled with Co–Fe mag-
netic NPs manoeuvred through the vascular system by an
external magnetic field [60].

After that, magnetically navigable agents for che-
motherapy were investigated on phantom models mimick-
ing liver arteries [61] and circulation [62]. As expected, the
most probable detrimental effect would be embolism;
furthermore, the ferromagnetic NPs microrobot naviga-
tion, under the control of magnetic force, would induce
fluidity microvariations without apparent toxicity of con-
jugated ferromagnetic NPs as such.

4.3 Magnetic hyperthermia and drug release
for tumor ablation

For decades, implants of macroseeds of iron alloys have
been safely and efficiently applied for magnetically
induced ablative thermotherapy of prostate tumors [63].
In phase I clinical trial on thermotherapy of recurrent
prostate cancer, the employed iron oxide magnetic NPs
showed no side effects [64], as well as the magnetic iron
oxide NPs used for intratumoral thermotherapy were
described as safe in glioblastoma patients [65]. However,
those approaches could not achieve optimal modulation
of the heating and induced massive tissue necrosis and
incomplete ablation, in relation to dimension and depth
of the tumor. Those disadvantages have been overcome
by making biocompatible magnetic NPs which, in clinical
trials, were shown to safely accumulate deeply in tumor
lesions at the effective dose [66] and, when loaded inside
stem cells or polymeric microcarriers, efficiently destroy
atherosclerotic plaques [67]. Interestingly, the amount of
cobalt in magnetic CoFe NPs determines their heating

Figure 7: The distribution of studies with MNPs deposited in the
Clinical Trials. The most numerous are for enhanced imaging of
cancer (n = 18), 10 studies are aimed to the treatment and imaging
of pathologies in the cardiovascular system, five to the imaging of
demyelinating or inflammatory diseases of central nervous system,
and five (not shown) to other conditions.

Figure 6: The Cobalt nanoparticles can be toxic at multiple levels, through direct or dissolution-mediated mechanisms. MNPs and dissolved
cobalt ions can covalently bound the heme group (hematologic toxicity), stimulate the immunologic system, enhance oxidative damage to
the DNA, or injure the cardiovascular system.
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response to a variable magnetic field, in experimental
conditions [51,68,69]; in this way, it could be tuned to
obtain theranostics suitable for diverse clinical applica-
tions [19,70] by varying the quantity of Co purposely. At
the cellular level, CoB NPs, like others, enter various cell
types through endocytosis [71,73] or diffusion across the
plasma membrane [74–77] and are retained even when
an alternate magnetic field is applied [71]. Remarkably,
the endocellular dynamics and fate of CoB NPs are rather
complex and are highly relevant to the biological out-
come [78] (Figure 8).

Furthermore, the viscosity of the milieu in which
magnetic NPs are dispersed affects the physical phenom-
enon driving heat response and needs to be taken into
account. For instance, when dispersed into glycerol
whose viscosity is similar to that of the endocellular
milieu, the thermal effect of NPs is mainly due to mag-
netic heating mechanism of Néel relaxation [79]. Hence,
the best performing NPs would likely be soft magnetic
materials (maghemite, magnetite, and iron–platinum).
Anyway, also hard magnets such as CoB NPs, expected
to develop heat through the Brown relaxation mechanism
(Brownian friction), have shown to be suitable for
hyperthermia applications in several, but methodologi-
cally disparate, experimental studies [80–82]. These con-
siderations suggest that thermal properties of magnetic
nanoparticles might be conveniently modulated by mod-
ifying their own viscosity in the endocellular environment.

Dissolution of CoB NPs is a phenomenon known to
take place either outside and inside the cell, releasing
potentially dangerous ions of cobalt [78]. Instead, Fe-
based NPs, under a constant magnetic field, either in
cellular [83] or acellular [84] model systems, form large
agglomerates and show low dissolution rate. However,
until now no study has been addressed to determine
whether CoB NPs release ions under similar conditions
of magnetization, relaxation, and heat release. Paradoxi-
cally, the ion-mediated cytotoxicity of magnetic CoB NPs
might even be a looked-for effect for treating tumor cells.

Magnetic CoB NPs have been found to induce thermal
necrosis/apoptosis of melanoma [85], human breast [86],
and rat gliosarcoma [87] cancer cells in vitro. Interest-
ingly, human breast cancer exposed to the magnetic
CoB NPs shows higher intracellular reactive oxygen spe-
cies (ROS), found to mediate Co-ions-induced cyto-
toxicity [73].

However, these few experimental findings, although
suggestive, are not enough to support the medical appli-
cation of CoB NPs [88]. Nevertheless, it is reasonable to
forecast the development of innovative CoB NPs by tuning
the chemical–physical properties and their operational

environment according to the up-to-date findings. This
method is useful to overcome problems of toxicity for thermo-
ablative cancer treatment, for the future improvement of
implantable or injectable devices, for magnetic navigation,
heating, and resonance [64].

4.4 Other potential exploitation of CoB NPs
in oncology

Despite the existing interdiction to their clinical use that
disincentives the exploitation of their full potential, there
are various hints that CoB NPs deserve to be further
investigated to produce smart NPs usable in theranostics.
Theirmagnetic properties, tunable and regulated by external
magnetic fields, can modulate multiple functions, such as
imaging, photothermal, and pharmaceutical targeting of
lesions, withminimally invasive procedures. The persistence
of particles at the site of lesion allows long-term monitoring
of relapse. In particular, surface functionalization with
binding/reacting molecules [89], graphite [90], or carbon
nanotubes [91] does not alter their magnetic behavior and
allows efficient loading and temperature-controlled release
of antitumor drugs [92]. Furthermore, functionalization of
magnetic NPs with radioactive isotopes, currently exten-
sively investigated in preclinical studies, might produce

Figure 8: Cobalt oxide MNPs in the extracellular space can (A)
interact with albumin or histidine, and be confined to the extracel-
lular environment, or enter the cells through endocytosis (B) or
passive diffusion (C). Partial dissolution occurs in both spaces,
extra- and endocellular, with release of divalent ions of cobalt (D).
The divalent ions of cobalt enter the cells through specific receptors
and metalloproteins (a). Inside the cell, both MNPs and ions dis-
tribute in the cytoplasm and in the nucleus. Both ions and MNPs
enhance the production of ROS and the subsequent oxidative
stress, with mitochondrial damage and apoptosis (1), lipid and
protein peroxidation, with cell membrane damage (2 and 3), and
damage to the DNA (4). Note that zerovalent Cobalt NPs do not cross
the cell membrane [77,78].
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tools for (potential) simultaneous radiotherapy and
hyperthermia and imaging [93].

The displayed toxicity of CoB NPs appears not only
related to inherent characteristics, but, at various extents,
to the cellular targets. Pancreatic cancer cells are less sen-
sitive than ovarian cancer cells [94]; normal lymphocytes
and squamous oral cells, but not lymphoma and oral car-
cinoma cells, are protected from CoB NPs-related toxicity
by coating with organic compounds [50]; and melanoma
cells magnetic effectively die by heating only when cobalt
is incorporated in the core of ferrite NPs [85]. Normal cells
can be exempted from unwanted cobalt toxicity related to
therapeutic treatment by the functionalization of CoB NPs
with antigens or peptides that selectively bind ligands exclu-
sively expressed by tumors cells. In this way, CoB NPs target
and accumulate more efficiently at the site of lesion and
inside the target cells [50,95]. Analogously, magnetic tar-
geting, intracellular labelling, and selective removal of
ovarian cancer cells from the ascitic fluid in vitro and
in vivo are feasible using an external capture magnet [96].

Differently from other metal NPs that need to be PEG-
coated to permeate the cell membrane, naked CoB NPs
could load a sufficient dose of conjugated doxorubicin
drug in the target tumor cell [97].

The conjugation of CoB NPs with porphyrin deriva-
tives produces a powerful, multifunctional therapeutic
platform for boron neutron capture, phototherapy, and
fluorescence imaging. All these products can accumulate
rapidly and in large amounts (80%) in human lung adeno-
carcinoma A549 cells and their cytoplasmic organelles,
resulting to be cytotoxic only when purposely activated
with photons or neutrons irradiation, but not in basal con-
ditions [98]. Interestingly, an in vivo study with rats
showed that recently developed Co-based nanoclusters
could accrue in ovarian cancer tumors and effectively
elevate intratumoral temperature (following a single intra-
venous injection), being nontoxic [99].

Hence, several findings gathered on CoB NPs con-
verge towards its uneven intrinsic noxiousness, under
certain usage condition. An ordered database on the fun-
damentals for knowledge, prediction of potential uses,
and commercial restrictions of CoB NPs, still lacking,
could prompt further research and development of these
magnetic NPs for nanomedicine.

5 Mechanisms of CoB NPs toxicity

Weakening of interest and skepticism arouse on CoB
NPs’ application in nanomedicine for their toxicity

observed in animal and human tumor cells in vitro
[73,100–104] and in vivo [95,105,106]. Despite that, it
is important to underline that the intrinsic material
characteristics of CoB NPs are not the only ones playing
a role in cytotoxicity.

These events result by interaction with the milieu
(biochemical and physical factors) where NPs have to
operate. Keeping this in mind, those concerns might
result in overlooking leading to too negatively condi-
tioned technological advancement. Indeed, theoretical
reasoning based on the “Ostwald Ripening phenomenon”
predicts that high specific surface area of CoB NPs increases
the potential for cobalt ions (Co2+) to be released from these
NPs. However, Co2+ release occurs when CoB NPs are sur-
rounded by aqueous milieu. In that case, spontaneous
morphological modifications would occur based on the
thermodynamically driven atomic exchange between atoms
in solution and atoms in the NPs [107]. Then, in water the
extent of the dissolution depends on the size and speciation
of Co constituting the NPs. It has been shown that both
metallic zerovalent Co0- and Co3O4NPs release Co2+ ions
in biological media. However, the Co0 form releases greater
amount of Co2+, compared to Co-oxide [77,78,108]. Rele-
vantly for the present dissertation, in the extracellular envir-
onment the serum proteins of cell culture media appear to
bind the released Co2+, subtracting them to the exchange
medium-particle and so facilitating the dissolution of Co-
particles. Moreover, CoB NPs can be uptaken by cells and
internalized inside the organelles [72,78] where they can
dissolve into Co2+, which are massively detected in nuclei
and mitochondria [78], otherwise present at ultratrace level
under physiological conditions.

It is not clear to which degree the toxicity of CoB NPs
results from the released Co2+ or to the integer NPs [109].
However, a study with mouse fibroblasts Balb/3T3 found
out that Co2+ are statistically more cytotoxic, compared to
the corresponding nano- and micro-particulated Co. In
addition, it was observed that the dissolution rate was
size-dependent, being higher for the nanosized com-
pared to the microsized Co-particles. Remarkably, the
cytotoxicity increases according to the increase of the
total intracellular Co content, rather than Co exposure
concentrations [78]. Moreover, micro and nano forms of
zerovalent Co-particles activate toxicologically relevant
transcriptional pathways implicated in carcinogenesis
and inflammation [110]. Noteworthy, for such toxicological
experiments high concentrations of Co species were used,
in any case far beyond those achivable for therapeutic
aims. Therefore, the extent of intracellular Co accrual
and the understanding of the size-dependent dissolution
of CoB NPs are the crucial points for addressing their
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safe use in nanomedicine, by providing protection from
dissolution for long-term stability.

Given the described findings on the crucial role of
released Co2+ in the mechanisms of CoB NPs-induced
toxicity, the molecular basis of Co2+-induced toxic effects
must be considered. General mechanisms extensively
reviewed by experts in this field [111–115] include: (i)
formation of ROS in the presence of hydrogen peroxide
with generation of hydroxyl radicals (HO˙) via Fenton reac-
tion and irreversible damage by protein, lipid, carbohydrate,
and DNA oxidation [114]; (ii) direct interaction, particularly
with sulfhydryl groups, and binding to cellular proteins of
the redox system (enzymes catalase, heme oxygenase,
superoxide dismutase, peroxidase), metabolism (arginase),
molecular transport (transferrin, hemoglobin), motility (lym-
phocyte cytosolic protein), and signalling (phosphodies-
terase 3A). This leads to a direct induction of oxidation
and loss of biological function [114]. Moreover, Co2+ alter
Ca2+ influx into cells [116], acting as a blocker of inorganic
calcium channels, andmodify glucose metabolism [117]; (iii)
displacement of other essential divalentmetal ions in the ion
center of metal-activated enzymes (i.e., Zn of alkaline phos-
phatase [118], Zn2+ and Mg2+ of cell proteins [78], Fe2+ of
dioxygenases [119]).

Systemic toxic effects are induced when Co/Co2+

ions enter the blood and the lymphatic system and tras-
locate into different organs. Urinary excretion is the
main mechanism of inorganic cobalt clearance from
the human body [120], decreasing with time after expo-
sure [111]. Below, we remind some toxicity mechanisms
for Co/Co2+-induced systemic effects.

5.1 Hematological effects

Cobalt therapy in the treatment of anemia induces poly-
cythemia and hypothyroidism [121]. Co2+ inhibit the synth-
esis of heme in vivo by acting on the biosynthesis of
5-delta-amino levulinate and its conversion into heme,
resulting in the generation of cobalt protoporphyrin
[122]. Heme oxidation in many tissues is also stimulated.
In addition, cobalt acts to increase erythropoietin release
from damaged renal cells, which stimulates the production
of red blood cells [123].

5.2 Thyrotoxic effects

Cobalt impaired thyroid activity and goiter formation
[124]. The inhibition of iodine uptake and tyrosine

iodinase activity by cobalt prevent the incorporation of
iodine into thyroxine [114], being considered the mechan-
istic basis of the observed hypothyroidism induced by
cobalt therapy [125].

5.3 Myocardial effects

Cobalt-induced cardiomyopathy was observed in beer
drinkers [126]. Mitochondrial changes are representative
of disturbance in energy production/utilization. The irre-
versible chelation of alpha-lipoic acid –SH groups in the
citric acid cycle by Co2+ under hypoxic conditions is con-
sidered the mechanistic basis for the pathogenesis of Co-
induced cardiotoxicity [127].

5.4 Neurotoxic effects

High levels of cobalt released from metal prosthesis can
induce neurotoxic effects involving several neurologi-
cally related organ systems (i.e., auditory, ocular, central,
and peripheral nervous systems) [128]. Such effects of
cobalt are mediated through depletion of neurotransmit-
ters such as dopamine, noradrenaline, and serotonin and
presynaptic blockage of calcium channels [128].

5.5 Immunological effects

Metallic cobalt, or in the form of water-soluble ionized salts,
is allergenic causing immediate type I as well as delayed
type IV hypersensitivity reactions [113], rhinitis, and asthma.
IgA and IgE antibodies specific to cobalt have been observed
in humans [129]. Cobalt ions can act as hapten binding to
serum proteins to form hapten-like complexes to produce
immunogenic products that can account for allergic reac-
tions [130]. T-lymphocytes regulate cobalt sensitivity, while
cobalt reduces the proliferation in vitro of B and T lympho-
cytes and the release of IL-2, IL-6, and INF-γ [74]. The release
of Co-ions is associated with proinflammatory reaction
involving monocyte and lymphocyte reactions [131].

5.6 Carcinogenicity and genotoxicity

Cobalt sulfate and other soluble cobalt(II) salts are clas-
sified as “possibly carcinogenic to humans” (Group 2B),
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while the mixture dust cobalt/tungsten carbide (Co/WC)
as “probably carcinogenic to humans” (group 2A) [132].
Soluble cobalt induces mutagenic effects in mammalian
cells in vitro by a direct damage to DNA by a Fenton-like
mechanism; or indirectly by a mechanism involving inhi-
bition of repair of DNA damage, particularly concerning
the incision and polymerization steps, through inter-
action with zinc-finger DNA repair proteins, considered
the most relevant mechanism for metal carcinogenicity
than binding to DNA [133]. Two mechanisms are involved
in the Co-particles-induced mutagenic effects: produc-
tion of ROS by both Fenton and non-Fenton (i.e., in
the absence of H2O2) mechanisms, resulting in DNA
damage, and release of Co2+ which inhibit DNA repair
processes [132].

These above-reported Co2+-related biochemical
mechanisms, general or specific for Co2+-induced sys-
temic effects, are relevant also for Co-particles species.
In fact, the toxic reaction that produces ROS leads in
parallel to the oxidation of metallic cobalt and hence to
the formation of ionic species. However, the described
cobalt-related systemic effects are in general uncommon
because of a high toxicity threshold.

Systemic Co toxicity manifests with a variable pre-
sentation of neurological, cardiovascular, and endocrine
symptoms, depending on the systemic Co levels (blood/
urine). These systemic effects, called “arthroprosthetic
cobaltism” syndrome, were initially observed in metal-
on-metal implant recipient subjects, accompanying the
presence, in the periprosthetic tissue, of electron dense
nanosized debris inside the macrophages [113,134,135].

6 Conclusions

The theoretical basis for further research on this nano-
substance that might reasonably be voided of toxic fea-
tures and, therefore suitable in theranostics, is exposed.

Cobalt-based NPs, which behave as hard magnets,
could be considered the possible counterpart of the soft
magnets composed of iron oxide MNPs. The residual
magnetization is higher in MNPs with a core of cobalt
oxide or cobalt–ferrite, in comparison with zerovalent
cobalt, while selected variants in the procedure for pro-
duction, such as the temperature or the relative content
of iron in cobalt–ferrite MNPs, can tune the saturation
magnetization. The crystal symmetry of the final product
mainly supports this effect. The surface functionalization
with hard or soft shells protects from dissolution and
could also change the magnetic properties.

The alternative option of using CoB NPs to overcome
some limits of the iron-based soft magnets requires
appropriate precautions. It is mandatory for the surface
functionalization or shell of CoB NPs to reduce the feared
cobalt toxicity since cobalt particles applied in theranos-
tics medicine could result in exposure to ions that may
potentially reach the threshold of high toxicity. In addi-
tion, cobalt nanotoxicity must be further investigated
from a mechanistic point of view. In this context, the
aspect of speciation will have to be the core of future
studies in this area. In any case, the intracellular distri-
bution of Co2+ released from CoB NPs entering the cells
plays a fundamental role in determining the toxic effects
of Co-particles. Thus, drawing any conclusions about the
differential toxicity of particles relative to ions should be
done with great care, as uptake effect relationships must
be considered [78,136].

At the present, there is a lack of tiered strategy for the
characterization of CoB NPs, which reduces the potential
of these tools. Indeed, a range of CoB NPs nanomaterials
may offer a powerful platform for biological implementa-
tion in theranostics, as improved probes and catalysts. In
nanomedicine, the supposed toxicity of Co dictates the
choice of iron oxide MNPs, considered more biocompa-
tible. Consequenlty, CoB NPs are poorly exploited in this
field [137], with a great waste of potentiality. Only the
diagnostic utilizations improve, without any advance in
therapy: neither trials nor experimental studies have
been performed focusing on thermotherapy with CoB
MNPs in medicine, clinical or veterinary, or on other pos-
sible therapeutic applications. Nevertheless, under this
point of view, CoB MNPs offer several advantages in com-
parison with those of iron oxide. Their higher residual
magnetization allows a more persistent signal; the mag-
netic heating is more tuneable and, therefore, more com-
patible with the necessary avoidance of local necrosis.
These NPs that do not produce interfering signals with
the iron bound to heme could be used as radiation iso-
tope against tumor growth.

In our opinion, it is time to revise the band of these
tools in medicine. Even the evaluation of the risk for
toxicity could be obsolete, considering newer ways to
prevent the dissolution of toxic species of Co. For
example, a golden shell may be able to make CoNPs bio-
compatible, preventing dissolution and modulating mag-
netism and magnetic heating. Phase I clinical trials could
be set up and conclusively determine the fate of these
promising, but until now neglected, MNPs, following a
severe control of all steps of production, complete char-
acterization of the product, and tired test for toxicity,
according to the current approved protocols.
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