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a b s t r a c t 

The functional architecture of the resting brain, as measured with the blood oxygenation level-dependent func- 
tional connectivity (BOLD-FC), is slightly modified during task performance. In previous work, we reported be- 
haviorally relevant BOLD-FC modulations between visual and dorsal attention regions when subjects performed 
a visuospatial attention task as compared to central fixation (Spadone et al., 2015). 

Here we use magnetoencephalography (MEG) in the same group of subjects to identify the electrophysiolog- 
ical correlates of the BOLD-FC modulation found in our previous work. While BOLD-FC topography, separately 
at rest and during visual attention, corresponded to neuromagnetic Band-Limited Power (BLP) correlation in the 
alpha and beta bands (8–30 Hz), BOLD-FC modulations evoked by performing the visual attention task (Spadone 
et al. 2015) did not match any specific oscillatory band BLP modulation. Conversely, following the applica- 
tion of an orthogonal spatial decomposition that identifies common inter-subject co-variations, we found that 
attention–rest BOLD-FC modulations were recapitulated by multi-spectral BLP-FC components. Notably, individ- 
ual variability of alpha connectivity between Frontal Eye Fields and visual occipital regions, jointly with decreased 
interaction in the Visual network, correlated with visual discrimination accuracy. In summary, task-rest BOLD 

connectivity modulations match multi-spectral MEG BLP connectivity. 
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. Introduction 

In the resting state, several studies have shown that the topography
f fMRI networks is recapitulated by the topography of slow ( < 0.1 Hz)
oherent fluctuations of band-limited power (BLP) ( de Pasquale et al.,
010 ; de Pasquale et al., 2012 ) especially in the alpha and beta fre-
uency bands ( Brookes et al., 2011b , 2011a ; de Pasquale et al., 2010 ;
e Pasquale et al., 2012 ; Hipp et al., 2012 ; Liu et al., 2010 ) or SNR-
orrected multi-band patterns ( Hipp and Siegel, 2015 ). In contrast, the
Abbreviations: BLP, Band Limited Power; FC, Functional Connectivity; RSN, Rest
ttention Network; SPL, Superior intraparietal lobule; dFEF, dorsal aspect of the hum
isual area; LFP, Local Field Potential; GLM, Generalized Linear Model; MNI, Montrea
omponents Analysis; PC, Principal Component. 
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iterature on the comparison of BOLD vs. MEG connectivity during task
onditions is scant. This is possibly due to the high similarity of the task
nd rest global interaction patterns, as observed, separately, in fMRI
 Cole et al., 2014 ; Smith et al., 2009 ; Spadone et al., 2015 ; Tavor et al.,
016 ) and MEG ( Betti et al., 2018 , 2013 ). 

The few BOLD-MEG connectivity comparison studies showed sim-
lar functional connectivity topography for slow oscillations ( < 30 Hz,
ee ( Betti et al., 2013 ; Liljeström et al., 2015 )). Betti et al. ( Betti et al.,
013 ) compared fMRI and BLP connectivity during visual fixation (rest)
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nd the observation of a movie (task). While the overall topography was
aintained, the task-induced BOLD connectivity decreases in multiple
etworks, which corresponded to a decrease of alpha and beta BLP con-
ectivity ( < 30 Hz). In contrast, BLP connectivity in other frequencies
theta, beta, and gamma) increased, corresponding to both increases or
ecreases of BOLD connectivity. 

Liljeström et al. ( Liljeström et al., 2015 ) compared fMRI and MEG
etworks when subjects named either actions or objects presented on a
creen vs. when they simply saw the same stimuli. As Betti et al., they
ound the greatest similarity in MEG and fMRI derived networks for
eural frequencies below 30 Hz. However, BOLD network task vs rest
odulations could not be attributed to a single frequency band. Instead,

he entire spectral profile was the best descriptor of the correspondence
etween MEG and fMRI networks. 

In this study, we revisit the question of rest-task fMRI vs. MEG
onnectivity modulations using a well-controlled visuospatial atten-
ion task. This experiment introduces several innovations as compared
o previous studies. First, the task is highly controlled psychophysi-
ally, as compared to previous studies that used naturalistic stimula-
ion with no behavioral control ( Betti et al., 2013 ) or covert responses
 Liljeström et al., 2015 ). This attention paradigm has been employed
n multiple experiments ( Capotosto et al., 2015 , 2013 ; Shulman et al.,
010 , 2009 ; Spadone et al., 2015 ). Subjects either maintain visual fixa-
ion (rest) or perform a visuospatial attention task in which the focus of
ttention is covertly directed to a left or right stimulus stream based on
so-luminant color cues embedded in the visual stream. The detection
f targets, by key press, occurs either on the same or opposite side of
ttention. The relative advantage in accuracy and reaction times for at-
ended vs. unattended targets is a probe of the allocation of visuospatial
ttention. 

Secondly, the functional anatomy is known as compared to previous
ork in which the regions of interest were predefined based on prior
arcellations ( Betti et al., 2013 ) or source localized MEG signals on the
ame task ( Liljeström et al., 2015 ). Based on fMRI experiments ran on
he same subjects ( Spadone et al. 2015 ), we knew that a relatively small
et of cortical regions were modulated by attention. These included oc-
ipital visual regions (VIS), sensitive to the location (left, right) of at-
ention, and regions of the so-called dorsal attention network (DAN),
ensitive to shifts of attention. Therefore, we used source localized MEG
ignals from this specific set of functional regions. 

Thirdly, we have a hypothesis on the direction of BOLD functional
onnectivity (BOLD-FC) modulations induced when going from visual
xation (rest) to visuospatial attention (task) ( Spadone et al. 2015 ).
OLD-FC connectivity nicely segregates DAN and VIS regions both dur-

ng fixation and task, but the two networks increase their correlation
uring the task in parallel with a relative decrement of connectivity
ithin the VIS network. 

The aims of the study were twofold: to compare the patterns of task-
nduced modulation of fMRI and MEG connectivity, specifically within-
s. between-network interactions; and, to examine whether the corre-
pondence between BOLD and BLP connectivity topography and rela-
ive task-modulation, is better accounted for by single vs. multi-band
pectral patterns. 

. Materials and Methods 

.1. Subjects 

Twenty healthy subjects (age range = 19–28 y old; 14 females), right-
anded (Edinburgh Inventory), participated in both the fMRI and MEG
cans. The original sample size of ( Spadone et al., 2015 ) consisted of 21
ubjects, but 1 subject was excluded due to the incompatibility of the
ead size with the MEG helmet. The subjects, with no previous psychi-
tric or neurological history, provided their informed written consent
ccording to the Code of Ethics of the World Medical Association and
he Institutional Review Board and Ethics Committee at the University of
2 
hieti. This group of subjects was enrolled through a preliminary behav-
oral session, during which they performed a continuous visuospatial at-
ention task similar to the task of the neuroimaging scans (see subsection
timulation Paradigms) to evaluate performance and eye position with
n IR eye-tracking system (Iscan etl-400; RK-826 PCI) ( Spadone et al.,
015 ). 

.2. Stimulation Paradigms 

Pseudorandom sequences of continuous reorienting/maintenance
timuli ( Capotosto et al., 2015 , 2013 ), all generated using the MAT-
AB Psychtoolbox-3 ( Brainard, 1997 ; Kleiner et al., 2007 ; Pelli, 1997 ),
ere delivered to the subjects. Stimuli consisted of two continuous drift-

ng Gabor patches, 3° diameter, 2 cycle/° spatial frequency, 0.7°/s drift
ate. The two patches were presented onto a screen, over a light grey
ackground, at both sides of a central fixation cross at an eccentricity
f 5.5°. During the fMRI study, stimuli were projected (using an EIKI
C XG-250L Projector System) on a screen situated behind the subject’s
ead and viewed through a mirror located above the subject’s head. For
he MEG study, we used an LCD projector (NEC MT830G + ) placed out-
ide the shielded room, projecting images on a pair of 45° mirrors and
 translucent screen. For both projectors: the horizontal Sync was au-
omatically set in the range 15–100 kHz; the vertical Sync in the range
0–100 Hz. 

Participants were instructed to maintain central fixation while
overtly attending one of the two gratings to detect briefly presented
argets. The side to be attended was indicated by a peripheral cue con-
isting of a 300 ms isoluminant change in the color (pink and cyan)
imultaneously applied to the two patches. Only one color, indicated
t the beginning of each block and counterbalanced across blocks, was
elevant for cueing. The cue could appear in the same location as the
revious trial (stay cue) or the opposite location (shift cue), indicat-
ng that the attention had to be shifted. The targets consisted of brief
150 ms) changes of the patch orientation in either clockwise or anti-
lockwise direction, which should be signaled by the subjects by press-
ng the right/left button with their right middle or index finger on a re-
ponse pad. The cue correctly predicted the location of the target with
0% probability (valid trials), whereas the target appeared at the un-
ued location (invalid trials) in 20% of the trials. Cues appeared at ran-
om intervals between 4 and 6 s, in the MEG session, and every 2, 3, 4
epetition times (TR) within a temporal window of + /-400 ms centered
n the TR, in the fMRI session. After each cue, either zero, one, or two
argets could be presented. Cues did not predict when the target would
ppear, but they were linked by three temporal constraints: (i) targets
ould not occur earlier than 1 s after a cue (ii) cues could not occur ear-
ier than 2 s after a target (iii) targets occurred, on average, every 11 s
n the MEG session and every 9 s in fMRI (see Fig. 1 A for an example of
he display sequence). Finally, we generated two pseudorandom stimu-
us sequences of ~16 min for the MEG session, each consisting of three
locks of attention task lasting 300 s and interleaved by 15 s periods of
xation, used to minimize fatigue and drop of attention. For the fMRI
ession, we generated 12 pseudorandom sequences, each lasting 210 s. 

.3. fMRI recordings 

The fMRI hardware specifications and acquisition protocols were al-
eady extensively described in ( Spadone et al., 2015 ). Briefly, BOLD
ontrast was obtained from T2 ∗ -weighted images collected on a Philips
chieva 3T Scanner using a gradient echo-planar imaging sequence
TR = 1.869 ms; Time of Echo (TE) = 25 ms; 39 slices acquired in
scending interleaved order; voxel size = 3.59 × 3.59 × 3.59 mm 

3 ;
4 × 64 matrix; and flip angle = 80°]. Structural images, to be used
lso for MEG processing, were collected using a sagittal M-PRAGE T1-
eighted sequence (TR = 8.14 ms; TE = 3.7 ms; flip angle = 8°; voxel

ize = 1 × 1 × 1 mm 

3 ). 
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Fig. 1. Paradigm and involved ROIs. A) Example of the stimulus stream in the visuospatial attention task. B) Representation of the ROIs involved during the 
performed task. These ROIs were selected in ( Spadone et al., 2015 ), on the same subjects scanned by MEG, based on their fMRI response profile during the attention 
task. Different networks are color-coded (red: Dorsal Attention Network (DAN); yellow: Visual Network (VIS)). 
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The fMRI session included 3 resting-state runs (each lasting 5 min)
nd 12 runs of task. An MRI-compatible IR eye-tracking system (Iscan
tl-400; RK-826 PCI) was used to control eye movements. Subjects’ re-
ponses were collected through a LUMINA LU400 Response Pad (Cedrus
orporation). 

.4. MEG Recordings 

MEG scans were obtained through a custom-made whole head sys-
em developed, installed, and operating at the University of Chieti since
bout 2000 ( Della Penna et al., 2000 ; Pizzella et al., 2001 ). The sys-
em was implemented in collaboration with the current ATB Biomag
G. The MEG system consists of 153 dc SQUID magnetometers placed
n a helmet-shaped surface covering the whole scalp and spaced about
.2 cm. The sensors are housed inside a low-noise dewar with a helmet-
haped bottom, at a distance of 1.8 cm from room temperature. MEG
ignals, together with two ECG and two EOG channels to be used for
ffline artifact rejection and for monitoring horizontal eye movements,
ere band-passed at 0.1–250 Hz and sampled at 1025 Hz. Stimuli were
rojected onto a screen situated inside the magnetically shielded room.
ubjects responded using a LUMINA LU400 Response Pad (Cedrus Cor-
oration). A MEG session consisted of 3 runs of fixation lasting 5 min
ach, followed by 2 runs of the visuospatial attention task. After each
un, the subject’s head position relative to the MEG sensors was esti-
ated from the field produced by five coils placed on the scalp, whose
ositions were digitized together with 5 anatomical landmarks. 

.5. Preprocessing and FC Evaluation 

.5.1. fMRI Data Analysis 

The preprocessing procedures, the ROI identification, and the FC
valuation are extensively described in ( Spadone et al., 2015 ) and in
upplementary Material S1.1 . Briefly, in our previous study, we aimed to
dentify regions showing activity modulation due to the cue type (shift,
tay) or the cue location (left, right). Following standard preprocessing,
e employed a generalized linear model (GLM) that made no a priori
ssumption of the hemodynamic response shape, by generating separate
-function regressors for each of seven MR frames starting at the onset
f cues and targets. The GLM used 12 types of regressors including first
ues (left, right), standard cues (shift left, shift right, stay left, and stay
ight), targets (valid left, valid right, invalid left, and invalid right), and
dditional regressors coding for baseline and linear trend in each scan.
3 
ignificant ROIs were identified through a voxel-wise ANOVA with cue
ype (stay and shift), cue location (left and right), and time as factors on
he time courses of the evoked responses to cue stimuli. The voxel-wise
NOVAs were corrected for non-independence of time points by adjust-

ng the degrees of freedom and corrected for multiple comparisons using
 joint z-score/cluster size threshold ( Forman et al., 1995 ) correspond-
ng to z = 3.0 and a cluster size of 13 face contiguous voxels. A peak-
earch algorithm was applied to the cue type by time, and cue location
y time statistical maps resulting in the selection of 6 ROIs belonging to
he Dorsal Attention Network (DAN – the superior parietal lobule (SPL),
he dorsal aspect of the human frontal eye fields (dFEF), and the pos-
erior intraparietal sulcus (pIPS), all bilateral), showing stronger shift-
elated than stay-related activity, and 6 ROIs of the Visual Network (VIS
the ventral V4-V8, the dorsal V3a-V7 in the occipital cortex and the

ateral middle temporal (MT) visual area, bilaterally), showing spatially
elective effects (contralateral stronger than ipsilateral activity). These
OIs are shown on an MNI brain surface in Fig. 1 B. Following removal
f the BOLD response evoked by the cues and targets, and of the sig-
al averaged over the whole brain, a low pass filter with a cutoff at
.167 Hz was applied. Static connectivity matrices at task and during
xation were estimated through the z-Fisher transform of the pairwise
earson’s correlation coefficients averaged across runs (as computed in
 Spadone et al., 2015 )). 

.5.2. MEG Data Analysis 

Following the data quality check of the channel-level MEG data
 Larson-prior et al., 2013 ), 2 subjects were excluded due to the pres-
nce of abnormal artifacts. For sake of data comparison, the same 2
articipants were excluded from the fMRI analysis, as well. MEG data
ere analyzed through the following steps (see Figure 2 A): (i) a pipeline
ased on Independent Component Analysis (ICA) followed by an auto-
atic classification procedure aimed to identify the brain and artifactual

ndependent Components (ICs) ( de Pasquale et al., 2012 ; Mantini et al.,
011 ; Sebastiani et al., 2014 ; Spadone et al., 2012 ) was applied to the
hannel data (see Supplementary Material S1.2.1 for more details). Then,
ii) the sensor maps of the brain IC were projected in the source space us-
ng a weighted minimum-norm least square (wMNLS) estimator imple-
ented in Curry 6.0 (Neuroscan), using a realistic model of the source

pace and volume conductor obtained from the subject’s anatomical im-
ge and sampled by a Cartesian 3D grid with 4 mm voxel side (see Sup-

lementary Material S1.2.2 for more details ) . The individual source maps
ere then transformed into MNI152 space to enable subsequent spatial
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Fig. 2. Methods. A) Processing strategy steps to obtain the BLP-FC matrices from the MEG raw data. After preprocessing, aimed at removing artifacts and projecting 
channel-level signals into the source space, MEG source activity is filtered in six frequency bands to estimate the BLP signal. Individual BLP-FC is estimated through 
Pearson’s correlation coefficient (z-Fisher transformed). Finally, the individual matrices are averaged across subjects to generate the group BLP-FC for each frequency 
band. B) Flowchart of the multi-band comparison between the BLP- and BOLD-FC matrices. Individual, vectorized FC matrices (rest, task or task–rest) are concatenated 
(across frequencies and subjects together, in case of BLP-FC) and used as input for the PCA, which decomposes the original matrices into the product of the PCs and 
the weights of each PC across subjects (and bands, in case of BLP). Finally, the BLP- and BOLD-derived PCs are compared using Mantel’s Tests. 
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veraging across subjects. We decided to use a volume grid because the
OLD-FC data from Spadone et al., 2015 were obtained from a 3D grid

nto the 711-2C atlas, which was then co-registered to MNI, and we
anted to use the same type of source volume to facilitate the com-
arison among FC matrices (e.g. we did not want to introduce any con-
ound due to handling seeds into different source spaces grid and cortical
antle). Moreover, coregistration of the individual source space to the
NI space is more straightforward, facilitating group average. At this

oint, (iii) for each voxel corresponding to the peak activity of the 12
OIs identified from fMRI (namely seed from now on) we corrected the

eakage effects on the source space maps according to the Geometrical
orrection Scheme ( Wens et al., 2015 ) applied to the linear inverse op-
rator 𝑊 = 

∑
ic 𝑨 ic 𝒖 ic as in ( Betti et al., 2018 ; Della Penna et al., 2019 ),

here 𝒖 ic is the row of the unmixing matrix associated with the source
ap 𝑨 ic for a generic independent component IC (see Supplementary

aterial S1.2.3 for more details). For each seed, (iv) the voxel vector ac-
ivities of the other seeds were estimated as a linear combination of the
C time courses, each weighted by the related leakage-corrected source
ap value. For each seed and vector signal direction the contribution

f the evoked signal was adaptively removed from each cue and tar-
et as in ( Della Penna et al., 2004 ) (see Supplementary Material S1.2.4

or more details). Then, (v) all the leakage-corrected signals together
 2  

4 
ith the seed itself were filtered in delta ( 𝛿) [1–4] Hz, theta ( 𝜃) [4–8]
z, alpha ( 𝛼) [8–14] Hz, beta ( 𝛽) [14–30] Hz, low-gamma ( 𝛾 l ) [30–
0] Hz and high-gamma ( 𝛾h ) [50–120] Hz bands. (vi) For each seed,
 set of MEG Band Limited Power (BLP) time series at voxel were esti-
ated by averaging instantaneous source-space power over sliding win-
ows of duration = 150 ms and step of 20 ms. Finally, (vi) the individ-
al, leakage-corrected BLP Functional Connectivity maps were obtained
sing pair-wise Pearson’s correlation coefficient, followed by z-Fisher
ransformation. Connectivity values between regions closer than 3.5 cm
ere masked to account for possible miscorrection effects due to seed
islocalization ( Wens et al., 2015 ). 

Eventually, the group FC at each frequency band was obtained by
veraging individual FC matrices across subjects. 

.6. Comparison between BOLD- and Single-Band BLP-FC Matrices 

The first step was to compare the BOLD and BLP-FC matrices in the
ingle rest or task conditions. We first tested RSN segregation for each
odality using a t-test comparing within vs. between average correla-

ion, averaging the FC values over each sub-matrix (DAN, VIS, and DAN-
IS). For BOLD FC, this test was already carried out in ( Spadone et al.,
015 ), thus we refer to the methods and results reported in that paper.
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hen we compared the patterns obtained by the two modalities through
 regression analysis on all the pairwise correlation values for each sub-
ect, where the BOLD- and single-band BLP-FC data were considered
s the independent, and the dependent variables, respectively and we
ested the significance of the regression coefficient vs. 0 through a t-test
ver subjects. 

Secondly, we searched for BLP correlates of task-induced BOLD-FC
odulations at the level of the whole matrix and sub-matrices, based

n the correlation strength and correlation pattern. (i) The first type of
omparison considered the sign polarity of the task vs. rest correlation
ifferences. Given that ( Spadone et al., 2015 ) reported in task-minus-
est FC no FC change between DAN regions, an FC decrease between
IS regions, and an FC increase between VIS and DAN regions, respec-

ively, we looked for their spectral signatures. Hence for both modalities
and separately for each frequency band), the mean pairwise connectiv-
ty over task–rest matrices or submatrices was compared vs. 0 through
 2-tailed t-test over subjects ( p < 0.05, Bonferroni corrected across 6
ands). The submatrices included only pairwise correlations between re-
ions that belonged respectively to the VIS only, DAN only, or VIS-DAN.
ii) The second analysis looked for the similarity of task–rest correlation
atterns on the whole matrix and sub-matrices for each band. As in the
ingle condition, we first compared the whole matrices applying a linear
egression analysis over the node pairs for each subject. The regression
oefficients were tested vs. 0 through a t-test, Bonferroni corrected for 6
the number of frequency) multiple comparisons. The same strategy was
pplied to sub-matrices, together with additional analyses described in
he Supplementary Material (S1.3 and S2.1) . 

.7. Comparison Between BOLD- and Multi-Band BLP-FC Principal 

omponents 

In addition to the standard analyses described in the previous subsec-
ion, we investigated whether the FC matrices could be decomposed into
onnectivity patterns (components) that were common across subjects.
his strategy was motivated by the hypothesis that while in single con-
itions the connectivity patterns were dominated by the contribution of
 larger within- than between-network connectivity as already revealed
n ( Spadone et al., 2015 ), in the task vs. rest difference a larger inter-
ubject variability might emerge. In this case, separation techniques are
seful for the following reasons: (i) to extract information from the data;
ii) to select common (across subjects) spatial patterns of task-induced
onnectivity changes without a-priori assumptions; (iii) to reduce the
umber of variables to be compared. Thus, we applied a spatial sep-
ration, through (not-centered) Principal Components Analysis (PCA),
o BOLD- and multivariate BLP-FC, as shown schematically in Fig. 2 B,
or single condition (rest and task), separately, and the difference task
s. rest. We also applied PCA to single band BLP-FC, and a description
f methods and results are reported in the Supplementary Material (S1.4

nd S2.3) . First, for each condition, individual BOLD-FC masked ma-
rices were vectorized (unrolling the upper triangular FC matrix) and
ormalized to the maximum absolute FC value, to obtain a BOLD-FC
ector of dimension 57 for each subject (this dimension accounts for
he exclusion of the same pairs which were masked in the BLP FC ma-
rix). These individual vectors were arranged in a matrix of FCs, with
imension 57 × 18, where 18 was the number of subjects. The spatial
CA decomposed this matrix into the product of the BOLD-PCs (matrix
imensions 57 × N PC - BOLD ) and the related weights of each BOLD-PC
cross subjects (matrix dimensions N PC - BOLD × 18). 

Similarly, for each frequency band separately, the vectorized,
asked, and normalized BLP-FC was organized into an input matrix
ith dimension 57 × 18. Then, all frequency bands were arranged into
 single input matrix with dimension 57 × (18 × 6), where the band-
pecific vectorized FC matrices were concatenated across subjects for
ach band. Note that for BLP-FC, the maximum FC value has been eval-
ated among all the frequency bands, to preserve the inter-bands rela-
ionships. The spatial PCA applied to this matrix produced a BLP-PCs
5 
atrix (matrix dimensions 57 × N PC - BLP ) and a weight matrix across
requency bands and subjects (matrix dimensions N PC - BLP × (18 × 6)).
or each modality, the number of PCs to be considered for the similarity
nalysis was identified applying an automatic selection method, defined
s the elbow method , which consists in the identification of the elbow
oint along the scree plot of the explained variance of each component
 Cattell, 1966 ; Lattin et al., 2003 ). Variance values below the elbow are
onsidered too small, and the related components are discarded. 

BOLD-PCs and multi-band BLP-PCs were compared through Mantel’s
est ( Mantel and Haenszel, 1959 ), which is used to calculate the cor-
elations between corresponding positions of two similarity symmetric
atrices derived from multivariate data. Specifically, the test uses the
nfolded upper triangular part of each matrix and evaluates the correla-
ion coefficient between these vectors. Mantel statistics were tested for
ignificance by 15,000 permutations, during each of which the rows and
olumns of either one of the two matrices were permuted and the Man-
el statistic was recomputed to determine the expected distribution of
he statistic under the null hypothesis. Finally, the value obtained from
he observed data was compared to the null distribution, to assess the
tatistical significance. 

Before comparing the obtained PCs across methods, we run a proce-
ure to identify the PC polarity, which is undetermined in PCA. Specif-
cally, each BOLD-PC polarity was selected to be positively correlated
ith the group-level BOLD FC matrix. The polarity of the BLP-PCs was

nstead set to produce, for the BLP-PC, a positive maximum correlation
ith the BOLD-PCs. 

The robustness of the PC test was analyzed through a leave-one-out
est described in Supplementary Materials (S1.5 and S2.4) . 

.8. Task–Rest Multi-Band BLP-FC Components and Target Discrimination 

ccuracy 

To explore the relationship between task-induced connectivity BLP
odulation and the behavioral performance, for each task–rest multi-

and BLP-PC, we evaluated the significance of the associated oscillatory
ands. First, we evaluated the subject-wise relative participation weight
in absolute value) of each frequency band, normalized to the individ-
al weight sum. In this manner, for each subject, and each BLP-PC we
btained a vector of 6 components, indicating the percentage contri-
ution (in absolute value) of each frequency band. The individual tar-
et discrimination accuracy was binarized in high and low performance
evels concerning the mean accuracy across subjects. For each task–
est BLP-PC, we tested possible differences of the relative participation
eights across bands using a two-way multivariate ANOVA across sub-

ects, with bands as the within-subjects factor and binary performance
s the across-subjects factor. 

All BOLD and BLP averaged functional connectivity matrices, as
ell as BOLD and BLP-PCs (rest, task, and task–rest) with related
articipation weights, are available in “Mendeley Data ” ( https://data.
endeley.com/ ). 

. Results 

.1. Single-band Comparison between fMRI and MEG Connectivity 

atrices 

The group average BOLD- and BLP-FC matrices at rest and task, and
heir difference (task–rest) are shown in Fig. 3 . Each row represents an
OI of the DAN, and then the VIS network and the color scale represents

he pairwise correlation (z-Fisher transformed). Blackened cells indicate
egion pairs closer than 3.5 cm and masked for further analyses based
n the leakage correction algorithm ( Wens et al., 2015 ) (see Materials
nd Methods - MEG data analysis and Supplementary Material S1.2.3) . 

First, let’s focus on separate rest and task matrices. BOLD-FC matrices
nclude both positive and negative weights (i.e., positive and negative
orrelation) while BLP-matrices contain only positive weights. We think

https://data.mendeley.com/
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Fig. 3. Functional Connectivity values. Top) Averaged BOLD-FC matrices (gray-shaded area) and averaged BLP-FC matrices for each frequency band (from delta 
to high gamma) for rest, task, and task–rest difference. Black areas indicate functional connections that were masked out from the MEG data analysis due to the 
spatial closeness of the corresponding ROI pair. The same mask is applied to BOLD-FC for comparison. While the average was used to define these group connectivity 
matrices, the following analyses are based on individual data. Bottom) Scatter plot of the BLP functional connections (y-axis), separate for each band, versus the 
BOLD functional connections (x-axis) for rest (green), task (red), and task–rest difference (yellow). Each cross stands for a single cell of the FC matrix, centered at 
the average across subjects, and with the arms’ length equal to the standard error across subjects. A black dotted line indicates the bisector. Green and red circles 
indicate significant regressions in rest and task, respectively. In these plots, it not possible to find any clear evidence of a linear relationship between BLP-FC and 
BOLD-FC values for task–rest matrices. 
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his is due to the whole-brain signal regression, a step taken in the fMRI
reprocessing that centers the correlation values around 0. This step
s not easily implemented in the MEG preprocessing (see Discussion),
ut it will be essentially dealt with in the PCA analysis described in the
ext section. Secondly, DAN and VIS networks are clearly segregated
n BOLD-FC matrices, and the correlation between regions of the DAN
nd the VIS network significantly increases during the task ( p < 10 −4 ;
-test), as shown in ( Spadone et al., 2015 ), where all the statistical anal-
ses were reported. In the BLP-FC matrices, we also observe network
egregation. In fact, within-network BLP correlation is stronger than
etween-network BLP correlation at rest and task in several bands (rest:
elta, theta, alpha, beta, low gamma, all p < 0.05; task: delta, theta,
lpha, beta, low-gamma, high-gamma, all p < 0.05; all ps Bonferroni
6 
orrected), as assessed through t-tests. The increase in DAN-VIS correla-
ion is observed only for high-gamma connectivity, but the p-value was
ot significant anymore after Bonferroni correction ( p = 0.011, before
orrection). 

To analyze the relationship between FC patterns at rest and during
ask, at the group level, we arranged the FC values into scatter plots and
stimated the regression coefficients. These plots are shown at the bot-
om of Fig. 3 , in which we display the mean and standard error (across
ubjects) of the BOLD (x-axis) and BLP (y-axis) FC values of each node
air, for each band and condition (i.e., rest in green, task in red, and
ask–rest in yellow). Focusing on the task and rest conditions, we found
ignificant regression coefficients only in the alpha and beta bands in
oth task ( 𝑏 𝛼 = 0 . 17 , p-alpha = 0.038; 𝑏 𝛽 = 0 . 14 , p-beta = 0.0012, all
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Fig. 4. Comparison between multi-band BLP- and BOLD- Principal Components at rest (Top) and task (Bottom). Left) BOLD Principal Components (PC1 and PC2). 
Middle) Multi-band BLP-PCs. Right) Left column: scatter plot of BOLD-PC1 (red dots) and BOLD-PC2 (gray dots) vs. BLP-PC1 pairwise regional connectivity values 
( p -values assessed through Mantel’s test, Bonferroni corrected). Note the significant correlation between BOLD-PC1 and BLP-PC1. Right column: participation weights 
of each frequency band to the BLP-PCs, evaluated as the sum of the absolute weight values across subjects. 
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onferroni corrected) and rest ( 𝑏 𝛼 = 0 . 17 , p-alpha = 0.0024; 𝑏 𝛽 = 0 . 08 ,
-beta = 0.025, all Bonferroni corrected). Therefore, these results show
 significant spatial similarity of group average BOLD-FC and BLP-FC to-
ography at rest and during tasks, even though task correlation values
re lower. 

Next, let’s consider the difference BOLD-FC matrix (task–rest). A
ignificant decrease of within-VIS correlation was paralleled by a cor-
elation increase between VIS and DAN regions, as already reported
n ( Spadone et al. 2015 )). The picture for BLP-FC was more complex.
here was an overall decrease of connectivity in two bands, assessed
hrough t-test across subjects of average coupling strength vs. 0: al-
ha (t-val = -3.90, p-val = 0.0016) and beta bands (t-val = -4.25, p-
al = 0.0005). There is also increased correlation in the high-gamma
and (t-val = 2.5536, p-val = 0.02). In delta, theta, and low-gamma
ands, both increases and decreases were found depending on the spe-
ific pair of regions. 

However, at the level of a single band, none of these spatial pat-
erns was linearly related to the pattern of task-evoked FC modulation
easured in fMRI. This is confirmed in the scatter plots of Fig. 3 bottom

yellow crosses), where no regression coefficient was significantly differ-
nt from 0 ( 𝑏 𝛿 = −0 . 04 ; 𝑏 𝜃 = −0 . 02 ; 𝑏 𝛼 = 0 . 001 ; 𝑏 𝛽 = 0 . 02; 𝑏 𝛾𝑙 = −0 . 04 ;
 𝛾ℎ 

= −0 . 03 ; all ps = n.s.). However, qualitatively, across bands, some
f the salient BOLD-FC modulations are evident. For instance, BOLD-
C decrements in the VIS network correspond to both alpha-beta decre-
ents and theta-gamma BLP-FC increases. Similarly, DAN-VIS BOLD-FC

ncrements correspond to both alpha-beta decreases, and high gamma
LP-FC increases. This suggests that multi-band modulations may be

mportant to describe task-dependent changes in connectivity. 

.2. Comparison between BOLD- and Multi-Band BLP- FC Components 

Given the lack of a clear BOLD-BLP FC correspondence at the level
f group-averaged data and single BLP bands and the presence of a large
ommon signal in the MEG BLP matrices, we performed an analysis to
eek similar spatial component patterns across subjects and modalities.
herefore, we ran a separate PCA on BOLD and single-band BLP corre-

ation matrices and compared the obtained principal components (PCs)
7 
cross modalities. We applied this data-driven spatial pattern separa-
ion both in single conditions (rest and task) separately, and in task–rest
ata. For both fMRI and MEG data and every condition, we selected the
omponents to be retained for the analysis through the automatic elbow

ethod , to avoid any bias. 

.2.1. Single Conditions Components 

In single conditions, the BLP connectivity was almost completely de-
cribed by the first BLP-PC, which explained 95% and 93.3% of the total
ariance, at rest and task, respectively. This component mainly loaded
n alpha and beta bands in both conditions ( Fig. 4 ).This is consistent,
t least for rest, with the literature (e.g. ( Brookes et al., 2011b , 2011a ;
e Pasquale et al., 2010 ), and our previous univariate analysis. 

For BOLD connectivity, we identified 2 components both at rest and
ask, the first of which explains 68% (rest) and 76% (task) of the to-
al variance, and it is a clear representation of the average BOLD-FC
cross subjects. While BOLD-PC1 reflects the segregation of RSN, with
tronger within- than between-network correlation, BOLD-PC2 reflects
he enhanced integration between VIS-DAN, and stronger communica-
ion within VIS, which is stronger during the visuospatial attention task
see Fig. 4 ). 

The spatial topography of BOLD and BLP components was similar
t rest and during tasks consistently with the previous analysis. Specifi-
ally, there was a significant correlation between BOLD-PC1 at rest and
ask (corr = 0.95, p < 10 −7 , Mantel’s test), and between BLP-PC1 at rest
nd task (corr = 0.93, p < 10 −7 , Mantel’s test), suggesting that the PC1
ccounts for spatial patterns that do not modulate during the attentional
ask. In addition, we found that BLP-PC1 was significantly correlated
ith BOLD-PC1 both at rest and during task (rest: corr = 0.40, p = 0.016;

ask: corr = 0.42, p = 0.0011; all Bonferroni corrected) ( Figure 4 middle
anel, scatter plot). BLP-PC1 loaded on all bands, especially alpha and
eta bands ( Fig. 4 right). However, the similarity between BOLD- and
LP-PC1 do not reflect task-related changes, but only stronger within-
han between-network interactions that are present both during rest and
ask conditions. 

In summary, these findings show that both BOLD and BLP connec-
ivity patterns are spatially low dimensional, and in the case of the BLP
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Fig. 5. Comparison between multi-band BLP- and BOLD- task–rest Principal Components. Top) BOLD Principal Components, sorted concerning the explained vari- 
ance. PCs significantly similar ( p < 0.05, Bonferroni corrected) to multi-band BLP-PCs are embedded in black and gray contours. Middle) Multi-band PCs sorted 
concerning the explained variance. BLP-PCs with a pattern significantly similar to the BOLD-PCs are embedded in black and gray contours. Bottom-left) Pattern 
similarity between each pair of BLP-PCs and BOLD-PCs. Colors represent the strength of the correlation, while white filled dots indicate values that are significantly 
different from zero (Mantel’s Test, p < 0.05, Bonferroni corrected) and black dots mark significant, uncorrected comparisons. Bottom-right) Upper: Participation 
weights of each frequency band. These values represent the sum of the absolute weight values across subjects. Lower: Participation weights of each frequency band 
for the groups of subjects with low and high accuracy, together with statistical results (the average alpha weight of subjects with high accuracy is larger than all the 
other bands in both groups, ∗ stands for p < 0.0008). 
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nvolve mainly alpha and beta bands. These patterns are similar between
est and task and correlate between modalities. Given the presence of
uch strong correlated spatial components across multiple frequency
ands is not surprising that task–rest signals do not correlate between
OLD- and BLP-FC, especially for single frequencies ( Fig. 3 bottom).
his led us to examine multi-band relationships between BOLD and BLP
onnectivity. 

.2.2. Task–Rest Components 

When the difference between task and rest is considered, the elbow
ethod selected 3 PCs for fMRI and 5 PCs for BLP (see Fig. 5 , for PC
8 
atterns; Figure S2, scree plots of all separations). Results of control
nalyses to test the robustness of the obtained separation are reported
n Supplementary Material ( Section S2.4 ). 

The first BOLD-PC (42% of the total variance) is composed of an
ncrease of DAN-VIS interactions along with a parallel decrease of inter-
ctions between the visual regions. BOLD-PC2 (15% of variance) shows
ncreased connectivity between the left FEF, the right SPL, and, to a
maller extent, the right FEF regions (the latter at a smaller extent) with
very other region, in parallel with decreased connectivity within the vi-
ual network. BOLD-PC3 (7% of variance) describes a general increase
or all DAN-VIS connectivity pairs, except left FEF, and a weak FC decre-
ent in the visual regions. 
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Fig. 6. Summary of the BOLD-BLP-PCs comparison. Spatial patterns of connec- 
tivity modulations representing the BLP-PCs corresponding to BOLD-PC2 and 
BOLD-PC3, all projected onto the MNI brain representation. Positive and neg- 
ative values are coded in red and blue, respectively. Line thickness represents 
the strength of the modulation. 
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The first BLP-PC, which accounts for 43.78% of the total variance, re-
ects the non-spatially specific modulation, common to every frequency
and, consistent with the global signal. 

The BLP multi-band patterns were compared to the BOLD-PC
hrough Pearson’s correlation coefficient, whose significance was eval-
ated by a Mantel’s Test with 15,000 permutations. The polarity of the
LP-PCs was set to produce, for each row in the similarity matrix (BLP-
C), a positive maximum correlation with the BOLD-PCs (see Fig. 5 ,
ottom left). 

The strongest pattern similarity (correlation = 0.69, p < 10 −4 , Bonfer-
oni corrected) occurs between BOLD-PC2 and BLP-PC2 (12.29% vari-
nce) and captures the increased interaction of the left FEF and right
EF-SPL (the latter at a lower extent) with other nodes of the DAN and
IS networks, as well as the decrements of connectivity in the VIS sys-

em. The weights of BLP-PC2 loads mainly on the alpha band, as con-
rmed by the main effect band ( p < 0.00001) in the multivariate ANOVA
nd significant post-hoc tests ( p < 0.0004). After splitting subjects into
ow and high performers based on the mean target discrimination accu-
acy, a significant interaction band x performance ( p < 0.003) showed
hat alpha weights were significantly larger in high performers as com-
ared to all other bands, as well as alpha weights in low performers
 p < 0.0008, Fig. 5 bottom right). 

The second strongest pattern similarity regards BOLD-PC3 and BLP-
C5 (correlation = 0.52, p = 0.003, Bonferroni corrected), with a similar
istribution of weights across bands. 

In a supplementary analysis (see Supplementary Material S2.3.1 ), we
lso compared single- vs. multi-band BLP PCs to explain BOLD-PC de-
omposition using the Bayesian Information Criterion (BIC). In general,
e found multi-band BLP components to be a better descriptor of task-

elated fMRI connectivity changes. Fig. 6 shows a summary of BOLD-PC
o BLP-PC correspondence with their regional topography and relative
eights of the connectivity. BLP-PC2 is the one related to the accuracy
uring the task for weights on the alpha band. 

. Discussion 

The goal of this study was to identify the neurophysiological corre-
ates of functional connectivity changes, measured with fMRI (BOLD-
C) as observers go from a rest state (visual fixation) to a specific
ask state involving the allocation and shifts of visuospatial attention
 Spadone et al., 2015 ). We focused on the static temporal correlation of
mplitude fluctuations of band-limited power (BLP-FC) measured with
EG, which is considered the most consistent electrophysiological cor-

elate of BOLD RSNs. We asked if these task–rest modulations occur in
pecific frequency bands or involve joint participation of multiple bands.

At the group level, we found an overall decrease of BLP-FC across
wo bands (alpha and beta) and an increase in the gamma band ( Fig. 3 ,
op). When separately considering rest and task states, we found a sig-
ificant correlation between the topography of the BOLD-FC and that
f BLP-FC in the alpha and beta bands ( Fig. 3 , bottom). Instead, no sig-
ificant topography correlation occurred for task–rest FC modulation in
ny of the bands. This negative result is probably due to the low di-
ensionality of the electrophysiological patterns observed at rest and

ask conditions, focusing on a single component, which loads mostly
n alpha and beta bands, and that does not change much between rest
nd task conditions ( Fig. 4 ). This dominant pattern accounts (i) for the
arger within- than between-network connectivity, in common with the
rst BOLD-FC pattern, and (ii) for the common signal in MEG, spread
cross all frequency bands (even though mostly in alpha and beta). The
ubtraction operation between task and rest connectivity removes this
ommon electrophysiological factor and allows for different and higher
imensional patterns to emerge that cannot be resolved with a single-
and approach. 

In accordance with that, we found a significant similarity between
ask–rest BOLD and multi-band BLP functional connectivity patterns
fter orthogonalization through a PCA procedure. Two main patterns
9 
merged: first, the interaction of left FEF and right SPL with other re-
ions of the DAN and VIS along with a decrement of inter-regional
IS connectivity; second, the enhanced correlation between DAN and
IS regions. Notably, the alpha weight of the first pattern differed be-

ween subjects with low and high behavioral performance. These pat-
erns resemble the main patterns identified in our previous fMRI study
 Spadone et al., 2015 ), and correspond to a behaviorally relevant top-
own influence from the DAN to the VIS network. 

.1. Association Between BLP-FC and BOLD-FC Task-Induced Modulations

Since the seminal work of Logothetis and colleagues in primates
 Logothetis et al., 2001 ), BLP correlations have been proposed as the
lectrophysiological correlate of the resting-state networks (RSNs) mea-
ured through fMRI ( Brookes et al., 2011b , 2011a ; de Pasquale et al.,
010 ; de Pasquale et al., 2012 ; Hacker et al., 2017 ; He et al., 2008 ;
ipp et al., 2012 ; Keller et al., 2013 ; Leopold et al., 2003 ; Mantini et al.,
007 ). Most studies have emphasized that the similarity between BOLD
SNs and BLP RSNs is most reliable in the alpha and beta bands. 

Our work is consistent with these observations. We find even at the
evel of single subjects a significant relationship between the magnitude
f the BOLD and BLP correlation in alpha and beta bands, at rest, and
uring the attention task ( Fig. 3 ). 

However, even early studies showed that each fMRI RSNs is charac-
erized by a specific electrophysiological signature that involves mul-



C. Favaretto, S. Spadone, C. Sestieri et al. NeuroImage 230 (2021) 117781 

t  

M  

e  

m  

b  

d  

2  

i  

a  

e  

r  

t
 

r  

c  

2  

t  

t  

(  

i  

b  

H  

r  

t  

l  

b  

fl  

i  

f  

f  

f
 

B  

I  

t  

l  

a  

b  

b  

B
 

t  

V  

t  

i  

a  

c  

t  

e  

M  

c
 

d  

p  

V  

(  

m  

a  

a  

2  

J  

p  

h  

o  

c  

l  

u  

(
 

B  

n  

i  

t
 

u
 

o  

l  

b
 

d  

(  

s  

b  

t  

t
 

i  

(  

t  

(  

c

4

P

 

f  

o  

e  

t  

i  

v  

n  

t  

c  

t  

c  

c  

a  

o  

w  

t  

i  

t  

a  

r  

p  

(  

r
 

F  

n  

p  

s  

(  

t  

a  

w  

j  

m  

d  
iple brain rhythms ( de Pasquale et al., 2010 ; Hipp et al., 2012 ;
antini et al., 2007 ). Moreover, alpha and beta rhythms have the high-

st signal-to-noise (SNR) in the MEG signal, which may explain their
ore consistent relationship to fMRI RSNs. When SNR differences across

ands are corrected, then BLP correlates of fMRI RSNs extends from
elta to gamma band ( Hipp and Siegel, 2015 ) (see also ( Garcés et al.,
016 )). Accordingly, we found multi-band BLP modulations when go-
ng from rest to attention. Two principal modulations occurred: first,
n overall not-spatially-specific modulation of correlation across sev-
ral bands, and second, coupled modulations of BLP across different
hythms corresponding to specific spatial patterns of BOLD-FC modula-
ions. 

The overall change of BLP correlation across nodes and networks
eflects the modulated amplitude of the global signal that underlies in-
reased vigilance during the attention task ( Liu et al., 2018 ; Tal et al.,
013 ; Wong et al., 2013 ). This effect is quite strong, accounting for more
han 40% of the variability across subjects, nodes, and bands. While
here are different strategies to remove the global signal from fMRI data
 Murphy and Fox, 2017 ), a whole-brain signal regression on BLP data
s particularly challenging due to the difficulty to account for possible
and-specific differences in the spectral contribution to the global signal.
owever, the multi-band PCA approach effectively isolates components

epresenting modulation of the global signal from rest to task: although
he participation weight of the alpha band to the BLP-PC1 provides the
argest contribution to this overall modulation, the weights of the other
ands are not negligible ( Fig. 5 ). Thus, multi-band BLP-PC1 might re-
ect a broadband electrophysiological signal related to the BOLD ongo-

ng global signal ( Wen and Liu, 2016 ), which was instead removed from
MRI data before estimating the FC. Changes in MEG global signal as a
unction of task conditions is still a relatively unexplored topic worth
uture investigation given the robustness of this effect. 

The second effect was a spatially specific multi-band modulation of
LP correlation involving nodes of the dorsal attention network (FEF,
PS, SPL) and nodes of the VIS network. There are three main elements to
his interaction in the fMRI data: (1) an increase of correlation between
eft FEF and right SPL with all other nodes of the DAN and VIS; (2)
 decrease of correlation within the VIS; (3) an increased correlation
etween DAN and VIS nodes ( Fig. 4 , 5 , 6 ). These elements are captured
y the BOLD PCA: PC1 captures (2)(3); BOLD PC2 captures (1)(2), and
OLD PC3 captures (3). 

BOLD-PC2 (15% of the total variance) captures the increased interac-
ion between left FEF and right FEF-SPL with other nodes of the DAN and
IS networks, as well as the decrements of connectivity in the VIS sys-

em. BOLD-PC2 shows the largest pattern similarity with BLP-PC2 load-
ng mainly in the alpha band. The increased correlation between FEF
nd other regions shown in BOLD-PC2 and the corresponding BLP-PC2 is
onsistent with the known FEF role in establishing cue-related prepara-
ory signals ( Corbetta and Shulman, 2002 ) and exerting top-down influ-
nce on sensory processing ( Bressler et al., 2008 ; Heinen et al., 2017 ;
oore, 1999 ), modulating activity and connectivity with the visual oc-

ipital cortex. 
The weights of BLP-PC2, especially in the alpha band, were pre-

ictive of accuracy across subjects. This result is consistent with the
reviously observed positive relationship between accuracy and FEF-
IS connectivity changes during the attention task in Spadone et al.
 Spadone et al., 2015 ). The link between alpha band BLP and perfor-
ance is consistent with a large literature on alpha power modulation in

ttention paradigms. Modulation of alpha activity has traditionally been
ssociated with inhibition of the not-to-be-attended side ( Jensen et al.,
012 ) and anticipation of a visual target ( Bonnefond and Jensen, 2012 ;
ensen et al., 2012 ; Sauseng et al., 2008 ; Thut et al., 2006 ). While these
aradigms have reported attention-related modulation in the order of
undreds of milliseconds to seconds, time-locked to specific events (cue
r target), our data indicate more sustained modulations of alpha band
onnectivity (tens of seconds) related to attention performance. Similar
onger times scale behaviorally relevant modulations capturing individ-
10 
al variability have been reported in many fMRI connectivity studies
 Rosenberg et al., 2020 ; Sestieri et al., 2013 ; Spadone et al., 2015 ). 

The second association involved BOLD-PC3 (7% of variance) and
LP-PC5. BOLD-PC3 describes a general increase of all DAN-VIS con-
ectivity pairs, except for left FEF, which was instead clearly involved
n PC2. Previous studies have also shown broadband modulations in at-
ention tasks ( Siegel et al., 2008 ). 

How do we account for these multi-band patterns of task–rest mod-
lation? 

On one hand, the higher SNR of the alpha band compared with the
ther bands ( Hipp and Siegel, 2015 ) may be the reason why the modu-
ation in other bands does not appear to be significantly associated with
ehavioral performance. 

On the other hand, a second explanation is that the modulation of
ifferent frequencies carries different kinds of information. For instance,
 Magri et al., 2012 ) found that fluctuations of the BOLD signal in the vi-
ual cortex co-varied with the power of alpha, beta, and gamma LFP
ands. However, alpha/gamma relationships were informative about
he amplitude of the BOLD signal, while beta/gamma informed the la-
ency of BOLD. 

In general, consistently with these results, we find that decreases
n alpha/beta bands were associated with increases in high gamma
 Figure 3 ). It is also consistent with electrophysiological evidence
hat LFP power < 20 Hz is important for distant BOLD connectivity
 Wang et al., 2012 ), and that low frequencies play a role in large-scale
oordination ( Bressler et al., 2008 ; Schroeder and Lakatos, 2009 ). 

.2. Methodological Considerations on the Spatial Separation of Common 

atterns 

Our choice of applying the Principal Components Analysis to seek
or the electrophysiological correlates of the BOLD connectivity changes
bserved when going from fixation to a task condition was based on sev-
ral considerations. (i) At first, we wanted to extract information from
he data, taking into account the across-subjects variability observed
n task–rest connectivity matrices. We observed that the coefficient of
ariation (CV) of task–rest connectivity values across subjects was sig-
ificantly larger than chance, and different than single conditions (rest,
ask) in fMRI (see Supplementary Material S2 .2). This observation indi-
ates that the average task–rest BOLD FC matrix represents only part of
he information contained in the data. (ii) Moreover, we wanted to select
ommon (across subjects) spatial patterns of task-induced connectivity
hanges through a data-driven approach, where no initial assumptions
re considered. This differentiates, for instance, from the application
f the generalized linear model (GLM), a hypothesis-driven approach,
here the set of regressors should be designed a-priori and validated by

he results. In absence of any initial hypotheses, we thus preferred to
mplement a more flexible data-driven technique. (iii) Another impor-
ant consideration regards the variables to be considered for BOLD-FC
nd BLP-FC comparison. Indeed, the PCA application is a suitable tool to
educe the number of variables to be compared by considering only the
atterns by PCA rather than all the pairwise correlation values. Finally,
iv) with this spatial separation, we accounted for the high positive cor-
elations observed in BLP-FC across regions and bands. 

Notably, the first three motivations do not exclusively apply to BLP-
C data, but also BOLD-FC data. Importantly, spatial separation tech-
iques have been already applied to BOLD-FC in recent studies ex-
loiting the inter-subjects variability of connectivity through a relation-
hip with behavioral measures ( Amico and Goñi, 2018 ), or multimodal
EEG-fMRI) topological similarity ( Wirsich et al., 2020 ), even though
he common BOLD signal was removed as in our study. Notably, we
lso applied multivariate PCA to single-condition connectivity maps,
hich was used to extract connectivity patterns common across sub-

ects. We indeed obtained a dominant pattern in the two conditions and
odalities (PC1). Even though BOLD and BLP PC1 were correlated, this
oes not provide information about BOLD-BLP association during task-
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elated changes, and the single condition analysis explains why standard
ingle-frequency cross-modality comparisons of task vs. rest correlation
hanges did not produce significant associations ( Fig. 3 ). 

The main limitation of PCA is the absence of suitable statistics to
erify the results. This is the reason why we tested the robustness of the
Cs through a leave-one-out test over subjects, described in the Supple-

entary Material ( Sections S1.5 and S2.4 ). 

. Conclusions 

We found that the spatial patterns of BOLD connectivity modulation
bserved when going from rest to a visuospatial attention task cannot
e directly associated with single-band BLP modulations. Rather, BOLD
omponents representing common patterns across subjects can be best
ecapitulated by multi-band components of MEG connectivity. Specifi-
ally, we found that cross-network increases between dorsal attention
nd visual networks, and the concomitant decreases within the visual
etwork are associated with concordant modulations in all the bands,
ith a primary role of the alpha band. 
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