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Abstract.  RC buildings constitute the prevailing type of construction in earthquake-prone region like 
Kathmandu Valley. Most of these building constructions were based on conventional methods. In this 
context, the present paper studied the seismic behaviour of existing RC buildings in Kathmandu Valley. For 
this, four representative building structures with different design and construction, namely a building: (a) 
representing the non-engineered construction (RC1 and RC2) and (b) engineered construction (RC3 and 
RC4) has been selected for analysis. The dynamic properties of the case study building models are analyzed 
and the corresponding interaction with seismic action is studied by means of non-linear analyses. The 
structural response measures such as capacity curve, inter-storey drift and the effect of geometric non-
linearities are evaluated for the two orthogonal directions. The effect of plan and vertical irregularity on the 
performance of the structures was studied by comparing the results of two engineered buildings. This was 
achieved through non-linear dynamic analysis with a synthetic earthquake subjected to X, Y and 45° loading 
directions. The nature of the capacity curve represents the strong impact of the P-delta effect, leading to a 
reduction of the global lateral stiffness and reducing the strength of the structure. The non-engineered 
structures experience inter-storey drift demands higher than the engineered building models. Moreover, 
these buildings have very low lateral resistant, lesser the stiffness and limited ductility. Finally, a seismic 
safety assessment is performed based on the proposed drift limits. Result indicates that most of the existing 
buildings in Nepal exhibit inadequate seismic performance. 
 

Keywords:   non-engineered buildings; performance evaluation; P-Delta effect; seismic vulnerability 

 
 
1. Introduction 
 

 Nepal is located in the highly seismically active Himalayan region. Over the last centuries, 

huge earthquakes occurring in 1803, 1833, 1897, 1905, 1934 and 1950 in the Himalayan region 

resulted in large numbers of casualties and caused extensive damage to structures (Roger et al. 

2001). The great Gujarat Earthquake in India in 2001 revealed the vulnerability of unplanned cities  
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Fig. 1 (a) A catalogue for Nepal Himalaya earthquakes from 1255 to 2012 and (b) Distribution of 

probable rupture zones of the 1897, 1905, 1934 and 1950 earthquakes along the Himalayan arc 

 

 

and villages. Nepal lies closer than Gujarat to the subduction zone where the Indian plate passes 

under the Himalayas, and may actually be susceptible to an even larger-scale earthquake.  

 In last one century alone, over 11,000 people were killed in four major earthquakes in Nepal. In 

1934, an earthquake of magnitude 8.4 killed 8,519 people and damaged over 80,000 buildings in 

Nepal (Rana 1935). Later, the 1988 Udayapur earthquake also resulted in heavy loss of life in the 

eastern region and also in the Kathmandu Valley (Thapa 1935). The location of rupture areas 

shows a gap along the mountain range between the location of the 1905 Kangra and 1934 Bihar-

Nepal earthquakes, as shown in Fig. 1 (Yeats et al. 1991). It is believed that this region has not 

experienced such an earthquake since the last large earthquake. It is hard to estimate how much 

casualty and damage will be caused in Nepal if an earthquake happens today in the central seismic 

gap. A study of the seismic record of the region suggests that earthquakes producing a shaking of 

MMI-IX or more occur approximately every 75 years, while smaller earthquakes occur more 

frequently (see Table 1) (BCDP, 1994). Past records have shown that Nepal can expect two major 

earthquakes of magnitude 7.5-8 every 40 years. Thus, there is cause for great concern that the next 

great earthquake may occur at any time, after around 70 years of silence.  

 Over the last few decades, RC building construction has rapidly increased, replacing other 

construction materials, like adobe, stone and brick masonry, in the Kathmandu Valley as well as in 

other parts of the country (JICA 2002). Most RC buildings in Nepal were constructed with light 

reinforced frames with infill masonry panels. These buildings offered insufficient capacity, lacked 

ductile detailing and were poorly constructed and may have limited durability (UNDP/Nepal 

1994). A past study of the seismic vulnerability of Nepal has also shown that more than 60% of 

these buildings in the Kathmandu Valley are unsafe and extremely vulnerable to any large 

impending earthquake (NSET 1999). 

 Earthquakes are thus a relatively frequent and disastrous natural event in Nepal, and a major 

earthquake is likely in near future. The earthquake disaster risk of urban areas in Nepal, especially 

the capital area of Kathmandu Valley, is ever increasing alarmingly due to rapid urbanization, poor 

construction practice, and lack of disaster preparedness. In this context, this study aims to evaluate 

the seismic response of the most common building stock in Nepal. In this context, the present 

paper studied the seismic behaviour of existing RC buildings in Kathmandu Valley. For this, four 

representative building structures with different design and construction, namely a building: (a) 

representing the non-engineered construction (RC1 and RC2 building models) and (b) engineered  
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Table 1 Magnitude-frequency data on earthquakes in Nepal and the surrounding region in the period of 

1911-1991 (modified after BCDP 1994) 

Earthquakes of magnitudes in Richter scale 5-6 6-7 7-7.5 7.5-8 >8 

No. of events 41 17 10 2 1 

Approximate recurrence interval (years) 2 5 8 40 81 

 

  
(a) (b) 

Fig. 2 District wise distribution of (a) Population and (b) Type of building structures in Nepal (NPHC 2011) 

 

 

construction (RC3 and RC4 building models) has been selected for analysis. The dynamic 

properties of the case study building models are analyzed and the corresponding interaction with 

seismic action is studied by means of non-linear analyses. 

 

 

2. Characteristics of Nepalese building structures 
 

2.1 Building typologies in Nepal 
 

 In this study, the data obtained from National Population and Housing Census has been used 

for the general building inventory in Nepal (NPHC 2011). The information obtained from the 

National Census Report includes: type of foundation of house, type of outer wall and roof of the 

house. In 2011, Population of Nepal stands at 26,494,504 showing population growth rate of 1.35 

per annum. Similarly, total number of individual households in the country is 5,423,297. Terai 

(southern part) constitutes 50.27% of the total population while Hill (middle part) and Mountain 

(northern part) constitutes 43% and 6.73% respectively (Fig. 2(a)). The distribution of the 

buildings in Nepal is also similar to the distribution of the population. The data obtained from 

NPHC indicates that mud bonded brick/stone buildings are more common in Nepal for all the 

geographical regions, occupying about 44.21% of buildings. The wooden buildings are more 

popular in rural area of Terai region which occupied as around 24.90%. Cement bounded brick/ 

stone and cement concrete with pillar buildings are highly popular in urban area in most of the 

Terai region, Kathmandu Valley and some district headquarter of mountainous region. These 

buildings occupy 17.57% and 9.94 % building stock in Nepal (see Fig. 2(b)). The rest of the 

buildings are classified as others and not stated building typologies. These buildings are generally  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Fig. 3 Existing building typologies in Nepal: (a) Adobe, (b) Brick in mud mortart, (c) stone in mud 

mortar, (d) Brick in cement mortar, (e) Stone in cement mortar, (f) Wooden, (g) Non-engineered building, 

and (h) Engineered building 

 

 

constructed with the combination two or more than two different building materials. These are the 

mixed buildings like stone and adobe, stone and brick in mud, brick in mud and brick in cement, 

wooden and brick cement mortar. The pictorial representation of each building typologies in Nepal 

is presented in Fig. 3. The briefly description of each building typology is discussed in the 

following sub-sections.  

 
2.1.1 Adobe Buildings (A) 
Adobe buildings are more popular in rural community in Nepal. Due to the poor economic 

condition, peoples built their house using natural building materials which is made from sand, 

clay, water and some kind of organic materials (sticks, straw, and/or manure). The wooden frames 

are usually for proper shape. These buildings are also constructed in sun-dried bricks (earthen) 

with mud mortar for the construction of structural walls. The wall thickness is usually more than 

350 mm. 

 

2.1.2 Brick/stone in mud mortar buildings (BM/SM) 
These are the low strength masonry buildings. The brick in mud mortar buildings are made of 

fired bricks in mud mortar where as stone in mud mortar buildings are constructed using dressed 

or undressed stones with mud mortar. These types of buildings generally have flexible floors and 

roof. 

 
2.1.3 Brick/stone in cement mortar (BC/SC) 
In the advancement of the cement in Nepal, brick/ stone buildings with mud mortar is replaced 

by the cement mortar. The brick in cement buildings are constructed with fired bricks in cement or 

lime mortar. For stone in cement mortar buildings, dressed or undressed stones are used with 

cement mortar. 
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2.1.4 Wooden buildings (W) 
These buildings are more popular near the forest area in Nepal (mostly in Terai region). In 

these buildings, tree trunks are used for wooden pillar where as a dressed piece of wood is usually 

used for columns. The walls of these buildings are constructed with wooden planks or bamboo net 

cement/mud mortar plaster. 

 

2.1.5 Reinforced concrete buildings (RC)  
The RC buildings consist of a frame assembly of cast-in-place concrete beams and columns. 

Floor and roof framing consists of cast-in-place concrete slabs. Lateral force resisted by concrete 

moment frames that develop their stiffness through monolithic beam column connections.   

 

2.2 Classification of RC buildings in Nepal 
 

 Reinforced concrete (RC) building construction in Nepal has begun from late 1970s. In the last 

3-4 decades, RC building construction rapidly increased, replacing other construction materials 

and solutions like adobe, stone and brick masonry in Kathmandu Valley as well as in other parts of 

the country. The RC buildings consist of a frame assembly of cast-in-place concrete beams and 

columns. Floor and roof framing consists of cast-in-place concrete slabs. Lateral force resisted by 

concrete moment frames that develop their stiffness through monolithic beam column connections. 

The four variation of the typical moment resistant frame in Nepal are presented as: (i) the first type 

corresponding to moment resisting frame design represent the current construction practices in 

Nepal (called CCP structure); (ii) the second design type is based on Nepal building code based on 

Mandatory Rules of Thumb (called NBC design structure); (iii) the third type of structure is the 

modified version of the Nepal building code (called as NBC+ structure) and the last type of RC 

frame represent the moment resisting frames which is designed based on Indian standard code with 

seismic provisions, namely seismic design with ductile detailing (called Well Designed Structure, 

WDS). Due to lack of adequate provisions for seismic design on RC building structures in Nepal 

Building Code (NBC), well designed structure (WDS) was designed by Indian standard codes. 

Most of the CCP buildings were based on non-engineered construction where as remaining 

building types are engineered buildings. Engineered buildings are designed and supervised by the 

engineers. These buildings are designed on the basis of some standard guidelines. Some of the 

newly constructed reinforced concrete buildings in Nepal are of this type. Where as, non-

engineered buildings are not structurally designed and supervised by engineer during construction. 

This category also includes the buildings that have architectural drawings prepared by engineers. 

In the following sections, the particular characteristics of each building are described.  

 

2.2.1 Current construction practices (CCP) 
These are buildings with reinforced concrete frames and unreinforced brick masonry infill in 

cement mortar. The thickness of the infill walls is 230 mm or 115 mm and the column size is 

predominantly 230 mm×230 mm. The prevalent practice in most urban areas of Nepal for the 

construction of residential and commercial complexes generally falls under this category. These 

buildings are not structurally designed and their construction is not supervised by engineers. This 

category also includes buildings that have architectural drawings prepared by engineers.  

 

2.2.2 Nepal building code (NBC) 
The NBC structure is designed with the Mandatory Rules of Thumb (MRT) (NBC 201 1994). 
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MRT provides some ready-to-use provisions in terms of dimensions and details for structural and 

non-structural elements for up to three storeys with room sizes of no more than 4.5 m×3.0 m in RC 

framed, ordinary residential buildings commonly built by owner-builders in Nepal (NBC 205 

1994). In 2003 this document became mandatory in Nepal. Thus, the NBC structure was designed 

according to these simplified rules. 

 

2.2.3 Modified Nepal building code (NBC+) 
In 2010, the Department of Urban Development and Building Construction published 

additional recommendations for the construction of Earthquake Safer Buildings in Nepal with the 

assistance of UNDP (UNDP 2010). This document is an improvement on the NBC, and specifies 

that the minimum sizes of columns for up to three storeys with room sizes of no more than 4.5 

m×3.0 m should be 300 mm×300 mm or 75 mm more than the width of the beam. There should be 

a minimum of 4 and 8 nos. of 16 mm dia. reinforcement bars in columns located in the outer faces 

and centre of the building structure. The detailing of the beam is the same as specified in the NBC 

document.  

 

2.2.4 Well designed structure (WDS) 
The WDS building structure was designed based on the Indian code, considering seismic 

design with ductile detailing to the building located in seismic zone V and medium soil. Due to the 

low height, and regular plan and elevation, seismic analysis is performed using the seismic 

coefficient method (IS 1893 2002). The effect of the finite size of joint widths (e.g., rigid offsets at 

member ends) is not considered in the analysis. However, the effect of shear deformation is 

considered. The detailed design of the beams and column sections according to IS 13920 (1993) 

recommendations have been carried out. 

 

 

3. Statistical analyses of RC buildings in Nepal 
 

 In this section, general overview of existing Nepalese RC building is presented. For this, the 

detailed information has been collected from previous studies, private practitioners, design offices, 

public institutions, and a field survey in different localities of Nepal (Chaulagain et al. 2010, 

Chaulagain et al. 2012, JICA 2002, NSET 1999). The statistical information includes: number of 

storey, age of building, size and detailing of RC elements (beams and columns), inter-storey 

height, numbers of bays and dimensions, years of construction, quality of concrete and plinth area 

of the building. The random sampling of 300 drawings and design specifications from different 

district headquarter is collected. From the 300 drawings, only 200 were used for the statistical 

analysis. In fact, the National Census data only have the limited information namely construction 

type, building use, types of foundations, types of walls and types of roofing. The distribution of 

RC buildings in Nepal is presented in Fig. 4a. The number of sampling data and the corresponding 

location is presented in Fig. 4(b). In this study, nearly 50% of the surveyed data was taken from 

Kathmandu Valley. It is mainly due to the fact that number of RC buildings in Kathmandu Valley 

is nearly equal to the remaining country.  

 

3.1 General statistical analysis 
 

 Over the past half century, building construction trends and practices has been extremely  
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Fig. 4 (a) District wise distribution of RC buildings and, (b) Sampling location for studied building 

structures 

 

  

Fig. 5 Distribution of (a) age of RC buildings and (b) number of storey of RC buildings 

 

 

changed. Since the last decade or so, RC framed structures has become highly popular replacing 

other construction materials like adobe, brick/stone with mud, and brick/stone with cement mortar 

buildings (see Fig. 5(a)). The current construction practices of the buildings in the urban areas of 

Nepal use light reinforced concrete frames with infill walls. Most of the residential buildings are 1 

to 6 stories; the majority of them are of three storeys (see Fig. 5(b)). There is an increase in the 

prevalence of frame-structures nowadays, but unfortunately, many of them are constructed without 

the input from qualified engineers, making them potentially highly vulnerable to earthquakes (see 

Fig. 6(a)). The overwhelming majority of such buildings are of by „owner-builder‟, construction of 

buildings with informal building process (see Fig. 6(b)). The “owner-builder” makes his own 

decisions, supported by advice from friends, neighbors, well-wishers and infrequently by 

professionals and small builders on personal basis. 

  

3.2 Detailed statistical evaluation of the structure 
 

The probabilistic distributions are defined as the most representative of both normal, log-

normal, gauss and exponential distributions. All the parameters have been examined in terms of 

the number of data, number of buildings, mean values, coefficient of variation, the best fit - 
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Fig. 6 Distribution of building (a) construction process (b) building design process 

 

  

Fig. 7 Distribution of (a) ground floor (b) regular storey height for RC buildings 

 

 

distribution type, goodness-of-fit test (chi-square test) results and lower and upper bound of the 

data used to calculate the distribution. The X2 is a function of the difference between the observed 

and expected frequencies, should be less than one of the X2 percent point function for significance 

levels of 10%, 5% or 1%. 

 

3.2.1 Storey properties 
Storey properties have been defined as height and area based. In this study, inter-storey height 

is analyzed considering the ground floor heights and regular storey height in order to represent the 

frequency of occurrence of soft-storey. The floor area of sample building structures also has been 

investigated. The histogram showing the frequency of different values of floor area in different RC 

building structure is presented in Fig. 9(b). The evaluation of 200 sample building has lead to a 

mean 94.75 m2 with variation of 36.30%. The suggested distribution is a log-normal distribution 

between 50 and 200 m2 with a 10% satisfaction of the X2 test. 

The storey height has been investigated in terms of ground floor and regular-storey height. The 

distribution of frequency of each parameter is presented in Fig. 7(a). Regarding the statistical 

evaluation of 200 sample buildings in the data set, the ground floor height distribution is found to  
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Fig. 8 Distribution of (a) beam length and (b) beam depth of RC buildings 

 

  

Fig. 9 Distribution of (a) slab thickness and (b) floor area for RC buildings 

 

 

have a log-normal distribution with a mean value of 3.10 m and a coefficient of variation of 8%. 

The distribution should ideally apply between 2.60 and 3.50 m. However, the X2 test which is 

applied to investigate the goodness-of-fit could not satisfied for any of the satisfaction levels 

considered herein (i.e., 10%, 5%, and 1%). In contrast, regular storey height is found to have mean 

and coefficient of variance is limited to 2.84 m and 4.94% respectively. The suggested distribution 

is a gauss distribution between 2.5 and 3.2 m with a 10% satisfaction of the X2 test (see Fig. 7(b)). 

 

3.2.2 Structural elements 
The structural parameters of RC buildings which have been studied herein include width and 

depth of column, beam length, beam depth and slab thickness. For the statistical analysis of 

column section, the smaller dimension is considered as width. The column section has been 

defined by considering the frame with main structural resistance in each principal direction of the 
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buildings. The beam has also been investigated in terms of their length and depth values. Herein, 

1200 beams have been studied from 200 different buildings and the beam length distribution has 

been found to be a log-normal distribution with a mean length of 3.56 m and a coefficient of 

variation of 20.72%. The X2 test has been satisfied with a 5% satisfaction (see Fig. 8(a)). For beam 

depth, the distribution has been found to be a log-normal distribution with a mean depth of 0.32 m 

and a coefficient of variance of 15.19% (see Fig. 8(b)). The mean and coefficient of variation of 

slab thickness of Nepalese RC building is 0.11 m and 13.61% respectively. The suggested 

distribution is log-normal, with upper and lower bound data of 7.5 and 15 cm respectively and the 

result of the X2 test is 5% satisfaction (see Fig. 9(a)). 

 

 

4. Description of the study building structures 

 

 As described in the aforementioned section 3, authors have collected the detailed building 

information from previous studies, private practitioners, design offices, public institutions, and a 

field survey in different localities in Kathmandu Valley. The information collected during field 

surveys includes plinth area, size and detailing of RC elements (beams and columns), inter-storey 

height, number of bays and span lengths, structures‟ age, quality of concrete, and type of steel.  

 Based on the results from the statistical analysis of reinforced concrete building structures as 

discussed in section 3, four existing reinforced concrete buildings in different localities in 

Kathmandu Valley is selected for case study. The reinforced concrete buildings in Nepal can be 

divided in to two groups namely a) non-engineered and b) engineered. Also considering this fact, 

two buildings from each category is selected in the present study. These entire building 

configurations are typical of seismically active regions like Kathmandu Valley, where the vast 

majority of dwellings are RC buildings, with similar characteristics (Chaulagain et al. 2013). The 

first type of study buildings are representative of non-engineered construction, namely: (a) RC1 

and (b) RC2, and second type of buildings are based on engineered RC-MRF constructions, 

denoted as: (c) RC3 and (d) RC4. 

 The first two buildings are non-engineered RC-MRF structure with square (RC1) and 

rectangular plan configuration (RC2), built in southern part of Kathmandu Valley. All these types 

of buildings have 3 m inter storey height in all story‟s. RC1 model has 4 rooms per story where as 

the room number is limited to 6 in RC2 model. RC1 building model having 9 m×9 m with moment 

resisting system. In first and second storey, the dimensions of the sections of all the columns are 

23×30 cm2, of all the beams are 23×35 cm2 and at the top storey such dimensions are respectively 

23×23 cm2 and 23×35 cm2. Likewise, in RC2 building model, the lateral load resisting elements in 

X- direction consist of three moment resisting frame, and in Y-direction the frame are four. The 

building dimension in plan is 10.5 m×8 m.  

 Similarly, remaining two case study buildings are engineered RC-MRF structure with regular 

(RC3) and irregular plan configuration (RC4), recently constructed in the northern part of the 

Kathmandu Valley was considered. Inter storey height of these buildings are 2.85 m in all storey. 

Building model RC3 having plan area 9.6 m×7.9 m (75.84 m
2
), measured from the column centre 

lines. Four identical moments resisting frames in X and Y-directions acts lateral load resisting 

elements. Building model RC4 has trapezoidal plan area measuring 70.8 m2 which has three and 

four moment resisting frame in X and Y direction respectively. Plan, tridimensional model, and 

cross sectional detailing of the entire building models has been summarized in Figs. 10-13. 
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4
 m

4
 m

3.5 m3.5 m3.5 m
X

Y

                          

230

1
0

0

3
3

0

2
3

0

3 ϕ 16   

3 ϕ 12

230

1
0

0

3
3

0

2
3

0

2 ϕ 16   

2 ϕ 12

  

230

23
0

  8 ϕ 12            

230

23
0

  4 ϕ 16             

230

23
0

  4 ϕ 12  
1st& 2nd floor beam    3rd floor beam            interior columns  corner/facade column  all top storey columns 

Fig. 11 Plan, tridimensional model, and cross-section detailing of building model RC2 

 

2.6 m 3.5 m

2
.8

 m
2

.3
 m

2
.8

 m

X

Y

3.5 m

Q’

Q

Q’

Q

O O’

M M’

O’O

   

230

1
0

0

3
3

0

2
3

0

2 ϕ 16 +3 ϕ 12   

2 ϕ 

16

Section O-O‟ 

230

1
0
0

3
3
0

2
3
0

2 ϕ 16+ 1 ϕ 12

2 ϕ 16

Section M-M‟  

230

1
0
0

3
3
0

2
3
0

2 ϕ 16 + 2 ϕ 12

2 ϕ 16

Section Q-Q‟  

300

2
3

0

8 ϕ 16
C1

300

2
3

0

6 ϕ 16 
C3

300

2
3
0

4 ϕ 16 + 4 ϕ 12
C2  

Fig. 12 Plan, tridimensional model, and cross-section detailing of building model RC3 
              

801



 

 

 

 

 

 

Hemchandra Chaulagain, Hugo Rodrigues, Enrico Spacone and Humberto Varum 

3.5 m 2.6 m 3.5 m

2
.8

 m
2

.3
 m

25.380

X

Y

C2 C3

C3

O O’

M M’

Q’

Q

O’O

P’P

Q’

Q

   

230

1
0

0

3
3

0

2
3

0

2 ϕ 16 +3 ϕ 12   

2 ϕ 

16

Section O-O‟ 

230

1
0
0

3
3
0

2
3
0

2 ϕ 16+ 1 ϕ 12

2 ϕ 16

Section M-M‟  

230

1
0
0

3
3

0

2
3
0

2 ϕ 16 + 2 ϕ 12

2 ϕ 16

Section Q-Q‟  

300

2
3

0

8 ϕ 16
C1

300

2
3

0

6 ϕ 16 
C3

300

2
3
0

4 ϕ 16 + 4 ϕ 12
C2  

Fig. 13 Plan, tridimensional model, and cross-section detailing of building model RC4 

Note: All dimensions are in mm unless stated otherwise 

: All the interior, interior, façade and corner columns of building models B1 and B2 are C1, 

C2, and C3 respectively unless stated otherwise. 

 

Table 2 Properties of materials used in this research 

Materials Characteristics 

Reinforcing steel yield strength, fy 415 MPa 

Concrete compressive strength, f 'c 20 MPa 

Brick on peripheral beams 230 mm thick 

Brick wall on internal beams 115 mm thick 

Density of brick masonry including plaster 20 kN/m3 

Density of reinforced concrete 25 kN/m3 

 

Table 3 Loading for numerical analysis of structure 

Loading characteristics Loading 

Live load on roof 1.5 kN/m2 

Live load on floors 2 kN/m2 

Roof and floor finishing 1 kN/m2 

 

 

5. Non-linear building modelling 
 

 In order to assess the seismic capacity of the four case study building structures presented, 

numerical simulation have been performed through adaptive pushover and non-linear dynamic 

analysis. It provides the most accurate method for evaluating the inelastic seismic response of 

structures.  

 The computer program SeismoStruct (2006) was used to produce a lumped plasticity model. A 
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three-dimensional model of each structure was created to undertake the non-linear analysis. In the 

analyses performed in this paper, half of the larger dimension of the cross-section was considered 

as the plastic hinge length, with fibre discretization at the section level. The consideration of non-

linear material behaviour in the prediction of the RC columns‟ response requires accurate 

modelling of the uniaxial material stress-strain cyclic response. 

 Concrete modelling is based on the Madas uniaxial model (Mandas et al. 1992), which follows 

the constitutive law proposed by Mander et al. (1988). The cyclic rules included in the model for 

the confined and unconfined concrete were proposed by Martinez-Rueda (1997), Elnashai (1993). 

The confinement effects provided by the transverse reinforcement were considered through the 

rules proposed by Mander et al. (1988), whereby constant confining pressure is assumed 

throughout the entire stress-strain range, traduced by the increase in the peak value of the 

compression strength and the stiffness of the unloading branch. 

 The uniaxial model proposed by Menegotto and Pinto (1973), coupled with the isotropic 

hardening rules proposed by Filippou et al. (1983), was adopted for the steel reinforcement 

representation in these analyses. This steel model does not represent the yielding plateau 

characteristic of the mild steel virgin curve. The model takes into account the Bauschinger effect, 

which is relevant for the representation of the columns‟ stiffness degradation under cyclic loading. 

The effect of confinement due to shear reinforcement in the analysis is considered for both 

engineered and non-engineered buildings.The model adopted in the analyses performed in this 

study is represented in Figs. 10-13. 

Many codes and guidelines (e.g., Eurocode8 2005, ATC-40 1996, FEMA-356 2000) 

recommend the use of nonlinear static methodologies to evaluate structural behavior under seismic 

action. In order to improve the efficiency of pushover analysis, different nonlinear static 

procedures have been proposed in the literature. In conventional procedures, the shape of the load 

distribution is constant during the analysis. Such techniques are not able to take into account 

progressive structural stiffness degradation, change of modal characteristics and period elongation 

of the structure for increasing values of external action. These drawbacks spurred the recent 

proposal of the so-called Adaptive Pushover methods (e.g., Reinhorn 1997, Bracci et al. 1997, 

Gupta and Kunnath 2000). Adaptive pushover is employed in the estimation of the horizontal 

capacity of a structure, taking full account of the effect that the deformation of the structure and 

the frequency content of input motion have on its dynamic response characteristic (Antoniou and 

Pinhoh 2006). The lateral load distribution is not kept constant but rather continuously updated 

during the analysis, according to the modal shapes and participation factors divided by eigen-

values analysis carried out at each analysis step (Ghobaraha et al. 2006, Kazem et al. 2012). The 

results from adaptive pushover are close to the ones obtained with dynamic time history analysis.  

 In the present study, nonlinear analysis of the building structures is performed with adaptive 

pushover and dynamic time history analysis. For adaptive pushover analysis, response spectrum 

provided in Indian seismic code is used (IS 1893 (part 1): 2002, 2002). It is due to the fact that, 

Nepal building code does not possess sufficient data required for standard design consideration. 

Currently, most of the engineered buildings in Nepal have been designed based on Indian seismic 

code. Earthquake ground motion histories are important for dynamic analyses of the structures. 

Though, many earthquakes have been reported in the history of Nepal, no accelerations have been 

recorded. Due to the lack of actual time history data in Nepal, dynamic time history analysis was 

performed with synthetic time history data. For this, three different artificially generated time 

history records in Nepal with increasing peak ground acceleration (PGA) values ranges from 0.07g 

to 0.51g has been used (Parajuli 2009). During inelastic time history analyses, the scaling of time  
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Table 4 Seismic risk scenarios for various return periods (Parajuli 2009) 

Return period (years) Peak ground acceleration (m/s2) 

98 0.07g 

475 0.40g 

975 0.51g 

 
Table 5 Natural frequencies (hz) of structures 

Mode 
Natural frequency/directions 

RC1 RC2 RC3 RC4 

1st mode 0.99(X) 1.02(X) 1.59(X) 1.45(X) 

2nd mode 1.15(Y) 1.05(Y) 1.98(Y) 1.79(Y) 

3nd mode 2.62(Ɵ) 1.11(Ɵ) 2.02(Ɵ) 2.01(Ɵ) 

 

 

history data has been employed for the intermediate values. 

 The series of three artificially generated earthquake input motion for a medium/high seismic 

risk scenario for various return periods are adopted for the seismic vulnerability assessment of the 

building in Nepal. Artificially generated PGA for various return periods in Kathmandu Valley is 

presented in Table 4.  

 

 

6. Results and discussion 
 

 In this section the results of numerical analysis of current reinforced concrete buildings in 

Kathmandu Valley is discussed. The results from non-linear analyses of all the case study 

buildings with different response measures such as natural frequencies, capacity curves, inter-

storey drift, tangent stiffness, strength, deformation, energy dissipation and the effect of geometric 

non-linearity (P-Delta effect), are evaluated for the two orthogonal directions. In the last section; 

the effect of irregularity on response of column is presented. It is achieved through the two case 

study building structures with irregular and regular configuration. The detail analyses and 

interpolation of the results are discussed in each sub-section. 

 

6.1 Natural frequencies 
 

 The dynamic characteristics directly affect the response of the considered structures. The 

elastic structural frequencies from eigen-value analysis are in first three modes are tabulated in 

Table 5. In most of the cases, engineered structures (model RC3 and RC4) have higher frequencies 

than non-engineered (model RC1 and RC2) building models. From Table 5, it can be seen that the 

higher increment of frequencies in the structure is as a result of better structural configuration and 

detailing. In fact, engineered building attracts higher forces due to the increase of stiffness, which 

results in a reduction in the natural period of the structures. 

 

6.2 Capacity curves and maximum inter-storey drift profile 
 

 In this section, the results are analysed in terms of capacity curves and the maximum drift  
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Fig. 14 Capacity curves and corresponding IS drift of NRCB1, NRCB2, NRCB3 and NRCB4 building 

structures with (a) longitudinal (X) and (b) transverse (Y) directions of loading 

 

 

profiles for each building and the direction of analysis. Capacity curves, representing the resistance 

of the structure when deforming into the inelastic range, come in the form of top displacement 

versus base shear plot. Similarly, inter-storey drift (IS drift) is an important parameters as they are 

closely related to the damage that can be sustained by a loading in the recent trends of performance 

based engineering. Fig. 14 presents the results of the adaptive pushover analysis for each building 

and for each loading direction. Based on the results, the main conclusions are summarized as 

follows: 

• The shear strength capacity and tangent stiffness of engineered buildings (RC3 and RC4) are 

nearly two times the value obtained with the non-engineered structures (RC1 and RC2). 

• Engineered structure presents better performance in terms of strength, tangent stiffness and 

deformation capacity as compared with non-engineered structures. In particular RC1 building 

model present a soft storey mechanism in the third storey, due to the reduction of the column-

section between the second and third storey, which is considered non-adequate for earthquake 

prone area like Kathmandu Valley. 

• RC1 and RC2 structures have maximum IS drift profile, minimum shear capacity and low  
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Table 6 Tangent stiffness, maximum strength and corresponding deformation of the structure 

Standard 
Direction 

of loading 

Tangent stiffness 

(kN m) 

Max. 

strength (kN) 

Roof displacement 

for max. strength(m) 

RC1 
X 4297.78 281.87 0.141 

Y 3854.43 261.37 0.141 

RC2 
X 3578.92 246.68 0.140 

Y 4190.55 309.57 0.199 

RC3 
X 6930.37 493.29 0.150 

Y 7169.05 628.95 0.260 

RC4 
X 9854.21 858.91 0.210 

Y 7515.82 626.85 0.175 

 

  

Fig. 15 Total energy dissipation profiles for existing building structures in Nepal 

 

 

stiffness as compared with RC3 and RC4 structures. 

• In engineered building structures, the rate of change of IS drift is quite regular and consistent 

in all the floor levels. While, there is highly irregular and inconsistent IS drift profiles in non-

engineered structures. 
 

6.3 Stiffness, strength and deformation of the study buildings 
 
In order to evaluate the behaviour of the building structures under study, and for the same 

loading conditions, different parameters were quantified and reported in Table 6, namely the 

tangent stiffness, maximum strength and corresponding roof displacement. The maximum strength 

and tangent stiffness of the engineered buildings (RC3 and RC4) have nearly two times than that 

of non-engineered building structures (RC1 and RC2). 

 

6.4 Energy dissipation 
 

In this section, the total cumulative energy dissipation of existing RC building in Nepal is  
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Fig. 16 The capacity curve and corresponding IS drift of the studied building structures with and 

without considering the P-Delta effect for longitudinal (X) and transverse (Y) directions of loading 

 

 

discussed. In most of the loading conditions, the evolution of energy dissipation of existing non-

engineered structures has lower range compared to engineered one. In fact, for proper seismic 

behaviour of structure, the input energy to the structure due to earthquake needs to be dissipated, 

depending on the expected performance of the structure. However, the area enclosed in hysteretic 

loops of non-engineered structure is smaller than that of engineered one. Furthermore, the results 

from the numerical analyses also show that engineered building structures have good energy 

dissipation potential in addition to increased stiffness and strength of the structures. Fig. 15 plots 

the evolution of the total cumulative energy dissipation (TCED) in the existing building structures.  

 

6.5 P-Delta effect 
 

 The P-Delta effect, also known as geometric non-linearity, involves the equilibrium and 

compatibility relationships of a structural system loaded about its deflected configuration. The P-

Delta effect and its influence on structural response has been the subject of significant research in 

recent decades. Researchers have studied the global P-delta effect on the performance of structures 

analytically, numerically, and experimentally (Bernal 1997, Bernal 1998, Macrae 1994, Vian et al. 

2003).  

The comparison of the results of two analyses with and without P-Delta will illustrate the 

magnitude of the P-Delta effects. An engineered building usually has well-conditioned level with 

higher stiffness/weight ratios. For such structures, P-Delta effects are usually not very significant. 

The changes in displacements and member forces are less. However, if the weight of the structure 

is high in proportion to the lateral stiffness of the structure, the contributions from the P-Delta 

effects are highly amplified and, under certain circumstances, can change the displacements and 

member forces by 20 percent or more. Excessive P-Delta effects will eventually introduce 

singularities into the solution, indicating physical structure instability. Such behavior is clearly 

indicative of a poorly designed structure that is in need of additional stiffness. In the present study, 

an analysis of four RC building was conducted with and without P-Delta effects. Figs. 16 and 17 

show the global pushover curves of the case study buildings, representing the response of  
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Fig. 17 The capacity curve and corresponding IS drift of the studied building structures with and 

without considering the P-Delta effect for longitudinal (X) and transverse (Y) directions of loading 

 

 

structures with and without considering the P-delta effect. The capacity curve indicates that the 

analysis results without considering the P-Delta effect have improved shear strength capacity. The 

increment is higher in non-engineered structures (RC1 and RC2). The nature of the capacity curve 

shows the strong impact of the P-delta effect, leading to a reduction of the global lateral stiffness 

and reducing the strength of the structure. 

 
6.6 Vulnerability assessment of the structures 
 

 The vulnerability condition is directly related to the accepted performance of the structure. 

Different documents promote the same concepts but differ in detail and specify different 

performance levels (SEAOC 1995). In ATC 40 (1996) and FEMA-273 (1996), four limit states are 

defined based on global behavior (inter-story drift) as well as element deformation (plastic hinge 

rotation). Rossetto and Elnashai (2003) used five limit states for derivation of vulnerability curves 

based on observational data while Chryssanthopoulos et al. (2000) used only two limit states. In 

the latter studies, the global limit states are independent of the specific response of the structure.  

The selection of the appropriate drift associated with different levels of damage for the design 

is significant in terms of economy safety of the structures. The identification of drift levels 

associated with different states of damage remains one of the unsolved issues in the development 

of performance objectives. However, it is accepted that drift levels associated with specific 

damage categories may vary considerably with the structural system and construction materials. 

For rigorous analysis, it is necessary to define limit states for each individual structure. However, 

more research is needed, particularly in the development of realistic and quantitative estimates of 

drift-damage relationships. It is due to the fact that performance levels are associated with 

earthquake hazard and design levels. For a precise analysis, it is necessary to define limit states 

levels for each individual structure because displacement capacity maybe affected by different 

factors such as level of gravity force, local strains, and intended plastic hinge mechanism. 

In this study, authors have proposed the limit states value for RC building structures in Nepal. 

Four limit states are defined which are termed as slight damage (fully operational), moderate 
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damage (operational), extensive damage (life safety) and collapse. In this study, the local damage 

of individual structural element, such as beam, column, or beam–column joint, is not accounted 

for. Instead, the limit states are defined in terms of simple global parameters. Only inter-story drift 

is used as a global measure of damage.  

For the estimation of damage level of buildings, an adaptive pushover curve was derived for 

each bare frame structures. For each damage state of criteria capacity curve, inter-storey drift, and 

global drift of each prototype building structures was plotted. For this, the structure with different 

design and construction practices in Nepal was used (Chaulagain et al. 2013). The criteria for drift 

limits were categories as: 

• Slight damage: the global drift when 50% of the maximum base shear capacity is achieved 

• Moderate damage: global drift when 75% of the maximum base shear capacity is achieved 

• Extensive damage: global drift when the maximum base shear capacity is achieved 

• Collapse: global drift when the base shear capacity decreases by 20% or 75% of the ultimate 

global drift taken from the pushover curve, whichever is achieved first.  

In this study, four drift limits which are termed as slight damage, moderate damage, extensive 

damage, and collapse prevention are considered for the vulnerability assessment of the building 

structures. The seismic vulnerability of the buildings was assessed with and without considering 

the P-Delta effect. Results from non-linear dynamic analysis for each direction of loading were 

compared in terms of the maximum drift demands and the basic performance objectives proposed 

in Table 7. The similar thresholds for the global drift limits have been used by various authors 

(Papaila 2011, Silva 2013, Bilgin 2013). The results of FEMA-356 (2000), Ghobarah (2004) and 

proposed drift limits are presented in Table 7. The values in Table indicates the maximum drift 

values for various performance levels, slight damage, moderate damage, extensive damage and 

near collapse for non-engineered and engineered buildings are 0.30, 0.70, 1.50, 2.50, and 0.50, 1.0, 

2.15 and 3.50 respectively. The basic performance objectives proposed by FEMA-356 is presented 

in Table 8. All the building structures have been studied through dynamic time history analysis 

with Nepalese ground acceleration value with increasing intensity (see Table 4). Due to the lack of 

sufficient time history data, the intermediate time history data has been employed with scaling the 

existing time history data. The seismic vulnerability curves of all the case study buildings plotted 

with the maximum inter-storey drift corresponding to peak ground acceleration. The vulnerability 

curves for non-engineered (RC1 and RC2 building models) and engineered (RC3 and RC4 

building models) building structures in Nepal has been presented in Figs. 18 and 19.  

 The structural characteristic of the buildings varied to represent a large class of contemporary 

RC buildings in Nepal. Comparing the maximum storey drift demands with the limit states, it is 

observed that RC1 and RC2 building structures have higher drift demand. However, the limiting 

drift is only 2.5% for non-engineered and 3.5% for engineered buildings for the 'near collapse' 

performance level. In fact, non-engineered structures have drift value higher than the standard one. 

From figures, it can be seen that: 

• The existing non-engineered buildings exhibit high vulnerability, i.e. the buildings have very 

low lateral resistant and limited ductility. The non-engineered building structures only satisfied the 

„operational „performance level at design intensity.  

• The engineered buildings have the better performance. According with the obtained results, 

these buildings are safe for the aforementioned performance criteria/level. These are the similar 

results obtained in the Algiers buildings. In Algiers, the structural behaviour of the buildings 

reflects the construction phase. Buildings designed with pre-code (very poor structural behavior 

before 1955), buildings designed with low code (poor structural behavior, between 1955-1981),  
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Table 7 Performance levels and corresponding maximum drift limits 

Performance 

Level 

FEMA-356 Ghobarah (2004) Proposed drift limits 

RC buildings 
Non-ductile 

MRF 

Ductile 

MRF 

Non-engineered 

buildings 

Engineered 

buildings 

Slight damage (fully 

operational) 
0.20 0.20 0.40 0.30 0.50 

Moderate damage 

(operational) 
0.50 <0.50 <1.0 0.70 1.0 

Extensive damage (life 

safety) 
1.50 0.80 1.80 1.50 2.15 

Near collapse 2.50 >1.0 >3.0 2.50 3.50 

 

Table 8 Basic performance objectives for buildings according to FEMA-356, 2000 

  Fully operational Operational Life safety Near collapse 

Earthquake 

Design level 

Frequent (43-YRP)     

Occasional (98-YRP)  X   

Rare (475- YRP)   X  

Very rare (975 YRP)    X 

 

  

Fig. 18 Vulnerability curves of the maximum IS drift for RC1 and RC2 structures with and without P-

delta effect for longitudinal (X) and transverse (Y) directions of loading 

 

 

buildings designed with medium code (moderate structural behavior, between 1981-1999), and 

buildings designed with high code (good structural behavior, after 1999) (Mehani et al. 2013). In 

fact, the performance of building structure mainly depends on material properties, concrete 

strength and steel yield stress (Maria et al. 2011). Moreover, the effect of geometrical non-linearity 

of the structure is clearly seen in the vulnerability curve. In figures it can be also seen that the 

vulnerability curves without P-Delta effect have the lower range in all the analyses models. In fact, 

the P-Delta effect changes the deflected shape, which amplified the storey drift of the structures. 
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Fig. 19 Vulnerability curves of the maximum IS drift for RC3 and RC4 structures with and without P-

delta effect for longitudinal (X) and transverse (Y) directions of loading 

Note: RC1, RC2, RC3 and RC4, and RC1', RC2', RC3' and RC4' represent the vulnerability curves of 

the case study buildings with and without considering the P-Δ effect respectively. 

 

 

6.7 Effect of irregularity on response of structure 
 

6.7.1 Biaxial response of reinforced concrete columns 
The behaviour of the RC elements subjected to axial loading in conjunction with cyclic biaxial 

bending is accepted as a very important research issue for building structures in earthquake-prone 

regions. There are still a number of unresolved problems with the adequate modelling of RC 

buildings under general earthquake loading. One of the main issues is related to the fact that 

buildings are three-dimensional structures and in several cases it is impossible to simplify the 3-D 

models into two-dimensional ones without considerable loss of accuracy (Dundar and Tokgoz 

2012, Rodrigues et al. 2013). A structural member subjected to biaxial flexure suffers greater 

damage than with one-dimensional loading (Takizawa et al. 1976). In fact, the biaxiality of the 

cyclic moments tends to reduce the capacity of the columns because of the biaxial interaction 

effect (Rodrigues et al. 2012). The results of the drift profiles at the centre of corner, façade and 

interior columns are presented in Fig. 20. 

 In this context, the biaxial response of existing RC column is studied for the structures with 

regular and irregular plan configurations. For this, the dynamic time history analysis has been 

performed with synthetic earthquake in Nepal. The biaxial response of corner, façade and interior 

columns at the first storey level is plotted and analysed, considering the earthquake loading in the 

X, Y and 450 directions. As expected, the biaxial response is more important in façade and corner 

columns, and specially in the irregular building, even in the case where the action is unidirectional 

(X or Y) the earthquake induces an important drift demand in the opposite direction in the irregular 

building RC4 (around 25% whan compared with the demand in the load direction). From the 

hysteretic behaviour of all the studied columns, it is clearly seen that columns of irregular 

buildings have torsional oscillation. In symmetric structures, the biaxiality of the bending action is 

due to the instantaneous presence of the two horizontal components of the seismic excitation, 

whereas in asymmetric structures such an orthogonal loading condition is due also to the lateral-
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torsional coupling. In many situations, biaxial structural interaction and torsional oscillation may 

arise, namely as a result of structural irregularity, affecting the structural response. However, even 

for structures with regular and symmetric configurations and uniform mass distributions in the 

building plan, planar models cannot obtain an accurate enough response. Since earthquake 

excitation is, in general, multi-dimensional, biaxial structural interaction must, therefore, be 

considered. 

 

6.7.2 Maximum variation of axial load 
The vibration characteristics of columns are influenced by their axial loads. The axial load ratio 

of the column has dramatic on the drift performance of lightly reinforced columns, particularly the 

significantly lower drift capacities that are available in compression dominated columns (Wibowo 

et al. 2014). Moragaspitiya et al. 2014 quantify axial deformation of columns in a structural  

 

  

   
(a) Biaxial response of first storey corner column 

   
(b) Biaxial response of first storey façade column 

   
(c) Biaxial response of first storey interior column 

Fig. 20 Biaxial response of RC3 and RC4 building models in X, Y and 45° direction of loading condition 
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(a) Variation of axial load in third storey facade column 

   
(b) Variation of axial load in third storey facade column 

   
(c) Variation of axial load in second storey corner column 

Fig. 21 Maximum variation of axial load for RC3 and RC4 building models in X and Y direction of loadings 

 

 

system using its vibration characteristics, incorporating the influence of load tributary areas, 

boundary conditions and load mitigation among the columns. In the present study, the maximum 

variation of axial load in the column was studied through non-linear dynamic analysis with 

synthetic earthquake in Nepal. For this, the performance of interior, façade and corner columns of 

regular (RC3) and irregular (RC4) structures are studied. For this time history data with increasing 
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peak ground acceleration has been employed. The results from the numerical analysis are 

presented in Fig. 21.  

 The results indicate that the maximum axial load variation of a corner column having a regular 

configuration (RC3) is 65.32% in the X and 115% in the Y direction of the loading condition. This 

limit is 92.10% in the X and 98.43% in the Y direction for the irregular configuration (RC4). For 

façade columns, the RC3 and RC4 structures have values of 69.69% and 64.09% in the X and 

182.25% and 90.02% in the Y direction. Similarly, for interior columns, the RC3 structure has 

47.54% in the X and 97.30% in the Y direction, whereas the values are 32.72% in the X and 

51.62% in the Y for the RC4 structure. The maximum variation of axial load in columns up to the 

second storey is consistent for both structures. In the RC3 structure, the axial load variation in the 

façade and interior columns is sharply apparent between the second and third storeys (up 

to182.25%) in the Y direction. Moreover, the result indicates that the central column has a small 

variation of axial load, at around 25%. As expected, the maximum variation of axial load is in the 

corner column. It indicates that axial forces can alter the failure mode of the columns. Ghassemieh 

et al. 2014 observed that the presence of axial force even in a small value can change the 

behaviour of the columns significantly. Analysis results for the corner, façade and interior columns 

can be summarized as follows: 

• In the corner columns, the RC4 structure has a higher axial load variation in the X direction 

than RC3. The difference is negligible in the Y direction. This is due to the fact that the RC3 has 

greater stiffness in the X direction, compared to the RC4 structure. 

• In the façade and interior columns, the overall variation is very small and the difference is 

negligible in the two structures in both the X and Y directions at the first and second storeys. 

However, due to the effect of less stiffness in the third storey, the RC3 structure has a very high 

axial load variation on this floor in the Y direction of loading. 

 

 

7. Conclusions 
 

 RC buildings constitute the prevailing type of construction in earthquake-prone region like 

Kathmandu Valley. Most of these building constructions were based on conventional methods. In 

this context, the present paper studied the seismic behaviour of existing RC buildings in 

Kathmandu Valley. For this, four representative building structures with different design and 

construction, namely a building: (a) representing the non-engineered construction (RC1 and RC2) 

and (b) engineered construction (RC3 and RC4) has been selected for analysis. The dynamic 

properties of the case study building models are analyzed and the corresponding interaction with 

seismic action is studied by means of non-linear analyses. The structural response measures such 

as capacity curve, inter-storey drift and the effect of geometric non-linearities are evaluated for the 

two orthogonal directions. The effect of plan and vertical irregularity on the performance of the 

structures was studied by comparing the results of two engineered buildings. This was achieved 

through non-linear dynamic analysis with a synthetic earthquake subjected to X, Y and 45° loading 

directions. The nature of the capacity curve represents the strong impact of the P-delta effect, 

leading to a reduction of the global lateral stiffness and reducing the strength of the structure. The 

non-engineered structures experience inter-storey drift demands higher than the engineered 

building models. Moreover, these buildings have very low lateral resistant, lesser the stiffness and 

limited ductility. Finally, a seismic safety assessment is performed based on the standard drift 

limits. Result indicates that most of the existing buildings in Nepal exhibit inadequate seismic 
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performance. The additional conclusions from the analysis can be summarised as follows: 

• As expected, engineered structures present higher strength, tangent stiffness and lower 

deformation when compared with non-engineered structures. The shear strength capacity and 

tangent stiffness of engineered buildings (RC3 and RC4) are nearly two times the value obtained 

with the non-engineered structures (RC1 and RC2). 

• Drift values in RC1 and RC2 types are quite higher than in the RC3 and RC4 structures. In 

engineered building structures, the rate of change of inter-storey drift profile is quite regular and 

consistent in all the storeys. While, there is highly irregular and inconsistent inter-storey drift 

profiles in non-engineered structures. In particular RC1 building model present a soft storey 

mechanism in the third storey, due to the reduction of the column-section between the second and 

third storey. By this fact and due to the low rise of the buildings this procedure should be 

considered non-adequate for earthquake prone areas like Kathmandu Valley. 

• Base on the present study different limit states value for RC building structures in Nepal, and 

can be now applied for a large scale study with more examples regarding the proper seismic risk 

analysis of Nepal.  

• From the analysis result it can be seen that the existing non-engineered buildings in Nepal 

exhibit high vulnerability, with limited ductility. The non-engineered building structures only 

satisfied the „operational‟ performance level at design intensity. In the present study the RC 

buildings that represents the conventional constructions methods can be considered unsafe. By this 

fact it is highlighted that a large study regarding the analysis of different typologies of this type of 

construction need to be performed and also the analysis of possible and feasible retrofitting 

solutions, in order to reduce the seismic vulnerability in future earthquakes. The studied 

engineered buildings presents a better performance. 

• The effect of axial load variation is greatly influenced by the stiffness of the structure. This is 

apparent in the third storey columns (façade and interior) in the Y direction. It is due to the 

structural discontinuity shown in Fig. 12. 

•The biaxial behaviours of columns show that the effect of seismic action is highly sensitive in 

non-symmetrical structures (RC4), and even for a unidirectional action in one direction can induce 

a demand around 25% in the opposite direction. Result indicates that a biaxial response is very 

clear in the RC4 structure.  The failure mechanism of RC columns is highly dependent on the load 

path, ductility capacity, and energy dissipation of the columns. Moreover, from the analysis results 

it is clear that any realistic representation of the behaviour of RC structures (mostly irregular) 

should include a three-dimensional aspect. 
There are still a number of unsolved problems associated with the modeling and safety 

assessment of non-engineered RC building under seismic loading. The preliminary results of the 

analysis showed that in a major earthquake, the buildings may suffer heavy damage when 

compared with engineered buildings, in particular in the case where structural irregularities are 

present. Many questions can be arise regarding the modeling of this typo of buildings and if the 

models can adequately reproduce the main characteristics of the element’s response, such as the 

strength and stiffness degradation, the changes in terms of ductility, and energy dissipation 

capacity. 

 

 

Acknowledgements 
 
 This research investigation is supported by the Eurasian University Network for International 

815



 

 

 

 

 

 

Hemchandra Chaulagain, Hugo Rodrigues, Enrico Spacone and Humberto Varum 

Cooperation in Earthquake (EU-NICE), through fellowship for PhD research of the first Author. 

This support is gratefully acknowledged. 

 

 

References 
 
Antoniou, S. and Pinho, R. (2006), “Development and verification of a displacement based adaptive  

pushover procedure”, J. Earthq. Eng., 8(5), 643-661. 

ATC-40 (1996), Seismic Evaluation and Retrofit of Concrete Buildings, Applied Technical Council, 

California Seismic Safety Commission, Report No. SSC 96–01 (two volumes), Redwood City, California, 

US. 

Bilgin, H. (2013), “Fragility-based assessment of public buildings in Turkey”, Eng. Struct., 56, 1283-1294. 

Bracci, J.M., Kunnath, S.K. and Reinhorn, A.M. (1997), “Seismic performance, and retrofit evaluation of 

reinforced concrete structures”, ASCE J. Struct. Eng., 123(1), 3-10. 

BDCP (1994), Building Code Development Project: Seismic Hazard Mapping and Risk Assessment for 

Nepal, UNDP/UNCHS (Habitat) Subproject: NEP/88/054/21.03, Min. Housing Phy., Planning, 

Kathmandu. 

Bernal, D. (1987), “Amplification factors for inelastic dynamic P-D effects in earthquake analysis”,  Earthq. 

Eng. Struct. Dyn., 15, 635-51. 

CBS, Nepal (2012), National population and Housing Census 2011, National Report, NPHC, 

 Kathmandu. 

Chaulagain, H., Rodrigues, H., Jara, J., Spacone, E. and Varum, H. (2013), “Seismic response of current RC 

 buildings in Nepal: a comparative analysis of different design/construction”, Eng. Struct., 49, 284-294.  

Chryssanthopoulos, M.K., Dymiotis, C. and Kappos, A.J. (2000), “Probabilistic evaluation of behaviour 

factors in EC8-designed R/C frames”, Eng. Struct., 22(8),1028-41. 

Dundar, C. and Serkan, T.S (2012), “Strength of biaxially loaded high strength reinforced concrete 

columns”, Struct. Eng. Mech., 44(5), 649-661. 

Elnashai, A.S. and Elghazouli, A.Y. (1993), “Performance of composite steel/concrete members under 

 earthquakemloading, Part I: analytical model”, Earthq. Eng. Struct. Dyn., 22, 315-345. 

Eurocode 8 (2005), Design of structures for earthquake resistance, Part 3: Assessment and retrofitting of 

 buildings, EN 1998-3, CEN, Brussels. 

FEMA-356 (2000), Pre-standard and commentary for the seismic rehabilitation of buildings, Federal 

Emergency Management Agency, Washington, DC.  

FEMA 273 (1996), NEHRP guidelines for the seismic rehabilitation of buildings, FEMA  274, Commentary, 

Federal Emergency Management Agency, Washington, DC. 

Filippou, F.C., Popov, E.P. and Bertero, V.V. (1983), Effects of bond deterioration on hysteretic  behavior of 

reinforced concrete joints, Report EERC 83-19, Earthquake Engineering Research Center, University of 

 California, Berkeley.  

Ghassemieh, M., Shamim, I. and Gholampour, A.A (2014), “Influence of the axial force on the behavior of 

endplate moment connections”, Struct. Eng. Mech., 49(1), 23-40. 

Ghobarah, A. (2004), “On drift limits associated with different damage levels”, Proceedings of the 

 international workshop Bled, 28, Slovenia. 

Ghobaraha, A., Murat Saatcioglub, M. and Nistorb, I. (2006), “The impact of the 26 December 2004 

 earthquake and tsunami on structures and infrastructure”, Eng. Struct., 28, 312-326. 

Gupta, B. and Kunnath, S.K. (2000), “Adaptive spectra-based pushover procedure for seismic evaluation of 

structures”, Earthq. Spectra,16(2), 367-91. 

IS 1893 (Part1) (2002), Indian Standard Criteria for Earthquake Resistant Design of  Structures, Bureau of 

 Indian Standards, ManakBhavan, 9 Bahadur Shah ZafarMarg, New Delhi. 

IS 13920 (1993), Indian Standard Ductile Detailing of Reinforced Concrete Structures subjected  to  Seismic 

Force,  Bureau of Indian Standards, ManakBhavan, 9 Bahadur Shah Zafar Marg, New Delhi. 

816



 

 

 

 

 

 

Seismic response of current RC buildings in Kathmandu Valley 

 
 

JICA (2002), The Study on Earthquake Disaster Mitigation in the Kathmandu Valley Kingdom of Nepal, 

Japan International Cooperation Agency (JICA) and Ministry of Home Affairs, His Majesty‟s 

Government of Nepal. 

Kazem, S.K., Tarbali, K. and Mohtasham Mohebbi, M. (2012), “An adaptive modal pushover procedure for  

asymmetric-plan buildings”, Eng. Struct., 36, 160-172. 

Macrae, G.A. (1994), “Effects on single-degree-of-freedom structures in earthquakes”, Earthq. Spectra, 10, 

539-68. 

Madas, P. and Elnashai, A.S. (1992), “A new passive confinement model for the analysis of concrete 

 structures  subjected to cyclic and transient dynamic loading”, Earthq. Eng. Struct. Dyn.,  21, 409-431. 

Mander, J.B., Priestley, M.J.N. and Park, R. (1988), “Theoretical stress-strain model for confined concrete”, 

J. Struct. Eng., 114(8), 1804-1826. 

Maria, P., Verderame, G.M. and Gaetano, M. (2011), “Static vulnerability of existing R.C. buildings in Italy: 

a case study”, Struct. Eng. Mech., 39(4), 599-620. 

Mehani, Y., Bechtoula, H., Kibboua, A. and Mounir Naili, M. (2013), “Assessment of seismic fragility 

curves for existing RC buildings in Algiers after the 2003 Boumerdes earthquake”, Struct. Eng. Mech., 

46(6), 791-808. 

Menegotto, M. and Pinto, P.E. (1973), “Method of analysis for cyclically loaded RC plane frames including 

changes in geometry and non-elastic behaviour of elements under combined normal force and bending”, 

Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined 

Repeated Loads, International Association for Bridge and Structural Engineering, Zurich, Switzerland.  

Martinez-Rueda, J.E. (1997), “Energy dissipation devices for seismic upgrading of RC structures”, PhD 

Thesis,  Imperial College, University of London, London, UK.  

Moragaspitiya, H.N.P., Thambiratnam, D.P., Perera, N.J. and Chan, T.H.T (2014), “Use of vibration 

characteristics to predict the axial deformation of columns”, Struct. Eng. Mech., 50(1), 73-88. 

NBC-205 (1994), Nepal National Building Code, HMG/Ministry of Housing and Physical Planning, 

Department of Building. 

NSET (1999), Kathmandu Valley Earthquake Risk Management Action Plan, NSET and GHI. 

Papaila, A. (2011), “Seismic fragility curves for reinforced concrete buildings”, MSc Thesis, University of 

Patrax, Patras, Greece. 

Parajuli, H.R. (2009), “Dynamic analyses of low strength masonry houses based on site specific earthquake 

ground motions”, PhD Thesis, Department of Urban Management, Graduate School of Engineering, 

Kyoto University, Japan. 

Rana, B.S.J.R. (1935), Great earthquake of Nepal, Nepali Edition. 

Rodrigues, H., Varum, H., Arede, A. and Costa, A. (2013), “Behavior of reinforced concrete column under 

biaxial cyclic loading-state of the art”, Int. J. Adv. Struct. Eng., 5(1), 1-12. 

Rodrigues, H., Arêde, A., Varum, H. and Costa, A. (2012), “Experimental evaluation of rectangular 

reinforced concrete column behaviour under biaxial cyclic loading”, Earthq. Eng.  Struct. Dyn., 42(2), 

239-259. 

Roger, B., Gaur, V. and Molnar, P. (2001), “Earthquakes: Himalayan seismic hazard”, Science, 293(5534), 

1442-1444. 

Rossetto, T. and Elnashai, A. (2003), “Derivation of vulnerability functions for European-type RC structures 

based on observational data”, Eng. Struct., 25(10), 1241-63. 

SEAOC (1995), Performance based seismic engineering of buildings, Vision 2000, Vols. I and II: 

Conceptual Framework, Structural Engineers Association of California, Sacramento, CA. 

Silva, V. (2013), “Development of open models and tools for seismic risk assessment: application to 

Portugal”, Ph.D. Thesis, University of Aveiro, Portugal. 

SeismoSoft (2006), “Computer Program for Static and Dynamic Nonlinear Analysis of Framed  Structure”, 

online available URL: http//www.seismosoft.com. 

Takizawa, H. and Aoyama, H. (1976), “Biaxial effects in modeling earthquake response of RC structures”, 

Earthq. Eng. Struct. Dyn., 4, 523-552. 

Thapa, N. (1988), Bhadau Panch Ko Bhukampa (in Nepali) , Central Disaster Relief Committee, Nepal. 

817



 

 

 

 

 

 

Hemchandra Chaulagain, Hugo Rodrigues, Enrico Spacone and Humberto Varum 

UNDP/ Nepal (1994), Seismic Hazard Mapping and Risk Assessment for Nepal, His Majesty‟s 

 Government of  Nepal, Ministry of Housing and Physical Planning, UNDP/ UNCHS (Habitat) 

 Subproject Nep/88/054. 

UNDP (2010), Recommendations for construction of Earthquake Safer Buildings - Earthquake Risk 

 Reduction  and Recovery Preparedness Programme for Nepal, UNDP/ ERRRP-Project: NEP/07/010, 

 Department of Urban Development and Building Construction, Babarmahal, Kathmandu. 

Vian, D. and Bruneau, M. (2003), “Tests to structural collapse of single degree of freedom frames subjected 

 toearthquake excitation”, J. Struct. Eng., 129,1676-85. 

Wibowo, A., Wilson, J.L., Lam, N.T.K and Gad, E.F. (2014), “Drift performance of lightly reinforced 

concrete columns”, Eng. Struct., 59, 522-535. 

Yeats, R.S. and Lillie, R.J. (1991), “Contemporary tectonics of the Himalayan frontal fault system: folds, 

blind thrusts and the 1905 Kangra earthquake”, J. Struct. Geol., 13, 215-225. 

 

 

CC 

818




