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Given the majority of age-related diseases have been described as disconnection

syndromes, understanding the functional connections of normal aging is of considerable

importance. Here, an EEG-based scalp level analysis has been performed to identify the

alterations in the synchronized brain regions in aged, compared to young persons. Two

groups, aged and young subjects were studied, each consisting of 18 participants. First,

conventionally extracted broadband topographic maps, also called microstate maps,

were examined. The results showed an overall dominant alteration: a uniform decrease

in synchronization of brain regions related to cognitive processing resources that was

observed only when the maps C and D were characterized in temporal parameters.

However, no remarkable change in the spatial distribution was found between the groups.

This failure in identifying differences in the spatial distribution was hypothesized to be due

to the presence of superimposed signals of several frequencies in the broadband signal

that is used for the extraction of microstate maps. Second, spectrally resolved band-wise

topographic maps, which we have shown, in a previous study, are able to detect

spectral details associated with broadband microstates maps, were used to address this

failure. The use of the instantaneous frequency concept is essential in the extraction of

band-wise topographic maps, and represents a novelty compared to current studies. The

method consists of three steps: (a) from EEG signal, the Empirical Mode Decomposition

method is used to extract underlying oscillatory components; (b) these intrinsic oscillatory

components are then amplitude demodulated and subjected to numerical equations

for the calculation of instantaneous features, such as amplitude, and frequency; finally,

(c) based on these instantaneous features, band-wise topographic maps are extracted.

Here, as a first application to aging data, these band-wise topographic maps have shown

the capability of capturing the age-related changes in both spatial distributions, and in

temporal characterization. Spatially, the potential distribution in the aged and the young

subject groups, respectively, showed differences, while, in temporal characterization,

both increases and decreases were observed, suggesting the lengths of synchronized

activities vary differentially, and in accordance with results from fMRI studies. These

observed differences also support the dedifferentiation and compensation mechanisms.

Keywords: aging, microstate analysis, band-wise topographic analysis, empirical mode decomposition,

instantaneous frequency
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INTRODUCTION

Numerous studies have shown age-related alterations in
functional connectivity of brain regions while evaluating task-
based performance as well as during rest, likely ensuing from
a decline in cognitive performance. Intra and inter-networks
changes in functional connectivity of resting-state networks have
been recurrently reported [1]. The patterns of these alterations in
functional connectivity are relatively complex i.e., both increases
and decreases in number of connections have been found.
For example, increase in anterior regions of DMN, subcortical
and somatosensory/motor network, and decrease in posterior
DMN regions, dorsal attention, and salience networks [2, 3].
In addition, the within-region functional connectivity in the
somatosensory, and central visual areas, were found to be non-
linearly related to aging, whereas other studies found results in
contrast to the above mentioned [4].

In the literature, the complex nature of aging-related changes
is based on two main hypotheses i.e., dedifferentiation and
compensation. First, dedifferentiation is the term used to explain
the loss of underlying functional resources required to perform
the given task [5]. Biologically, it is referred to as the chain
of processes affected by the deterioration of dopaminergic
neuromodulation that result in a reduced specificity of involved
cortical areas [6]. Second, the compensation hypothesis explains
the involvement of newly recruited brain areas in a higher level of
activity to overcome the decline in functional specificity [7]. The
compensation process was first identified by Grady et al. [8] while
investigating the performance metrics for memory tasks.

In recent years, research on brain changes related to aging
increasingly relied on functional magnetic resonance imaging
(fMRI). Numerous insights were provided e.g., key brain areas
like the anterior cingulate cortex involved in emotional and
cognitive processing has been found to be significantly affected
by aging, even when its functional connections were investigated
during rest [9]. Similarly, Roski et al. [10] found that the
age-related resting-state functional connectivity alterations were
correlated with behavioral changes. Despite advancements, in the
existing literature, inconsistency of results in the aging-related
resting-state functional connectivity alterations still persist [11].
Although fMRI data provide high spatial resolution, it has
certain limitations. First, fMRI is primarily based on BOLD
contrast which allows us to measure neuronal activity only
indirectly, whereas non-neuronal factors such as metabolic rate
and cerebral blood flow, influencing BOLD response, may hinder
the correct assessment of aging-related functional connectivity
alterations, aging being linked with several factors that include
changes in dopaminergic neurotransmission [12], metabolism
[13], alterations in brain structure [14], cerebral blood flow
[15], and cognitive resources [16]. Second, due to low temporal
resolution, fMRI is less efficient in the investigation of temporal
dynamics of functional connectivity, and consequently, it is
reasonable to mention that most of the existing aging studies
assumed that functional connectivity is stationary during rest.
However, a recent fMRI study by Chen et al. [11], inspired from
the evidences in the studies of schizophrenia [17], cognition
impairment [18], depression [19] and epilepsy [20], has examined

the temporal dynamics of resting-state functional connectivity in
young and elder subjects, and found it non-stationary. Moreover,
they reported a decline in the modularization of dynamic
functional connectivity in elderly subjects. Therefore, it is timely
to further assess these observations with modalities providing a
sufficiently high temporal resolution.

In EEG data analysis, several methods have been used
to assess coupling and synchronizations among EEG signals
[21]. However, one method, which has recently gained a wide
interest of researchers aiming at assessing synchronization across
signals, is capable of detecting short lived quasi stationary
states. These EEG states are found useful to empirically
analyze cognitive and sensory process [22]. Lehman et al.
proposed this spatiotemporal method to keep track of quasi-
stable neuronal processes at a fine resolution, and named
it “Microstate analysis” [23]. In microstate analysis, short-
lived functional states are referred to as microstates, which
are topographic configurations representing the distribution of
electric potential across the scalp [23]. An observation which
made microstate analysis a strikingly influential tool for the
assessment of neuronal activity in time domain was that the
temporal sequence of these spatial maps is non-random, and
does not change continuously. These topographic configurations
are found to be stable for short duration before transiting
abruptly into another. The average duration of microstate ranges
from 40 to 120ms [24]. These short-lived microstates are
viewed as an electrophysiological signature of a global integrative
process. A study by Lehmann et al. [25] in which microstate
configurations and syntax were found significantly different
for imagery, and abstract thoughts, respectively, is considered
as a validation of their link with cognitive processes. In a
clinical context, studies employing microstate analysis found
substantial electrophysiological signatures for altered neuronal
processes that differ between healthy controls and subjects
with psychopathology [26], dementia [27], schizophrenia [28],
and stroke [29], provide further evidence of their usefulness.
Moreover, recent studies assessing resting state dynamics using
simultaneous EEG and fMRI has shown that the imprints
of abruptly changing short-lived states of brain calculated
using multichannel electrode array are related to resting-state
networks. The normative four states are reported to be associated
with visual, verbal, interoceptive-autonomic processing and
attention reorientation [30, 31]. On how the associations
between dynamics of microstates derived from EEG at high
temporal resolution and resting-state networks based on slow
hemodynamic fluctuations are possible, Van De Ville et al.
found that the temporal dynamics of microstates are scale-
free dynamics over six dyadic cycles (256 ms-16 s), suggesting
the same underlying neurophysiological phenomenon, and
microstates being the probable candidate for electrophysiological
signatures of slow fluctuations of brain activity as measured by
methods relying on hemodynamics [32].

These considerations encouraged the present analysis to
explicitly investigate aging-related resting-state alterations using
microstate analysis. A related work in which microstates analysis
was used to study developmental stages of brain was published in
2002 by Koenig et al. [33]. Temporal profiles of microstates were

Frontiers in Physics | www.frontiersin.org 2 March 2020 | Volume 8 | Article 82

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Javed et al. Band-Resolved EEG Microstates in Aging

investigated in subjects aged 6–80 years. They found microstate
temporal parameters differ as the brain develops, but mainly
had focus on the investigation of developmental changes in the
brain of age 6–16 years. However, without going into details,
they suggested that the changes in the brains of subjects over
50 years of age are due to aging. In short, their study provided
the preliminary evidence that microstates can capture age-related
changes.With the knowledge and insights provided by the studies
in the last decade, we believe that it is the need of the hour to
investigate whether the altered neuronal signatures due to aging
observed (if any) using the microstate analysis at scalp support
the hypotheses derived from the evidence of existing fMRI
studies that are dedifferentiation and compensation. We expect
that age-related alterations will not only be found in temporal
parameters of microstates but also in their spatial configurations.
We have also applied our recently published method of band-
wise topographic analysis as a new application to aging data. It
has shown great promise to capture further details that are not
identifiable with conventional microstate analysis.

MATERIALS AND METHODS

Data and Pre-processing
Eyes closed resting-state EEG data were recorded in 36 healthy
subjects equally divided into aged and young adults. The aged
subjects group ranged between the ages of 62–85 years (mean age:
71.8 ± 5.6, 12 males), whereas, young subjects had age ranging
from 19 to 31 years (mean age: 23.2 ± 4.1, 12 males). Scalp
potentials were measured using Electrical Geodesics sensor net.
No subject had a history of neurological disorders, head injuries
causing loss of consciousness or mental illness. All subjects were
right-handed, tested and confirmed by Edinburgh Manuality
test. The acquisitions were performed at, and under the ethical
guidelines of “Gabriele d’Annunzio” University of Chieti, after
signed written informed consent. The subjects were instructed to
close their eyes while staying conscious.

Data Analysis
The analysis has been performed for spatiotemporal assessment
of the EEG data in two ways. First, the conventional
microstate analysis was implemented using the well-established
standardized procedure [34] over the whole bandwidth of the
data i.e., 0.01–40Hz. In this procedure, to start with, the standard
deviation across channels also known as Global Field Potential
(GFP) was calculated at each time point. It was calculated using
the following formula

GFP(t) =

√

1

N

(

∑N

i=1
(Vi (t)−Vm (t))2

)

(1)

where N is the number of channels, Vi(t) is the electric potential
at the ith electrode and Vm(t) represents the instantaneous
mean potential across electrodes. The GFP(t) is the array
representing standard deviations across channels for all data
samples. Afterwards, from GFP(t) waveform, the time points
of local maxima were extracted to find out the optimal set of
microstate maps. The intuitions to only include time points with

local maxima were that these instances have high signal-to-noise
ratio and reduce the computational complexity of clustering
algorithm [35]. Moreover, microstate maps are found to be
stable at local maxima of GFP waveform and transitioning
from one to another topographical map occurs at local minima
[22]. Therefore, in next step, the potentials of all electrodes
(topographic maps) at these local maxima time points are
subjected to the K-means algorithm for clustering.

For an optimal selection of a number of microstates, the
cluster size (number of microstates in the cluster) was varied
from 2 to 7. The optimality criteria consisted of Cross Validation
(CV)—amodified version of the predictive residual variance [34],
and of Explained Variance (EV)—the fit percentage of segmented
data. The EV and CV values were calculated for each cluster size.
Based on statistical significance between consecutive EV and CV
values over the cluster size range, the following two cases were
used to define optimality. First, if the increase in EV value by
increasing the cluster size is not found statistically significant
while CV value increased statistically, previous cluster size is said
to be optimum. Second, if, both, the increase in EV value and
in CV value is significant, the statistical increase in CV value
(i.e., the high probability of having different spatial patterns when
clustering is repeated) is given priority and previous cluster size is
chosen as optimum. Else, the statistical analysis is performed for
the next consecutive cluster size. Based on the criteria, optimal
microstates were calculated for individual subjects. For group
microstates, these individual microstates were averaged based
on minimal topographic dissimilarity [33] for both groups of
young and aged subjects. Furthermore, these microstate maps
explaining maximal variance were extracted after 300 iterations
to minimize error due to stochastic processing. In summary,
the step wise procedure for extraction of microstate maps is
as follows

1. Calculate GFP waveform by computing standard deviation
across electrodes for each time point.

2. Find time points where GFP waveform has local peaks.
3. Input topographic maps of EEG potential at time points found

in step 2 to a clustering algorithm.
4. Pre-assign cluster size or set criteria for optimal selection of

microstate maps.
5. Repeat clustering algorithm for multiple time (300 iterations

performed commonly) to identify microstate maps explaining
maximum variance present in the data.

The EEG data were segmented into a topographic sequence of
extracted group averaged four microstates as shown in Figure 1.

Second, the conventional microstate analysis was extended
to spectrally resolved topographic analysis using band-wise
topographic maps [36]. This is to investigate the age-related
spatial changes which are limited to a narrow band oscillations.
The wide-band [0.01 Hz−40Hz] EEG data is transformed into
five fundamental EEG bands (delta (δ) = [0.01Hz–4Hz), theta
(θ) = [4 Hz–8Hz), 191 alpha (α) = [8Hz–12Hz), beta (β) =
[12Hz–30Hz), gamma (γ)>= 30 Hz) via time-frequencymethod
with a concept of instantaneous frequencies. This means that
the method, unlike traditional frequency analysis approaches,
does not require few time periods to calculate the EEG
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FIGURE 1 | Example of a representative young subject, (A) 2 s epoch of EEG recorded during eyes closed resting state (average referenced) for each of the 19 EEG

sensors. The Global Field Power (GFP), standard deviation of EEG across sensors, computed for each time point is shown at the bottom of EEG data. Four averaged

microstates labeled a, b, c, d are presented in (B) in a color scale representing the normalized potentials on scalp. In (C) the EEG data is segmented using these

microstates: intervals of stability of different microstates are shown in their respective colors.

power/energy in a particular frequency band, instead it calculates
Instantaneous Frequencies (IFs) and Instantaneous Amplitudes
(IAs) for each data time-point. In the method, first, the EEG
data is decomposed into bands using the modified Hilbert Huang
Transform proposed by Sandoval and Leon [37].Where, intrinsic
oscillations named Intrinsic Mode Functions (IMFs) present in
the data are extracted using Complete Ensemble Empirical Mode
Decomposition (CEEMD). The CEEMD is an improved version
of Empirical Mode Decomposition (EMD) that reduces the
“mode-mixing” problem and help in preserving the completeness
property of the decomposition. Mode-mixing is named after the
drawback of EMD that consists in the leakage of a single physical
oscillation across several IMFs. Based on the inherited property
of IMFs i.e., local orthogonality, their IFs and IAs are estimated at
each time-point using “amplitude demodulation and numerical
equations.” The data decomposed into IMFs can be represented
as follows

x (t)=
∑k

n=1
Cn (t)+ r(t) (2)

where,
{

Ci(t)
}k

i=1
are the k decomposed IMFs of x(t) and r(t) is

the residue. The process to extract IMFs is called sifting process
[38]. The formulae to estimate their IFs and IAs are shown in (3)
and (5) respectively:

ŵ (t)= d/dt[arg(ŝ (t)+jσ̂ (t))] (3)

with ŵ (t) symbolizing IF estimated by calculating derivative
d
dt () of complex number in which real part ŝ(t) is an amplitude

demodulated IMF (
{

Ci(t)
}k

i=1
) i.e., iteratively, dividingC(t) by its

amplitude envelope until there are no oscillations in the envelope
and the imaginary component σ̂ (t) is calculated as in (3)

σ̂ (t)=−sgn[d/dtŝ(t)]
√

1−ŝ2(t) (4)

where
√

1−ŝ2(t), the magnitude of the imaginary component is
calculated using Pythagorean Theorem in which the magnitude
of the complex number is unity due to amplitude demodulation.
The expression −sgn[ ddt ŝ(t)] estimates the sign of the imaginary
component, or, in other words, it identifies +ve or –ve plane
of the imaginary axis. It is calculated empirically i.e., if ŝ (t) is
decreasing, the sign of imaginary component will be positive
whereas a negative sign of the imaginary component is for
increasing ŝ(t). Hence, reversing the sign (−sgn[]) of derivative
d
dt () of ŝ (t)will yield the sign of the imaginary component. While
corresponding â(t) is calculated by interpolating local maxima of
respective IMF or simply by calculating the upper envelope as
in (5):

â (t)=interpolate(tp,Up
) (5)

where, tp are the times at which the local maxima occur and
Up is their magnitude (see details on these equations in [37]).
The theoretical explanation along with the representation in
algorithmic form can be found in our article in which the
method was originally proposed [36]. That study also identifies
the spectral details associated with wide-band microstates when
the data is spectrally decomposed using the very method. Thus,
based on an identified link between the band-wise topographic
maps and conventional microstate maps, the use of the method
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in this study not only provides further insights to differences
among distinct age groups but also a step forward in the
effectiveness of its use in EEG analysis of synchronized activities.
Interested readers are also referred to the studies [37, 38]
for more details on method. However, a stepwise overview of
procedure for calculation of band-wise topographic maps is
as follows

1. Extract IMFs for a pre-processed signal as in equation 2 by
employing CEEMD algorithm.

2. Calculate instantaneous frequencies (IFs) and instantaneous
amplitudes (IAs) for each IMF and for all time-samples using
equation 3 and 5, respectively.

3. Define frequency bands (e.g. δ, θ, α, β, and γ) and construct
their amplitude-time-series based on above calculated IAs and
IFs i.e., by assigning IA of given sample to the frequency band
determined by IF of that sample. This is repeated for all IMFs
and resultants are summed up in respective frequency bands
to get single amplitude-time-series.

4. Above steps are repeated for all electrodes in a
data individually.

5. After construction of band’s amplitude time series,
conventional microstate procedure as explained above is
applied to get topographic maps for each band.

Optimality criterion is applied for each band’s topographic maps
to get final set of band-wise topographic maps.

The EEG data were spectrally transformed into five
fundamental EEG bands based on the estimated IFs at each
time point, providing the same temporal resolution as in the
time domain EEG data. As will be shown below, the preserved
timescale allowed us to analyze spatial patterns at each frequency
band and to identify the differences between young and aged
subjects that could not be captured by conventional microstate
analysis due to the use of full band data. The procedure [34] for
the extraction of topographic maps was then applied to each
frequency band data and the same optimality criteria (mentioned
above) for all band-wise topographic maps from both young and
aged subjects group was used.

Moreover, the differences between the aged and young
subjects in temporal dynamics of the topographic sequence are
quantitatively analyzed for both conventional and band-wise
topographic analysis using the following parameters:

- Mean-duration (MD): average stability time of
each microstate.

- Frequency-of-occurrence (FO): average number of
appearances of each microstate within a window size of
1 min.

- Coverage (Cov): the ratio of time covered by each microstate
per total time.

- Transition-probability-matrix: the probability of each
microstate transiting into other microstates e.g., transition
probability of microstate A to microstate B symbolized
by A→ B. For example, in resting-state literature, it has
been found that, on average, twelve transitions between
microstates can occur in a second if the number of microstates
is four.

In addition to these parameters, EV is also calculated to
demonstrate the fit percentage of extracted microstate maps to
the EEG data for both groups. Whereas, for spatial changes,
the dissimilarity index has been calculated. The dissimilarity
index represents the strength of spatial similarity, the value of
which ranges from 0 to 2 with 0 representing the same spatial
configuration with similar polarity and 2 for the same spatial
configuration with inverted polarity. It should be noted that
instead of strictly restricting the definition of similarity to these
extremes, we used the range of 0–0.2 and 1.8–2 for similar
and inverted polarity configuration, respectively, in our study to
account for the variance induced due to averaging of maps across
subjects (i.e., group averaged topographic maps).

RESULTS

As mentioned in above section, the analysis is performed in
two ways and their results highlighting the differences between
two groups in respective analysis are presented in separate
subsections below.

Differences Between Groups in the
Conventional Microstate Analysis
Based on optimality criteria, for the conventional microstate
analysis, four microstate maps are found to be optimal for
both young and aged subject group. Four microstate maps are
also found to be consistent with the normative and existing
literature of microstate analysis. Based on resemblance in the
topographic configurations of extracted microstate maps from
both groups with the existing literature, standard labels of
A, B, C, and D are assigned as shown in Figure 2. Note
that these spatial configurations are prototypical representations
of potential distribution across electrodes, ignoring polarity
inversion (as polarity is not taken in to account: (1) when unique
clusters for these potential distribution are being computed
using clustering algorithm and (2) when spatial correlations are
computed for back-fitting of these maps to the EEG data. The
back-fitting is elaborated in Figure 1 where time series across
electrodes presented in (a) are represented by topographic maps
in (b) as a single time series of colored blocks in (c), whose
amplitude is varied according to GFP waveform). The extracted
microstate maps used to segment EEG data achieved Global
Explained Variance (GEV) of 73.55 ± 3.7% for aged and 79.68
± 4.1% for the young subjects group. The difference in GEVs
is found statistically significant (independent t-test, p < 0.05).
Moreover, an overall four microstate maps are also calculated
by combining the data of both groups to investigate the need
for separate microstate maps for longitudinal studies. The GEVs
using overall microstate maps for both groups have decreased
i.e., 71.64 ± 5.5% for aged and 78.72 ± 4.3% for the young
subjects. Note that, although the differences in the explained
variance between individual and combined microstate maps
for each group are small, they are found statistical significant
(independent t-test, p < 0.05).

The repeated measures ANOVA (rmANOVA) has been
separately (2 × 4) conducted for the three metrics that
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FIGURE 2 | Four group-microstate maps extracted from young and aged datasets separately. The maps are labeled conventionally based on maximum resemblance.

include duration, frequency of occurrence, and coverage. Each
rmANOVA had one factor for groups (Aged, or Young) and
one factor for microstate maps (A, B, C, or D). The difference
in mean values for metrics presented in Figure 3 are found to
be significant (p < 0.05) with the exception of the frequency
of occurrence, as presented in Table 1. The significance found
in the full model of mean duration and coverage is further
tested using reduced models (post-hoc analyses), which revealed
that the dynamics of microstate C are dependent on age-
related changes and the mean values of metrics for microstate C
decrease in aged compared to young subjects group (p < 0.0125,
Bonferroni corrected independent t-test). The significance level p
= 0.023 for microstate C is found in the frequency of occurrence
metrics suggesting marginally significant difference. However, no
relation has been found between age and dynamics of the rest
of the microstate maps (A, B, or D) in all metrics (p > 0.02,
independent t-test).

Additionally, the syntax analysis, i.e., analyzing the non-
randomness or directional dominance in the microstate
transitioning, probabilities for each transition pair (in total:
twelve pairs, e.g., X↔Y represents two pairs that are X→ Y
and X←Y) of four microstates are calculated. Our analysis
reports discernable patterns for aged and young subjects group
i.e., directional dominance is always found opposite (i.e., for
example, if aged subjects group has dominant transition from
A to B, then young subjects group found having dominant
transitions from B to A) for each pair as shown in Figure 4.
However, this pattern was not statistically significant except
for the transitions between microstates C and D (p < 0.0125,
Bonferroni corrected independent t-test).

Apart from evaluation of age-related changes in the temporal
parameters of conventional microstates, spatial changes across
groups are also quantified using the dissimilarity index. The
results are presented in Table 2. The results provide evidence
that a change (if any) in spatial maps of scalp-level data can
be detected effectively as in this case microstate map D found
dissimilar across two groups while others are similar with
inverted polarity.

Differences Between Groups in the
Band-Wise Topographic Analysis
In this analysis, three topographic maps are found optimal for
each band in both groups using the same optimal map selection
procedure explained in conventional microstate analysis. The
topographic maps of each band are presented in Figure 5. The
segmentation of EEG data using these band-wise topographic
maps yielded EV of 44.47 ± 3.4% in Delta, 49.15 ± 8.5% in
Theta, 54.28 ± 7.3% in Alpha, 46.69 ± 6.7% in Beta, and 44.54
± 5.5% in Gamma band for the young subjects group; While
EV for the aged subjects group is: 61.52 ± 11.3% in Delta, 57.97
± 9.7% in Theta, 56.79 ± 6.9% in Alpha, 56.48 ± 8.1% in
Beta and 51.14 ± 6.5% in Gamma band. The difference in EVs
in respective bands among groups has been found statistically
significant (independent t-test, p < 0.01, Bonferroni corrected)
for all bands except the alpha band.

Like conventional microstate analysis, the temporal dynamics
of band-wise topographic segmentation are also analyzed. Same
metrics: mean duration, frequency of occurrence, and coverage
are calculated for all band maps i.e., D1, D2, D3 of the delta, T1,
T2, T3 of theta, A1, A2, A3 of alpha, B1, B2, B3 of beta and G1,
G2, G3 of gamma band. The results are presented in Figure 6.
Statistical inferences for the changes among groups are drawn
by conducting the repeated measures ANOVA (rmANOVA)
separately (2 × 3) for these temporal metrics. Each rmANOVA
had one factor for groups (Aged or Young) and one factor for
band-wise topographic maps. In the full model i.e., Table 3A,
the differences in the temporal characteristics of band-wise
topographic segmentation have been found significant (p< 0.05)
except for the theta band for the mean duration and for the beta
band for the frequency of occurrence. To further analyze the
relation found in the full model, post hoc analysis was performed
(Table 3B) where, for every band-wise topographic map, at least
one temporal metric is found significant (independent t-test, p <

0.0167, Bonferroni corrected).
In addition to the analysis of temporal dynamics, the

dissimilarity index has been used to quantify the spatial changes
between groups. The dissimilarity index has been calculated
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FIGURE 3 | Bars representing average values of microstate metrics calculated for both aged (red) and young (green) subject groups to visualize within group

differences for each group-microstate maps.

TABLE 1 | Statistical comparison of microstate temporal dynamics in aged and young subjects.

Repeated measure ANOVA Post-hoc comparison—p level

df F p level A B C D

Mean duration

Group 1;36 5.538 0.031

Map 3;72 16.143 0.000

Group* Map 3;72 10.919 0.002 0.902 0.819 0.001 0.056

Frequency of occurrence

Group

Map 3;72 10.403 0.000

Group* Map 3;72 1.684 0.182 0.232 0.339 0.023 0.913

Coverage

Group

Map 3;72 15.270 0.000

Group* Map 3;72 7.732 0.001 0.025 0.058 0.001 0.636

Results of repeated measure ANOVA and post-hoc comparisons for microstate metrics. ‘Group’ describes between-subject factor as aged or young and within-subject factor i.e. ‘Map’

describes four microstate maps (A, B, C, or D). p-values highlighted in bold formatting are significant.

across the band-wise topographic maps to give us intra and inter-
band similarities if there exist any between two groups. The
results averaged across subjects are presented in Figure 7 which
quantitatively confirms the visual observations of Figure 5 that
narrow band topographies are not only unique with in the bands
of same subject, but are also capable of capturing the differences
across groups.

DISCUSSION

In this study, by means of band-wise microstate analysis,
we have for the first time, to the best of our knowledge,
observed age-related EEG differences in spectrally resolved,
spatial domain, scalp EEG data. Conventional microstate analysis
which constructs spatially synchronized topographies using the
whole bandwidth of EEG data was also used. This conventional
analysis served few purposes in the study. First, the extent to
which age-related changes are identifiable using broad-band EEG
data was still to be analyzed in detail. Second, this provided a
reference for comparison of the band-wise topographic method

which can be considered as a spectral extension of the former.
Third, due to our recent study [36] identifying the link between
band-wise topographic maps and conventional microstates, it
allowed us to draw inferences and reasonably argue that the
results observed using band-wise topographic maps could be
linked with age related changes. Finally, on a similar note, to
show how these observed results could possibly be related to the
results of fMRI studies on normal aging i.e., dedifferentiation
and compensation mechanisms. The interesting findings of this
article are: (a) conventional microstate analysis was found to have
limited effectiveness in identifying age-related changes compared
to band-wise topographic analysis. That is, using the band-
wise topographic method, the observed variations in temporal
features could possibly represent the complex functional changes
found in existing fMRI studies [4, 11], whereas conventional
analysis failed in providing such details. (b) The relative increase
or decrease in timing of synchronized activity between young
and aged subject groups is observed at scalp level which among
existing fMRI studies [4] has been well-reported. And, (c), the
topographic maps of band-wise topographic analysis has shown
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FIGURE 4 | Directional predominance: difference between transition

probabilities of each pair i.e., X↔Y = (X→ Y)-(X←Y). The sign indicating

dominant direction [+ve = (X→ Y) and –ve = (X←Y)]. The values are averaged

across subjects in respective groups. Asterisk is for significant differences (p <

0.0167) between groups.

TABLE 2 | Dissimilarity index among the group averaged microstates of young

and aged subjects group.

Young

Aged
A B C D

A 1.89 1.39 1.84 1.33

B 1.92 1.66 1.31

C 1.92 1.47

D 0.69

spatial changes among groups which is unlike conventional
microstate analysis. Here, the findings are discussed in the light
of the results described above, along with new insights provided
by the band-wise topographic method.

Differences Between Groups in the
Conventional Microstate Analysis
A relevant work of Koenig et al. [33] in which they studied
developmental stages with microstate analysis, using data of
subjects between age of 6 and 80 years. They suggested that
changes in microstate dynamics in subjects above 50 years of
age could possibly be age-related changes. However, the focus of
the study being on developmental stages they did not evaluate
age-related changes in detail. Therefore, we started our analysis
by assessing what insights can be provided by conventional
microstates in this regard. In the present work, four microstates
were found optimal for both datasets. The Global Explained
Variance (GEV) was evaluated to find out whether representing
both groups with grouped-averaged microstate maps (extracted
after concatenating data of both groups), like in Koenig et al.
[33], constitutes a sufficient model, or if, conversely, separating
the two groups with distinct averaged microstate maps for each
group, yields a more explanatory model. Results demonstrate
a significant increase in the GEV values in each group when
distinct microstates maps are used for distinct groups. Although

the change in GEV is not large, it is statistically significant,
and therefore encourages the use of separate microstate maps
for aged and young subject groups, respectively (at least in
this study). This is to avoid any segmentation bias that may
hinder age-related changes. Therefore, we have used separate
microstate maps for each group for further analysis. The
extracted microstate maps are shown in Figure 2.

Temporal parameters of microstate analysis have their own
neurophysiologic significance. The Mean Duration (MD) is
representative of stability in underlying neuronal patterns, the
Frequency of Occurrence (FO) is representative of propensity
of specific neuronal generators to be activated in a given
time-period, and coverage is interpreted as the amount of
time neuronal generators remain dominant [29]. For example,
Seitzman et al. [39] observed that the coverage and FO of
microstate B has increased significantly when analyzing open-
eyes data compared to closed-eyes data for same subject across
24 healthy young subjects (age: 21.1 ± 4.5 years). Note that
microstate B has been previously linked with the visual system
[40]. Similarly, a few other studies have also found alterations
in the temporal parameters of other microstates, such as C and
D [31, 41, 42]. Therefore, to investigate if there are any age-
related alterations to these parameters, the above-mentioned
metrics were calculated (results in Figure 3) for both groups,
and rmANOVA (Table 1) was performed to search for an overall
difference among the four microstate maps. The metrics MD and
coverage have been found to be statistically different. Further
investigation using post hoc analysis revealed that the differences
in the respective metrics are mainly due to the decreases in
microstate C in aged compared to young subjects. The decrease in
microstate C in aged subjects group is not surprising considering
its relation to the hemodynamic counterpart: It has been found
positively correlated with the BOLD signals of the anterior
cingulate cortex (ACC), right anterior insula, inferior frontal
gyri and left claustrum [40]. These areas are also said to be
roughly related to resting state network (RSN 6) in Mantini
et al. work [43]. Several fMRI studies identified age-related
decline in functional connectivity involving these regions. As in
Damoiseaux et al. [2], decrease in connectivity involving most
frontal and parietal brain regions has been found. The ACC
which is related to working memory has been found to have
decreased activations in elderly people [44]. Additionally, not
only in fMRI studies, Kalpouzos et al. [45] suggested decline in
metabolic activity at ACC and prefrontal cortex using Positron
Emission Tomography. Similarly, structural changes i.e., gray
matter volume in ACC along with parietal cortex, insula, and
cerebellum has been found to be reduced in aged people [46].
Therefore, decrease in temporal parameters has been in-line
with existing studies analyzing data of different modalities, and
possibly this observed change is due to the attention deficiency
and limited emotional, cognitive, and perceptual brain processing
in normal aging.

Furthermore, we have also computed the syntax ofmicrostate-
based segmentation of EEG. The results in Figure 4 show that
transitions in pairs is inverted between young and aged subjects
but there is no statistically significant difference except for the
pair of C↔D. This suggests an overall balance is maintained
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FIGURE 5 | Band-wise group averaged topographic maps of young subject data in (A) and aged subject data in (B). From top to bottom are five frequency bands (δ,

θ, α, β, and γ) with 3 maps for each band from left to right, labeled as D1, D2, D3 for delta, T1, T2, T3 for theta, A1, A2, A3 for alpha, B1, B2, B3 for beta, and G1, G2,

G3 for gamma band. This sequence is the same for both panels.

in connectivity patterns in both groups. The balance in elder
people is suggested to be due to the compensatory mechanism
which fulfills the need of any reduced activity in performing a
given task [11]. Despite the differences in connectivity of several
regions involved in deficiency due to normal aging, several
fMRI studies have reported the compensatory mechanisms. This
compensation-related activity has been formulated using three
cognitive models as reported by Sala-Llonch et al. [4]. One of
these models named “Hemispheric Asymmetry Reduction in Old
Adults” informs about the compensatory activity arising from
decline in lateralized pattern of activity in frontal region in elder
people [47]. And, Britz et al. [40] reported that microstate D
is related to the BOLD signal of ventral and right-lateralized
dorsal areas of parietal and frontal cortex which are responsible
for reorientation and switching of attention. Therefore, it is
reasonable to assume that the significant change in the syntax of
pair C↔D are due to the microstate D.

Besides inferring that the change in microstate D is due to
compensatory activity, to further support the link of observed
changes in our conventional microstate analysis with the
dedifferentiation and compensatory mechanisms, we highlight
that, in Figure 2, microstate D appears visually dissimilar
between the groups in spatial configuration, a result that is also
supported quantitatively by the dissimilarity index in Table 2.
However, except for microstate D, no other microstate map
shows such dissimilarity. This could be acceptable for microstates
A and B, as they were found similar in their temporal parameters

as well. But the spatial similarity of microstate C (even though its
temporal parameters have shown significant alterations) across
groups raised concern about the possibility of visualizing the
spatial changes at scalp level that occurred locally in normal
aging due to dedifferentiation and compensatory mechanisms
as observed in fMRI studies at the cortical level. Having said
that, it is also observed from the existing fMRI studies that the
age-related changes are not straightforward, i.e., both increases
and decreases are found which are in abidance to the results of
dynamic balancing of connectivity patterns of both young and
elder brains [11]. Based on these results, it can be deduced that
for dedifferentiation and compensation mechanisms to be true, if
there is a decrease in connectivity of a certain region, there should
be a compensatory increase in connectivity involving other
regions. However, detecting such mechanisms topographically
with scalp-level data may well be tricky as in our analysis
of conventional microstate analysis, and might require adding
constraints or transformations to the scalp data to be resolved.

One possible reason which we thought of to help us solve
this issue of observing age-related changes spatially at scalp-
level analysis, was to spectrally decompose the data. The
intuition behind is that we did not observe the age-related
changes occurring in local brain areas could be due to the
amalgamation of signals of different frequencies into one signal
which will consequently describe only the prominent change
even if multiple changes have occurred at different frequencies.
In such a case, it would be reasonable to assume that the failure
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FIGURE 6 | Average values along with standard deviations of microstate

metrics: (A) mean duration, (B) frequency of occurrence, and (C) coverage,

calculated for both aged and young subject groups to assess within-group

differences for each grouped band-wise topographic map.

in capturing such changes could be due to the use of broad-
bandwidth of the signal for the extraction of the conventional
microstate maps. Therefore, we hypothesized that decomposing
spectrally the EEG signals, and then evaluating the spatial
patterns could capture the complex changes which are already
known from fMRI studies. This brings forth the need to apply
the band-wise topographic analysis to investigate differences
between young and aged subjects.

Differences Between Groups in the
Band-Wise Topographic Analysis
To strengthen our point of using separate microstate maps for
young and aged subjects, EV has been calculated for band-
wise topographic maps at each frequency band using EEG
data. The statistically significant (p < 0.01) differences in EV
values suggest age-related changes should be considered a factor
while examining spatial synchronicity. As expected, there are
more differences in temporal and spatial characterization of
band-wise analysis compared to broad-band analysis between
the two groups. For the temporal characterization of band-
wise topographic analysis, the metrics analogous to those used
in the conventional analysis, evaluating stability, occurrence,
and percentage of existence over time, were used. The results
presented in Figure 6 show a complex pattern of increase and
decrease between groups. The rmANOVA (2 × 3) analysis
(Table 3A) suggest a significant change between groups at each
frequency band for each metric except for the theta band
concerning MD, and for the beta band concerning FO. Further
analysis (Post hoc: Table 3B) revealed that at least one metric is
found to have statistically different values at each band between
groups. The observed changes in temporal characteristics of
band-wise topographic segmentation are in line with our
hypothesis. That is, on one hand, in the temporal domain,
both increases and decreases in MD are observed, however, the
dynamic balance in synchronized activity across brain, which
has been found in fMRI studies, is still maintained and can be
noticed at scalp-level analysis. For example, the MD for A1 and
A3 increased in aged compared to young subjects but a decrease
in A2 compensate this. Similarly, other temporal parameters also
adjusted themselves to maintain a dynamic balance.

On the other hand, in the spatial domain, from Figure 5,
the spatial differences can also be visualized easily. The band-
wise spatial maps of young subjects appear to be more localized
than those of aged subjects. This spread in synchronized brain
activity in the maps of aged subjects is not surprising because,
in existing studies of fMRI data, increases in brain activity in
aged subjects are reported, and these increases in activation
have heterogeneous localization compared to young subjects
[4]. At this point, we refrain from concluding that these
spatial changes are a consequence of age-related dedifferentiation
and compensation mechanisms, but the inferences that can
be drawn from fMRI studies do highly support this notion.
For example, a few studies also suggested that brain regions
continue to reconfigure with age during rest to compensate
for decline in other regions [48]. Moreover, the “Posterior-
Anterior Shift with Aging (PASA),” experimentally proven model
to describe age-related changes also support changes which
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TABLE 3A | Statistical analysis of the temporal dynamics of band-wise topographic maps in aged and young subjects.

Repeated measure ANOVA

Delta Theta Alpha Beta Gamma

df F Sig. F Sig F Sig. F Sig. F Sig.

Mean duration

Group 1;36 10.2 0.005 6.1 0.024 10.3 0.005 10.3 0.005 7.4 0.014

Map 2;54 41.7 0.000 2.7 0.078* 30.9 0.000 30.9 0.000 17.3 0.000

Group* Map 2;54 10.8 0.000 2.9 0.064* 30.5 0.000 30.5 0.000 10.5 0.000

Frequency of occurrence

Group 1;36 7.4 0.014 7.4 0.014 15.3 0.001 8.0 0.12 10.9 0.004

Map 2;54 17.3 0.000 17.3 0.000 30.9 0.000 9.6 0.000 49.6 0.000

Group* Map 2;54 10.5 0.000 10.5 0.000 15.5 0.000 2.6 0.089* 3.4 0.044

Coverage

Group

Map 2;54 49.5 0.000 48.5 0.000 38.8 0.00 18.0 0.00 32.3 0.00

Group* Map 2;54 3.4 0.044 9.5 0.001 35.5 0.00 7.2 0.03 5.6 0.08*

Results of repeated measure ANOVA.

“Group” describes between-subject factor as aged or young and within-subject factor i.e., “Map” describes three band-wise topographic maps.

Sig. represents p-level and values >0.05 are highlighted with asterisk at their end and are considered non-significant.

TABLE 3B | A post-hoc analysis of temporal dynamics of band-wise topographic

maps in aged and young subjects.

Mean duration

(ms)

Frequency of occurrence

(FO/min)

Coverage (%)

Delta D1 0.395 0.00 0.000

D2 0.001 0.005 0.005

D3 0.037 0.005 0.968

Theta T1 0.028 0.028 0.883

T2 0.625 0.003 0.113

T3 0.007 0.432 0.186

Alpha A1 0.461 0.000 0.000

A2 0.000 0.758 0.000

A3 0.330 0.000 0.000

Beta B1 0.001 0.077 0.003

B2 0.247 0.001 0.002

B3 0.004 0.071 0.579

Gamma G1 0.019 0.013 0.467

G2 0.009 0.037 0.072

G3 0.323 0.003 0.004

The significance here is tested using independent t-test.

p > 0.0167 (Bonferroni corrected) are considered non-significant and are highlighted in

bold formatting.

include both increases and decreases in connected regions along
with the changes in spatial patterns [49]. As in PASA, Davis
et al., have described the dedifferentiation mechanism with
the decline in posterior midline cortex combined with the
compensatory mechanism of increased activity in medial frontal
cortex. However, to be sure that the spatial changes observed
in band-wise topographic maps are due to age-related changes,
one has to reconstruct the underlying sources at the time of

FIGURE 7 | Intra and inter band dissimilarity Indices between topographic

maps of young (x-axis) and aged (y-axis) subject groups.

their occurrences by utilizing some forward/inverse modeling.
But, to further add support to our opinion, we would like to
take advantage of recently identified associations between band-
wise topographic maps and conventional microstate maps in
one of our works [36]. It says that conventional microstates
maps could well be represented by the combination of any of
these five band-wise topographic maps (one from each band).
This means that a meta-process described by one microstate
map can be spectrally resolved into five sub-processes, which
are described by five band-wise topographic maps, one from
each band. Thus, these observed spatial and temporal changes
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in band-wise topographic analysis can be linked to age-related
changes observed in fMRI studies similar to the conventional
microstate analysis in the above subsection. For example, in Javed
et al. [36], band-wise topographies D2 and D3 are associated
with conventional microstate C which is described above to be
linked with ACC [40], and the ACC has been found to have
decreased activations in elderly people [44]. Moreover, results
of spatial dissimilarity index presented in Figure 7 show intra
and inter band dissimilarities among groups. No two band-wise
topographic maps are found similar, which is unlike conventional
microstate maps. Therefore, it is reasonable to suggest that
the failure in identifying the spatial changes among groups
using conventional microstate maps is due to the amalgamation
of signals of different frequencies into one signal of broad-
bandwidth. However, being one of the very first studies using
band-wise topographic maps to investigate dedifferentiation and
compensation mechanism at scalp-level, these findings reveal
new and interesting directions that require further assessments.

CONCLUSION AND FUTURE WORK

One of the most frequently reported age-related factors is
the change in cognitive and perceptual systems, which may
consequently affect behavior. In turn, the majority of age-
related diseases, including Alzheimer, which are related to these
systems, are reported as disconnection syndromes. Therefore,
the need to carry out this work lies in the importance of
identifying the scalp-level electrophysiological correlates of fMRI
findings. As it is believed that the results found via different
modalities, more so with the one that directly measures neuronal
potentials, and recent analysis tools, will be helpful in developing
consensus over aging-related alterations; inching closer to the
underlying mechanism which is still elusive, and consequently
helping in limiting the differences between young and elder
brain. In this work, we first showed that conventional microstate
analysis can only identify the prominent changes in normal
aging and is unable to detect complex changes. However, to
conclude on results of conventional microstate analysis if one

wants to use it for, let say, identification of any potential
electrophysiological biomarkers of a given disease, we suggest
using separate microstate maps for young and aged subject
groups. Second, to get further insights, we applied our recently
proposed band-wise topographic analysis which has shown more
sensitivity in detecting the changes between the young and aged
groups. However, we are constrained in drawing conclusions
on their relevance since, to the best of our knowledge, this
is the first study evaluating spectrally resolved spatial changes
of aging. And unlike conventional microstate analysis where
the corresponding resting state networks are known for each
microstate map, a simultaneous study of EEG and fMRI is an
imminent future prospect for band-wise topographic analysis
to unfold its functional significance. Having said that, it is also
important to mention that the band-wise topographic method
has shown the glimpse of advancements that could converge
the efforts of linking the results from different modalities to
one another.
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