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Abstract: This article reports fractal dimension analysis applied to soil CO2 fluxes measured in
an Italian seismic area. The work was carried out with the use of a calibrated flux chamber
unit. The fractal dimension (FD) from isotropic variograms was used as a method to understand
related scale-dependent phenomena. The aim was to investigate the spatial variability of CO2 flux
measurements in four directions (horizontal, vertical, 45◦ and 135◦ directions) related to different
distances between the measuring points and from a fault. High fractal dimension values were
found (2.5 ≤ FD ≤ 3.0). These imply strong anti-persistent behavior near to and far from the fault.
Lower fractal dimensions were addressed at longer distances from the fault.
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1. Introduction

Surveys of soil gas have been commonly used to trace buried faults and to study the behavior
of endogenous gases of specific origins in the shallow environment (i.e., trace gases such as radon
and helium, and carrier gases such as carbon dioxide, nitrogen, methane, etc.) [1–8] and have received
significant attention over the last few years as earthquake precursors [6,9–15]. In addition, changes in
stress/strain associated with seismic activity may force the migration of crustal fluid, in particular
along active faults, thereby altering the geochemical characteristics of the surface fault zone [16–18].
The movement of these gasses by diffusion and/or advection along active faults will create flow
anomalies, with concentrations substantially higher than the background levels; such anomalies may
provide accurate information about the position and morphology of the shallow fracturing zone,
as well as the permeability within the fault zone [3,4,7,19–21].

In recent years, geological, seismological, geophysical and geochemical knowledge has contributed
to a much stronger, but far from complete, understanding of the link between faults and earthquakes
in terms of space and time, with important advances in the analysis of seismic precursors applied to
probabilistic seismic hazard assessment [12].

A fractal is a geometrically rough or broken structure that can be subdivided into sections, each of
which is (at least approximately) a copy of the whole. Fractal geometry is the analysis of geometric
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forms that appear chaotic or irregular when compared to those of standard geometries (e.g., line,
square, sphere, etc.), which exhibit extreme orderliness. Fractals may show invariant properties under
reasonable contractions or dilations [22].

The authors in [23,24] asserted that phenomena with scale-dependent spatial variability can
be studied through the concept of the fractal dimension. The technique has also been applied to
non-continuous spatial and temporal phenomena [25]. According to [26], the fractal dimension applied
to the characterization of soil can provide an estimation of the scale regularity and irregular behaviour.
Scale dependency and spatial variability have been addressed in the relationship between CO2 fluxes
and soil attributes [27,28]. In addition, [29] reported that the spatial variability of CO2 flux is partially
subject to experimental semi-variogram adjustments, which must be properly selected. This subjectivity
can be attributed to the dependence of the experimental semi-variogram on grid characteristics, such as
the direction and sampling distance used at the experimental site [30,31]. Previous studies have used
different range values of CO2 fluxes for different locations, soil types and vegetation covers [32–35].
Certainly, new approaches and more research are needed to better understand the spatial variability of
CO2 fluxes at different scales [36]. Some studies were carried out to understand the fractal behavior in
seismic areas [37,38]. According to [39,40], the CO2 fluxes in seismic areas can be used to estimate the
relationships between CO2 gas emissions and seismic activity.

Accounting for the above findings, this paper focused on the study of the spatial analysis and
variability of CO2 flux from soil using fractal dimensions calculated with the semi-variogram method.
The fractal characteristics of the underlying mechanisms that govern the spatial variability of CO2 flux
were delineated, and important information about the hidden long-lasting patterns of the Campotosto
seismic area (Central Italy) were found and reported.

2. Methodology and Data Analysis

2.1. Experimental

The study area is located at Campotosto (42◦55’ N and 13◦38’ E), a small village approximately
20 km away from L’Aquila city, in the Abruzzo region (Central Italy, Figure 1). Abruzzo lies in the
Apennine chain. In the vicinity of Campotosto, there is a significant active fault, the so called Mount
Gorzano fault, of approximately 28 km length (Figure 2), a normal-type fault with WSW-dipping
and a length-in-depth about 19.6 km [41–44]. Moreover, the rocks that outcrop in this study area are
a flysh-type succession called the pre-evaporitic member of the Laga Formation [45]. This specific
stratigraphic succession found in the study area is the arenaceous-pelitic (LAG4, lower Messinian [46]),
characterized by the alternation of layers of sandstone and clay with relation A/P > 1 [46]. This is
a strategical study area because is very near to active faults that generated big earthquakes on
24 August 2016 and also on 26 and 30 October 2016 in Central Italy [43,44].

The 37 CO2 flux measurements were performed, independently, in two discrete phases,
on 25 September 2019 and on 1 December 2019. Figure 3 presents all these 37 different measurements in
the Campotosto area. During all the measurements, the climatic conditions were sunny without previous
rain. Prior to data acquisition, superficial vegetation was removed in order to achieve the direct contact of
the measuring device with the soil and rock underneath.

CO2 fluxes from soil were measured by a flux chamber unit constructed at the
University ‘G. D’Annunzio’ of Chieti-Pescara, Italy. The instrument consists of a cylindrical stainless
steel container of 30 cm diameter and of 18 cm height (12.72 L volume-chamber). The unit was calibrated
and tested for measurement accuracy. The calibration phase was implemented through the use of a
laboratory-constructed system, which controlled the flow of various air and CO2 mixtures (via a LabView
program (National Instruments Corporation, Austin, TX, USA)), while concurrently measuring the flow
with an external Mass Flow Controllers made by MKS Instrument, type 1179 Mass-Flo® Controller
(Wilmington, MA, USA) and an internal CDM4160 (Figaro®) pre-calibrated module that was installed
inside the flux chamber for carbon dioxide measurement (value range: 390–4000 ppm of CO2 concentration).
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The calibration factor of the flux chamber unit was calculated as the slope of the least-squares fit between
the CO2 concentrations measured by the chamber unit (internal controller) and the flow-driven CO2

concentrations measured by the external units.
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Figure 2. Geomorphological map of the study area. Map taken from [45].
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All the fluxes were calculated according to [47] by the equation:

φgas= αHc (1)

where α is the slope of the increase in gas concentration over time and Hc is the height of the chamber.
Using Equation (1), the CO2 fluxes were evaluated, and the relative results are shown in Figure 3 in
ppm cm−2s−1.

The test phase was implemented to determine the quality of the CO2 concentration measurements
provided by the internal module of the unit. Two main tests were carried out: the first was implemented
through increasing steps of the CO2 concentrations driven to the chamber unit, and the second,
through decreasing steps of CO2 concentrations. Between each experimentation, adequate time was left for
the CO2 concentration values of the chamber to return to the corresponding baseline ones, which are usually
around 400 ppm. In this way, the dead-time interval of the flux chamber unit was calculated, i.e., the time
needed for the unit to return to its baseline recordings.

Proper sensors inside the chamber measured the temperature, pressure and humidity. Specifically,
the LM35CAZ Precision Centigrade Temperature Sensor (National Semiconductor®, Santa Clara,
CA, USA) was employed for temperature measurements, the XFPM-115KPA (Fujikura®, Tokyo, Japan)
was used to measure atmospheric pressure, and the Honeywell® (Charlotte, NC, USA) HIH-4000 Series
was utilized for relative humidity (RH) measurement. Moreover, the pressure inside and outside the
chamber was balanced by a pressure compensation valve located at the top of the chamber. A rotating
rod of carbon fibre and a gear motor (set to rotate less than 60 r/min) located inside the chamber reduces
any bias effect due to gas stratification inside the chamber. The data were stored and saved every
second with an Arduino board, mounted at the top of the chamber.

2.2. Mathematical Aspects

Spatial analysis based on the direction of measurements may provide important information
regarding the fractal dimension (FD) and related scale-dependent phenomena [24,29,36].
Using experimental variogram analysis [36,48], it is possible to determine the fractal dimension
according to Equation (2).

ŷ(h) =
1
2

N(h)
N(h)∑
i=1

[Z(xi) −Z(xi + h)]2 (2)

where ŷ(h) is the semi-variance of points separated at a distance h, N is the number of pairs of points
separated by h distance, Z(xi) is the value of the attribute at position xi and Z(xi+h) is the value of the
same attribute in position xi+h.

The spatial structure of fractal surfaces can be described by means of a power law, as shown in
the following relation: ∣∣∣z(x)−z(x + h)

∣∣∣ ∝ hH (3)

where the location x has an attribute value z, with the separation distance h, and H is the fractal
codimension or Hurst exponent [49]. If 0 < H ≤ 1, the fractal codimension can be defined as follows:

H = d− FD (4)

where FD is the fractal dimension and d is the Euclidian dimension of the system in which the fractal
distribution has been described. For lines, surfaces and volumes, d = 1, 2, 3, respectively. Hence, for a
distribution of a soil attribute, the fractal dimension is given by

FD =3−H. (5)
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Comparing Equations (2) and (3), it is possible derive the semi-variance at a given scale as

ŷ(h) ∝ h2H (6)

or as:
log[ŷ(h)] ∝ 2H log[h]. (7)

Through a logaritmic transformation, the slope of the experimental variogram can be calculated
on the log–log scale as 2H. The H exponent can then be obtained by means of a linear regression on the
log–log graph by the following equation [23]: log[ŷ(h)]

2 log[h]

. (8)

When H = 0, the value of FD is equal to 3, which represents the lack of a spatial variability
structure, as there would be no relationship between the way the attribute varies in space and the distance
between the points. In this case, there is no fractal dimension, and the methodology does not apply.
However, when 0 < H < 1 , the fractal dimension has values that characterize the presence of spatial
variability and dependence with h [29,31]. According to Equation (5), 2.0 ≤ FD ≤ 3.0. When 2.0 ≤ FD ≤ 2.5,
there is a persistence behavior, while if 2.5 ≤ FD ≤ 3.0, there is an anti-persistence behavior [29,36].

3. Results

The results of the calibration phase are given first. These results are very important because
they verify the CO2 measurements provided by the flux chamber unit and validate the method of
the measurements. As aforementioned, two calibration factors were calculated, corresponding to
increasing and decreasing steps of CO2 driven concentrations. These are characteristically shown in
Figure 4. The least-squares fit for Figure 4a is y = 1.1008x + 1.4180 with R2 = 0.9759, and for Figure 4b,
y = 1.0075x+ 2.2513 with R2 = 0.9771. Both lines have a very high square of the Spearman’s correlation
coefficient. This means that the flux chamber unit very accurately records the pre-determined CO2

concentrations driven inside and originating from the external mass flow controllers. It is worth
mentioning that the two mass flow controllers are good devices and that, therefore, the pre-determined
driven CO2 concentrations are very well defined. Hence, it is expected that in real-time situations,
the CO2 measurements will be accurate and reliable.
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The measurements carried out in the Campotosto area to delineate the CO2 flux profiles of
the Mount Gorzano fault and its vicinity are shown in Figure 3 The map shows the 37 CO2 flux
measurements that were performed at various distances and positions from the fault. The maximum
flux measured was 25.84 ppm cm−2 s−1, and the minimum one was 2.858 ppm cm−2 s−1. As can be
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observed from Figure 3, high CO2 flux values (from 20 to 25 ppm cm−2 s−1) are found near the fault,
while, on the contrary, lower flux values (from 2 to 4 ppm cm−2 s−1) can be observed in positions far
from it. Tectonic fracture is related to the deformation pattern along the fault system and also facilitates
a pathway for the CO2 gasses [50–52], therefore leading to elevated fluxes near the fault. It should be
noted that the soil CO2 flux can be influenced by the rock type and by other parameters like chemical,
physical and biological processes, including the soil temperature and atmospherical pressure [28,53].
Since the confirmation of the above observations needs further analysis, it is crucial that appropriate
methods are employed. A significant approach towards this is monitoring the spatial fractal behavior
of the CO2 fluxes [29,36]. In association, it is significant to mention that the measurements were
conducted following, as much as possible, the perpendicular direction (45◦ direction) with respect to
the fault position. The scope was to acquire adequate profiles for statistical analyses. There are a variety
of heights and spatial distributions of the measuring points in this study. The different distribution of
heights is due to the morphology of the study area. Nevertheless, it seems that the surface profile of
the fault is not a straight line (see Figure 3). Since the experimental approach of 45 degrees could not
be followed exactly due to the morphology, further analysis in terms of the fractal semi-variogram
method was attempted. In the following sections, this analysis is presented in detail.

As mentioned in the methods section and according to [36,54,55], the semi-variogram method is
very efficient for the delineation of the hidden spatial trends in the CO2 flux measurements. Since a
spatial distribution of points has been achieved from the measurement procedure, the following
alternative methods were employed for the calculation of fractal dimensions with the semi-variogram
method: (1) reorganizing the flux measurements in four different directions (horizontal, vertical,
45◦ and 135◦) via arbitrarily selecting pairs of measurements from the whole dataset (each pair
indicated with a different ID number), so that all the selected series of pairs correspond to each
one of the four directions; (2) reorganizing the series of pairs of 1), with reference to their intra-pair
distance; and (3) arbitrary selecting pairs of measurements with different distances from the fault.
The fractal dimensions with reference to the horizontal direction (Figure 5a) exhibited values of
1.5 ≤ FD ≤ 3.0. The fractal dimensions with reference to the vertical direction (Figure 5b) exhibited
values of 1.5 ≤ FD ≤ 3.0. The fractal dimensions with reference to the 45◦ direction (Figure 5c) all had
values over 2.5; in particular, certain fractal dimension values were found of 2.85 ≤ FD ≤ 2.9 and
2.8 ≤ FD ≤ 2.85. The fractal dimensions with reference to the 135◦ direction (Figure 5d) present values
of 2.0 ≤ FD ≤ 3.0.

Figure 6 presents fractal dimensions with reference to the distance in the four spatial directions.
These are the distances between the various points that are spatially dispersed. Due to the scattering
of the measurement points, there are a variety of distances from 20 m to 140 m. Note that Figure 6
is a reorganization of Figure 5 with reference to the distance and not to the ID number. Since there
is no preferred direction in the above distances, Figure 6 has a different distribution of values in
both the horizontal and vertical axes. It is very important to mention that all the fractal dimension
values are over 2.5. This is a very significant finding that implies a strong fractal behavior of the
CO2-generating system in the spatial manner because the Hurst exponent (H) is between 0 and
0.5 [47,55]. This significant finding implies that when a high CO2 concentration value is found, the next
value will be low, and this tendency follows throughout the Campotosto area. Strong anti-persistent,
long-lasting interaction exists. Observing that most high values are near the fault, the anti-persistence
behavior justifies that the values after the fault will be low while the remaining values will have a
trend of higher–lower values; all these values are lower than the corresponding values on the fault [56].
The fractal dimensions in the horizontal direction (Figure 6a) were all over 2.5; in particular, FD ≥ 2.9
at 40 and 80 m; 2.8 ≤ FD ≤ 2.9 at 50, 100 and 120 m; 2.6 ≤ FD ≤ 2.7 at 30, 90 and 110 m; and FD ≤ 2.6 at
60 m. The fractal dimensions in the vertical direction (Figure 6b) are all above 2.5; in particular, the FD
is above or equal to 2.9 at 40 and 90 m; 2.8 ≤ FD ≤ 2.9 at 60 m; 2.7 ≤ FD ≤ 2.8 at 70, 90, 100 and 130 m;
and FD ≤ 2.7 at 140 m. The fractal dimensions in the 45◦ plane (Figure 6c) are all over 2.5; in particular,
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2.7 ≤ FD ≤ 2.8 at 20, 30 and at 50 m; and 2.6 ≤ FD ≤ 2.7 at 40 and 60 m. The fractal dimensions in the
135◦ plane (Figure 6d) are between 2.90 and 2.98.
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This is characteristically shown in Figure 7 where the fractal dimensions with reference to the
distance from the fault are presented. Figure 7 is the result of all the fractal dimension values taken at
different positions from the fault. It is evident that the fractal dimension values away from the fault
are lower. This finding verified the above facts in an alternative way. The fractal dimension values
at greater distances are lower and, therefore, they follow the tendency of the CO2 concentrations to
exhibit anti-persistent behavior of lower intensity at greater distances. This means that the system goes
away from strong anti-persistence and fractality when it is away from the fault; strong anti-persistence
gradually diminishes. The significance of the strong anti-persistence behavior has been mentioned by
several publications [56–60]. In the above publications, it was reported, in a multi-facet way, that the
strong anti-persistent behavior, similarly to the strong persistence behavior, is a footprint of hidden
activity in soil radon or environmental electromagnetic disturbances. According to [12], the radon in
soil and CO2 fluxes from soil may have similar origins inside the Earth’s crust prior to seismic activity.
It is the micro-crack branching, as possibly in the Mount Gorzano fault, that may act as a pathway for
the increase in radon and CO2 concentrations from soil. According to [61–63], the CO2 fluxes increase
inside the fault. All these aspects report different faces of the same aspect; the Mount Gorzano fault,
as a seismic area, is associated with a strong CO2 pathways and increased CO2 concentration fluxes.
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The above findings are verified by the results of other investigators. For example, [29] reported similar
results showing comparable fractal dimension values between 2.5 and 3.0 of the spatial variability of
soil CO2 emissions, where it was shown that the fractal dimension decreased, as well, with the distance.
This very important finding is similar to the tendency shown in Figure 7 and should be emphasized.
This tendency of a decrease in the CO2 values with the distance was also reported by these authors. This is
an additional verification of the findings of this work. Additionally, [36] reported a similar range of fractal
dimension values as in this work, where the fractal dimension values were between 2.5 and 3.0 from
5 m to 60 m, also decreasing with the distance. Furthermore, [55] calculated—also with the experimental
variogram method, using the same equation as Equation (2) of this publication—the spatial variability of
soil CO2 fluxes. All the findings of this paper are comparable to those of other related papers, despite the
fact that the sample size was not very high. More or less, the accuracy of the employed measuring device
in conjunction with the modern methodological approach contributed towards this achievement.
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4. Conclusions

The technique used for this work was an experimental semi-variogram that was applied to
measuring CO2 fluxes at the Campotosto seismic area (central Italy). Non-continuous spatial and
temporal phenomena were addressed from the measurements.

The fractal dimension values at greater intra-distances and greater distances from the fault are
lower and, therefore, they follow the tendencies of the CO2 concentrations, to exhibit anti-persistent
behavior of lower intensity at greater distances.

The fractal dimensions of this work are within the value ranges reported in similar work.

Author Contributions: Conceptualization, S.D., N.C., D.N.; Data curation, P.D.C. and E.A.; Formal analysis, D.N.,
E.P.; Investigation, S.D., P.D.C., E.A.; Methodology, D.N., I.V.; Resources, G.P.; Software, D.N. and N.C.; Supervision,
D.N., P.D.C. and I.V.; Visualization, D.N.; Writing—original draft, S.D. and N.C.; Writing—review & editing, D.N.,
E.P., P.H.Y. and G.P. All authors have read and agreed to the published version of the manuscript.
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