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Abstract
Objective. The objective of the study is to identify phase coupling patterns that are shared across
subjects via a machine learning approach that utilises source space magnetoencephalography
(MEG) phase coupling data from a working memory (WM) task. Indeed, phase coupling of neural
oscillations is putatively a key factor for communication between distant brain areas and is
therefore crucial in performing cognitive tasks, including WM. Previous studies investigating phase
coupling during cognitive tasks have often focused on a few a priori selected brain areas or a
specific frequency band, and the need for data-driven approaches has been recognised. Machine
learning techniques have emerged as valuable tools for the analysis of neuroimaging data since they
catch fine-grained differences in the multivariate signal distribution. Here, we expect that these
techniques applied to MEG phase couplings can reveal WM-related processes that are shared across
individuals. Approach.We analysed WM data collected as part of the Human Connectome Project.
The MEG data were collected while subjects (n= 83) performed N-back WM tasks in two different
conditions, namely 2-back (WM condition) and 0-back (control condition). We estimated phase
coupling patterns (multivariate phase slope index) for both conditions and for theta, alpha, beta,
and gamma bands. The obtained phase coupling data were then used to train a linear support
vector machine in order to classify which task condition the subject was performing with an
across-subject cross-validation approach. The classification was performed separately based on the
data from individual frequency bands and with all bands combined (multiband). Finally, we
evaluated the relative importance of the different features (phase couplings) for classification by the
means of feature selection probability.Main results. The WM condition and control condition were
successfully classified based on the phase coupling patterns in the theta (62% accuracy) and alpha
bands (60% accuracy) separately. Importantly, the multiband classification showed that phase
coupling patterns not only in the theta and alpha but also in the gamma bands are related to WM
processing, as testified by improvement in classification performance (71%). Significance. Our
study successfully decoded WM tasks using MEG source space functional connectivity. Our
approach, combining across-subject classification and a multidimensional metric recently
developed by our group, is able to detect patterns of connectivity that are shared across individuals.
In other words, the results are generalisable to new individuals and allow meaningful interpretation
of task-relevant phase coupling patterns.
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1. Introduction

Cognitive operations and complex behaviour require
interactions between distributed neuronal popula-
tions [1]. Neural oscillations and their synchronisa-
tion is a putative mechanism supporting the func-
tional integration of distributed neuronal popula-
tions that is needed in higher cognitive functions [2]
such as working memory (WM), i.e. the ability to
temporarily maintain and manipulate information
[3]. The neural oscillations arise from rhythmically
synchronised post-synaptic potentials of thousands
or even millions of neurons and can be measured
with electroencephalography (EEG) and magnetoen-
cephalography (MEG) [4–6]. It has been hypothes-
ised that the phase of the measured signal is related to
the excitability state of the neurons in the assembly.
Distant brain areas can therefore communicate effect-
ively only when the phases of their oscillations syn-
chronise so that the output from the pre-synaptic
group of neurons arrives at the time when the post-
synaptic neurons are themost excitable [7]. This form
of long-range phase coupling is thought to play a key
role in neuronal communication in cognitive pro-
cesses, including WM. Indeed, many neurophysiolo-
gical studies have found that the phase coupling is
modulated in different frequency bands in various
WM tasks, thus supporting the role of neural oscil-
lations in the context of WM [8–13].

The previous reports cast little doubt that the
phase coupling is relevant to WM functions. How-
ever, the majority of the previous studies have relied
on a priori assumptions about the relevant brain
areas, relevant frequency bands or both. Indeed, in
recent years, the demand for data-driven approaches
that can capture the multivariate and interactive
nature of functional connectivity and cognitive pro-
cessing has been recognised [1, 14]. An encour-
aging approach for analysing complex multidimen-
sional brain-imaging data in a data-driven manner is
brain decoding [15, 16]. Brain decoding is based on
machine learning algorithms that mine the inform-
ation content of multiple signals to make predic-
tions of task, brain state or stimuli [15, 17, 18].
The decoding approach can exploit the interaction
of multiple variables at the same time, which is not
possible with often employed mass-univariate ana-
lyses [17–21].Moreover, the decoding approach over-
comes the overly conservative multiple comparison
correction that is needed in mass-univariate analyses
due to the high dimensionality of neuroimaging data
[18, 20, 22].

Machine learning techniques have been success-
fully applied to neurophysiological data for different
purposes, e.g. identifying individuals (fingerprinting)
[23], diagnostics/biomarker/treatment outcome pre-
diction [24–29], brain–computer interfaces (BCIs)
[30, 31], to reveal task or stimuli specific patterns
of neural activity [16, 17, 20, 30–35] and to predict

behavioural outcome [36]. The different applications
have vastly different principle aims. For example, in
BCI applications the primary aim is to find a model
that maximises classification accuracy regardless of
the underlying brain mechanisms and features. In
contrast, in brain function decoding, as in the current
study, the goal is to find a model that is interpretable,
with shared features and that can accurately dis-
criminate between brain states and therefore provide
insight into related brain functions [16]. In the lat-
ter framework, we use a brain decoding approach
based on patterns of long-range phase coupling i.e.
functional connectomes, obtained with a connectiv-
ity approach recently developed by our group [37] to
investigate brain mechanisms underlying WM.

Only relatively few studies have used MEG func-
tional connectivity as features in machine learn-
ing approaches, and the majority of previous stud-
ies have focused on resting-state data in order to
find biomarkers for various patient groups [26–29].
When brain decoding based on MEG functional
connectivity during cognitive tasks has been per-
formed [17, 31], the analyses have been limited at the
sensor level and used connectivity measures that are
not robust against ‘artificial’ synchrony induced by
field spread, thus making the interpretation of the
results in terms of underlying mechanisms almost
impossible [38, 39]. These studies reported signific-
ant decoding results within subjects but not across
subjects, therefore not allowing generalisation of the
results.

In the current study, we aim to use brain decod-
ing based on MEG functional connectivity in source
space, i.e. after having inferred the underlying gen-
erators in the brain of the measured MEG signals,
to be able to interpret our results in terms of coup-
ling between brain regions. To the best of our know-
ledge, this is the first study that uses MEG source
space functional connectivity as a task decoding fea-
ture. As a cognitive task, we focus on WM, since
we expect a large set of brain regions to be involved
in inter-areal communication underlying processing
in WM as suggested by earlier literature, thus mak-
ing WM an ideal task for multivariate analysis and
to test generalisation across subjects. The WM MEG
data used for this purpose were acquired as part of
the Human Connectome Project (HCP) [40] dur-
ing an N-back task, a continuous performance task
that is commonly used to investigate WM [41]. Of
note, the MEG HCP researchers acquired WM data
in 83 healthy subjects, a fairly large number of sub-
jects for a MEG study, making this dataset suitable
to investigate subject-wise common functional con-
nectivity patterns by decoding with training and test-
ing split across subjects [42]. In these 83 subjects,
we estimated phase coupling for the 2-back condi-
tion (WM) and the 0-back condition (control condi-
tion) separately across the whole cortex in four differ-
ent frequency bands (theta, alpha, beta and gamma).
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Figure 1. Subjects performed an N-back WM task in two different conditions: 2-back WM condition (upper panel) and 0-back
control condition (bottom panel). Each block started with a task cue followed by ten images (only six examples shown here) of
tools or faces. As illustrated, in the 2-back WM condition, the reference is constantly updated so that the reference is the image
that was presented two images before the current image. In the 0-back control condition, the reference image is fixed.

Phase coupling was estimated using the multivariate
phase slope index (MPSI) [37], which is the gener-
alisation to the multidimensional case of the phase
slope index [43]. In particular, the MPSI exploits
the multivariate nature of the signal and is able to
estimate the directionality of the coupling, that is,
which one of the two phase-coupled brain areas is the
‘leader’ [37]. The obtained phase coupling connec-
tomes were then used to train a linear support vec-
tor machine in order to classify, in an across-subjects
manner, which task condition (WM/control) a sub-
ject was performing. We found that frequency spe-
cific patterns of phase coupling between brain regions
that discriminate between WM and control condi-
tions can be consistently and reliably observed across
subjects and are thus generalised to new individuals.

2. Methods

In this study, we analysed publicly availableMEGdata
collected and preprocessed by the HCP Consortium
[40]. Here, for the reader’s convenience, we briefly
describe the task (figure 1), data and analysis pipeline
(figure 2). Phase coupling analyses were carried out
inMatlab (TheMathWorks, Inc., Natick, MA, United
States) using the FieldTrip toolbox [44] and custom-
made Matlab scripts. The classification analyses were
carried out in Python using the scikit-learn [45],
nilearn [46] and scipy/numpy packages [47]. More
information about data and software availability is
provided in the data and code availability statement

section. For full details of the data acquisition, task
protocol and preprocessing, the reader is referred to
the data release manual [41].

2.1. Data acquisition
The WM MEG data acquisition was performed with
a 248 magnetometer whole head MEG system (4D
Neuroimaging, San Diego, CA) located at the Saint
Louis University medical campus. The data were
recorded at 2034 Hz sampling rate with a bandwidth
of DC-400 Hz. Spatial digitization of three anatom-
ical landmarks (nasion, peri-auricular points), five
localiser coils and each subject’s head shape were
performed using a Polhemus FASTRAK-III digitiser.
This allowed co-registration of MEG data with indi-
vidual MRI structural scans.

2.2. Participants and task protocol
Eighty-three healthy subjects (age range: 22–35; 38
females) included in the HCP experiment were ana-
lysed. All participants gave written informed consent
in accordance with the Declaration of Helsinki.

The subjects performed an N-back WM task
while undergoing MEG data acquisition. In the N-
back WM task (figure 1), participants were asked
to monitor sequentially presented images of tools
or faces in two different conditions, namely, 0-back
(control condition) and 2-back (WM condition).
Data acquisition was performed in two runs, each
consisting of 16 blocks (eight blocks in each condi-
tion). Each block consisted of ten images of either
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Figure 2. Data analysis pipeline. The preprocessed channel level data (A) were projected into the source space by relying on the
eLoreta inverse method (B). An automated anatomical labelling (AAL) atlas was used in order to parcellate the source space, and a
dimensionality reduction step (via subject-, condition- and frequency-band-specific prior principal component analyses) was
performed in order to reduce the computation time in calculating the connectomes and implicitly increase the signal-to-noise
ratio (C). The cross-spectral matrices between the (dimensionality-reduced) parcels were then computed and phase coupling was
estimated through the multivariate phase slope index (MPSI). Finally, in order to classify the two WM task conditions, a linear
support vector machine was trained using the phase coupling data; model performance was assessed by calculating classification
accuracies and the most relevant features for the classification were identified by means of feature selection probability (D).

faces or tools. An initial cuewas presented for 2500ms
at the beginning of each block indicating whether
the block was a 0-back or a 2-back block. At the
beginning of each 0-back block, a single reference
image was presented to the participants. This was fol-
lowed by a series of images, and the participants were
instructed to respond whether the currently presen-
ted image matched the reference image. In the 2-
back blocks participants were instructed to respond
whether the currently presented image matched the
image presented two images before. Each stimulus
lasted 2000ms and consecutive stimuli were separated
by a 500 ms fixation period. The participants were
instructed to respond as fast as possible within the
stimulus presentation window via button press with
their right index (match) or rightmiddle finger (non-
match). Each block ended with a 15 s fixation period.

2.3. Preprocessing
The quality control of the HCP data was based on
two quality assessment (QA) modules [40]. In the
first QA module, channels with poor correlation or
high variance ratio to the neighbouring channels were
considered as bad and removed from further ana-
lysis [48]. The second module utilised an iterative
independent component analysis algorithm, which
removes bad channels and segments based on spa-
tial and temporal criteria [49]. This step minimises
the effect of non-brain components such asmagneto-
and electro-cardiogram, eye movements, power sup-
ply bursting, and 1/f like environmental noise [40].
Data were also down-sampled to 508.6275 Hz.

2.4. Epoching
In the current study, the HCP MEG data were
epoched into 2 s time windows locked to the onset
of the stimuli. Thus, the time window of interest, i.e.
a trial, was defined as the entire stimulus presentation
time window (2 s).We considered only trials in which

the participants provided correct responses in order
to avoid possible confounds due to the different ratios
of correct and incorrect responses between the condi-
tions. The two types of stimuli (tools and faces) were
not separated as the scope of this study was not to dif-
ferentiate the processing of different types of stimuli.

2.5. Phase coupling estimation
2.5.1. Parcellation and parcel vector time series
In order to reduce the computation time in calcu-
lating the connectomes and to implicitly increase
the signal-to-noise ratio, the dimensionality of the
data was reduced by using the automated anatomical
labelling atlas [50] parcellation relying on the nearest
interpolation approach. This resulted in dividing the
source space into 87 parcels and associating each
parcel with a vector time series composed of time
series (one for each location belonging to that par-
cel). Finally, to reduce the number of signals for each
parcel, a principal component analysis was applied
on the average (across the two sessions) real part of
the cross-spectralmatrices for each subject, frequency
band and condition separately. For each parcel, the
representative vector time series was thus defined as
the smallest set of signals that explains at least 90% of
the parcel power [51].

Specifically, each trial was first divided at channel
level into three segments with 50% overlap between
the segments, and the channel-level cross-spectra
were estimated for each subject, condition and fre-
quency band (theta 4–8 Hz, alpha 9–13 Hz, beta
14–30 Hz and gamma 30–80 Hz). The channel-level
cross-spectra for each of the two sessions were estim-
ated as an average of the products of the Fourier-
transformed data over all segments. Since each seg-
ment had a length of 1 s, the frequency resolution
was equal to 1Hz. The cross-spectral matrix in source
space (cortical layer of 8004 points with 6 mm dis-
tance) was then estimated for each session and parcel
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by applying the eLoreta inverse procedure with free
source orientation [52]. The normalised leadfields,
used for the calculation of the inverse matrices, were
obtained by relying on a single shell approach [53]
for the source space and volume conductor model
provided by the HCP.

2.5.2. Multivariate phase slope index
The MPSI was used to estimate long-range directed
phase coupling between all parcel pairs [37]. Specific-
ally, for each pair of parcels I and J, theMPSI between
the two corresponding vector time series X̃I and X̃J is
defined as

MPSIIJ (F)

:= 4
∑
f∈F

Tr
((

SRII (df+ f )+ SRII ( f )
)−1

SIIJ (df+ f )

(
SRJJ (df+ f ) + SRJJ ( f )

)−1
SRJI ( f )

+
(
SRII (df+ f )+ SRII ( f )

)−1
SRIJ (df+ f )(

SRJJ (df+ f )+ SRJJ ( f )
)−1

SIJI ( f )
)

where df = 1Hz denotes the incremental step in the
frequency domain, R the real part, I the imaginary
part, Tr the trace of a matrix, ( ·)−1 the inverse oper-
ator, and e.g. SIJ the cross-spectral matrix between
X̃I and X̃J. Here, the cross-spectral matrices for each
parcel have been estimated by averaging the products
of the Fourier transforms over all the segments into
which the source level data (separately projected from
sensor space for each session) have been divided. In
order to avoid possible confounds induced by the dif-
ference in dimensionality of the vector time series,
all MPSI values were normalised with respect to the
dimensions of the respective X̃I and X̃J.

The sign of MPSIIJ gives information about the
directionality of the phase coupling. Specifically, a
positive sign, which means that the phase differences
between the components of I and J are more prone to
increase with increasing frequency, implies that the
average time lag between the two parcels is positive
and thus that parcel I is the leading source; conversely,
a negative value implies the opposite [37, 54].

The above analysis resulted in 664 matrices (83
(subjects)×4 (frequency bands)×2 (conditions)) of
3741 (87 parcels × (87 − 1)/2) elements, in which
each entry represents the corresponding MPSI value
between two parcels.

2.6. Classification analysis
Having obtained the phase coupling values for all par-
cel pairs, a linear support vector machine (with pen-
alisation coefficient C = 1) was trained to classify in
which of the two task conditions each subject was
engaged. The classification was first performed sep-
arately for each frequency band (single band classi-
fication) in order to evaluate the respective roles of

the different frequency bands. To further examine the
respective importance and to evaluate whether the
joint information stored in the phase coupling pat-
terns of different frequency bands improves decod-
ing, we considered all frequency bands simultan-
eously (multiband classification). As input data for
the classifier in the single band classification, we used
the obtained MPSI matrices composed of 3741 fea-
tures each representing the phase coupling between
a pair of parcels. In multiband classification, the
input data were formed by concatenating the MPSI
matrices of all four frequency bands, resulting in
14 964 (3741× 4) features.

An ANOVA-based feature selection [55] was
applied by selecting the first k highest f-score rank
features. This operation is often deemed necessary to
reduce the possibility of overfitting, particularly when
the number of features is greater than the number of
samples [55]. Therefore, the number of selected fea-
tures (k) was varied from 1 to 600. A model selec-
tion was then performed by means of subject-level
cross-validation, that is, the data from 75% of the
subjects were used as a training set and the remain-
ing 25% as a testing set. This cross-validation scheme
provides a measure of generalisation across subjects,
i.e. it detects whether information that is used to
classify the task is shared in the examined popula-
tion [56]. To provide a good estimate of the classific-
ation accuracy [57], across-subjects cross-validation
was repeated 75 times. For each iteration, the subjects
in the training set were randomly assigned. Feature
selection was applied only on the training set for each
repetition in order to avoid biasing of the classifica-
tion error [55].

The statistical significance of the classification res-
ults was assessed through permutation tests [58, 59].
To obtain the null distribution for the classification
accuracy, the labels of the conditions were shuffled
100 times and the entire classification procedure
was repeated, including feature selection and cross-
validation. The reported p-value is the probability
of observing the reported accuracy by chance using
the null distribution obtained after permutations
(p < 0.01). Multiple comparisons were assessed using
the Bonferroni correction.

2.7. Relevant feature analysis
The feature selection procedure extracts the inform-
ative features that are used by the classifier to classify
the task conditions. A feature that is selected in each
cross-validation fold is important for the classifica-
tion of the task condition. Therefore, a feature that
has a high probability to be selected by the algorithm
is considered relevant for the classification of the task.
To this end, a feature selection probability was calcu-
lated by dividing the number of times a feature was
selected by the total number of cross-validation folds
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(n= 75). The feature selection probability was calcu-
lated only for the frequency bands that showed statist-
ically significant classification accuracy. Furthermore,
to select the set of features that maximises the dis-
criminative information about WM conditions, the
feature selection probability was calculated for the
number of features (k) that showed the best classific-
ation accuracy.

The most relevant features (MPSI values between
a pair of parcels) were defined as those that had a
feature selection probability value greater than three
standard deviations above the mean. In addition, we
estimated which parcels were most often involved in
the phase couplings (with any other parcel) that were
selected for the classification. This was done by calcu-
lating, for each parcel, the average probability of being
selected for the classification. The most relevant par-
cels were defined as those that had an average probab-
ility value greater than two standard deviations above
the mean.

2.8. Directed phase couplings
After the identification of the relevant phase coup-
lings for the classification, we sought to understand
whether the classification is partially driven by phase
couplings that have consistent (across subjects) dir-
ection in the WM condition but not in the control
condition, or vice versa. To this end, we performed
a sign test for both conditions separately to evalu-
ate whether the MPSI value across the subjects has
non-zero median. The directed phase couplings were
evaluated separately for the phase couplings that were
identified as relevant for single band and multiband
classification.

2.9. Additional analyses
The phase estimation and thus the phase coupling
estimation is affected by the signal-to-noise ratio
[60]. Although the MPSI is a phase coupling method
that is not biased by source powers, we nevertheless
wanted to examine to which extent the most relevant
features are affected by the respective parcel powers.
To this end, we calculated the correlation between
feature selection probability and the respective parcel
powers.

A parcel power was defined as the sum over the
scalar time series of X̃I of the power spectrum in the
frequency band of interest, i.e. as

PI (F) :=

∑ÑI

i=1

∑
f∈F (SII ( f ))ii
|F|

,

where F denotes the frequency band of interest, |F| the
number of frequencies belonging to F, ÑI the num-
ber of univariate time series in X̃I, and (SII ( f ))ii the
ith diagonal entry of the cross-spectral matrix SII ( f )
associated with parcel I.

The difference in power between theWM and the
control condition was then calculated for each par-
cel, subject and frequency band. As described earlier,
a feature in the current study refers to an MPSI value
between two parcels. Therefore, we calculated the
correlation between feature selection probability and
mean power difference across the two involved par-
cels. The correlation was calculated across all fea-
tures that had non-zero feature selection probabil-
ity (supplementary figure 1(A) (available online at
stacks.iop.org/JNE/18/016027/mmedia)) and across
the most relevant features (supplementary figure
1(B)), respectively. The correlation was calculated
only for the frequency bands that showed significant
classification accuracy.

3. Results

3.1. Behavioural results
The subjects correctly identified (either match or
non-match) over 90% of targets in both condi-
tions. The median accuracy in the 0-back condition
was 97.5% (lower quartile = 93.4%, upper quart-
ile = 99.3%) and it was significantly higher (sign
test, p < 0.05) than the accuracy in the 2-back con-
dition (median = 94.5%; lower quartile = 90.9%,
upper quartile = 96.8%). The analysis of response
times showed that the subjects performed signi-
ficantly faster (sign test, p < 0.05) in the 0-back
(median = 629 ms; lower quartile = 572 ms, upper
quartile = 701 ms) than in the 2-back condition
(median = 804 ms; lower quartile = 724 ms, upper
quartile = 901 ms). Overall, the behavioural results
indicate that the subjects performed well in both task
conditions.

3.2. Classification accuracies
Phase coupling matrices (reported in supplementary
figure 3) were used to classify whether the tested sub-
ject was performing the WM condition (2-back) or
the control condition (0-back). Figure 3 shows the
classification accuracies as a function of the number
of features selected for the classification analysis. Sig-
nificant (p < 0.01, Bonferroni-corrected) values for
the classification accuracy are indicated by the grey
dots in the uppermost part of each panel in figure 3.

The classification accuracy was statistically signi-
ficant only in the theta and alpha bands. In the gamma
band, the accuracywas above chance level with a small
number of features but did not reach significance
level.

In the theta band, the classification accuracy
reached the maximum value of 62% (std 5%) when
the number of features was k= 58. After this peak, the
accuracy started to decrease with increasing number
of features and dropped below significance level with
more than 300 features.

In the alpha band, the opposite trend was found.
The accuracy increased with increasing number of
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Figure 3. Classification accuracies for different frequency bands. The x-axis indicates the number of features used by the classifier.
The grey markers at the tops of the plots imply that the classification accuracy reached a statistically significant value (p < 0.01,
Bonferroni-corrected). The light blue shading denotes standard deviation across the cross-validation folds.

features, until reaching a peak of 60% (std 5%) at
k = 216. After the peak, the accuracy level reached a
plateau but remained above significance level.

3.3. Relevant features
For the frequency bands that showed significant clas-
sification accuracy, i.e. theta and alpha, we analysed
which phase couplings were the most frequently used
to classify the two task conditions and which parcels
were most often involved in these phase couplings.

3.3.1. Theta band
The majority of the relevant phase couplings for the
classification in the theta band (figure 4(A)) were
found between parcels located within the left hemi-
sphere, e.g. left frontal parcels (green dots) were
coupled to left temporal (purple dots), left parietal
(dark orange dots) and left central (blue dots) parcels.
In addition, the phase coupling between the left pre-
cuneus and left calcarine was important. A few inter-
hemispheric phase couplings also emerged as relev-
ant: the left supramarginal parcel was coupled with
the right supplementary motor area (SMA) and the
right paracentral lobule. Finally, the right posterior
cingulate cortex was coupled with the right lingual
gyrus and the right precuneus was coupled with the
right inferior temporal gyrus.

The parcels that were most frequently involved
in the classification (highlighted with red labels in
figure 4(A) were the left superior frontal gyrus (SFG),
left SMA, left superior temporal gyrus, left supramar-
ginal gyrus (SMG), left paracentral lobule and left
posterior cingulate cortex.

3.3.2. Alpha band
In the alpha band, the frontal and occipital parcels
were involved in most of the relevant phase couplings
(figure 4(B)). The frontal parcels weremostly coupled
with the left central (pre- and post-central gyri), the
left parietal (supramarginal and angular gyri) and
bilateral occipital parcels (light orange dots). In addi-
tion to the phase couplings with the frontal parcels,

the bilateral occipital parcels were coupled with the
left central parcels, parietal parcels, anterior cingu-
late parcels and right superior temporal pole. A few
important phase couplings were also found between
the parcels within the right temporal cortex and left
frontal cortex.

The parcels that were most frequently involved
in the classification in the alpha band (highlighted
with red labels in figure 4(B)) were located in the left
SFG (medial orbital part), left inferior frontal gyrus
(opercular part), left postcentral gyrus, left SMG,
left inferior occipital gyrus and left superior occipital
gyrus.

3.3.3. Correlation between feature selection probability
and mean parcel power difference
In order to rule out the possibility that the feature
selection process was driven by a difference in the
power between the conditions, we calculated the Pear-
son correlation between the feature selection prob-
ability and the mean (of the two associated parcels)
difference in parcel power (supplementary figure 1).
This was performed in the theta and alpha bands
for all the features (non-zero probability) and for
the features that were identified as the most relevant
(figure 4), respectively. The results showed no signi-
ficant correlation between the feature selection prob-
ability and the mean difference in parcel powers (p-
values between 0.13 and 0.74). The spatial distribu-
tion of the difference in parcel powers between the
conditions is shown in z-scored parcel power maps
(supplementary figure 2).

3.4. Multiband classification
Concatenating the phase coupling patterns from all
frequency bands (theta, alpha, beta and gamma)
improved the classification accuracy (figure 5(A)).
The maximum accuracy was 71% (std 8%) and was
reached with the number of features (k) equal to 38.
The relevant features for the multiband classification
highlight some phase couplings in the theta (n = 8)
and alpha (n = 2) bands that were also found to be
relevant for the respective single band classifications
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Figure 4.Most relevant phase couplings in the (A) theta and (B) alpha bands. The relevant phase couplings were estimated by
feature selection probability. Only phase couplings that had a feature selection probability three standard deviations above the
mean are shown. Each line in the circle plot represents the phase coupling between two parcels and the colour of the line indicates
the frequency selection probability; darker colours indicate relatively high frequency selection probability. Red parcel labels
indicate the most relevant parcels. In the bottom row, the same phase couplings are visualised on a brain template.

Figure 5. Classification accuracy and relevant features for the classification with all the frequency bands. (A) Accuracies as a
function of the number of selected features (k). (B)–(D) Features that contributed to the classification from each frequency band.

(figures 5(B) and (C)). In addition, selected phase
couplings in the gamma band (n= 6) contributed to
the multiband classification (figure 5(D)). The phase
couplings in the gamma band involvedmainly frontal
(left inferior frontal gyrus, left paracentral lobule, left
middle frontal gyrus and right middle frontal gyrus)
and right temporal (inferior temporal gyrus, superior
temporal pole and Heschl gyrus) parcels. In addition,
the middle cingulate cortex and left Rolandic opercu-
lum were involved in the relevant gamma band phase
couplings.

The results of the single and multiband classi-
fications point to the conclusion that the beta band
phase coupling is not relevant for the decoding of the
WM and control conditions and that the improved

accuracy results from the inclusion of the gamma
band. These observations motivated two additional
analyses: classification with concatenated theta and
alpha band features, and classification with concaten-
ated theta, alpha and gamma band features (figure 6).
Themaximum accuracy of the theta–alpha band clas-
sification was 63% (std 7%) which is comparable to
the maximum accuracy achieved in the single band
analysis (62% with the theta band). The maximum
accuracy of the theta–alpha–gamma band classific-
ation was 71% (std 9%) and, in general, accuracy
values for the theta–alpha–gamma band classifica-
tion were comparable with the multiband classific-
ation accuracies across the whole range of selected
features (k).
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Figure 6. Classification accuracies for multiband (all bands: theta–alpha–beta–gamma), theta–alpha and theta–alpha–gamma
analysis, respectively. The concatenation of the theta and alpha bands results in similar accuracies to the theta and alpha bands
alone (see supplementary figure 4). The multiband and theta–alpha–gamma classification accuracies are comparable, indicating
that the removal of the beta band did not affect the results.

3.5. Directed phase couplings
After identifying the most relevant phase couplings
for single and multiband classifications, we tested,
for both conditions separately, whether some of these
phase couplings have preferred directionality across
subjects (MPSI value across subjects has a non-zero
median). The results are shown in figure 7 for the
theta and alpha bands and for both task conditions
separately. The analyses reveal that in the theta band,
consistent phase couplings (sign test, p < 0.01 uncor-
rected) from frontal parcels to other parcels and from
the right inferior temporal gyrus to right precuneus
were observed in the WM condition but not in the
control condition. In contrast, in the alpha band,
more consistent directed phase couplings emerged
in the control compared to the WM condition. Spe-
cifically, directed phase couplings were found from
left frontal/central parcels to right occipital parcels
in the control condition but not in the WM condi-
tion. However, after multiple comparisons (sign test,
p < 0.05 Bonferroni-corrected), some of the signi-
ficant phase couplings vanished and the differences
between the conditions were less evident. The relev-
ant gamma band features did not show any phase
couplings with preferred directions in either of the
conditions.

4. Discussion

In the current study, we used machine learning to
perform data-driven analysis on MEG frequency-
specific functional connectomes in order to exam-
ine the existence of phase coupling patterns that
can discriminate between WM (2-back) and control
(0-back) conditions and are common across sub-
jects. For each subject and for both conditions we
calculated directional phase coupling matrices in the
theta, alpha, beta and gamma frequency bands. A lin-
ear support vector machine was then trained using
the phase coupling data and the performance of the
classifier was evaluated by means of across-subjects
cross-validation. Our classification and relevant fea-
ture analyses (both in single and multiband) demon-
strate phase coupling patterns in the theta and alpha
bands that are important for discrimination between
the WM and control conditions. This result is in
accordance with a recent study by Wang et al (2019),
which analysed information flow in WM tasks using
phase transfer entropy. The results show consistent
information flow only in the theta and alpha bands
while the information flow in the delta, beta and
gamma bands is weak and dispersed [6]. However,
in addition, our results support the relevance of the
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Figure 7. Phase couplings that have preferred directionality shown for both task conditions and for the theta and alpha bands,
separately. The arrows represent significant phase coupling directionality between two parcels. The arrowhead points from the
leading parcel to the following parcel. (A) In the theta band (top row), the WM condition shows more phase couplings that have
consistent direction across subjects (p < 0.01, uncorrected) than the control condition. Specifically, this is observed from frontal
parcels to other parcels. In contrast, the alpha band shows more phase couplings with consistent direction in the control
condition (p < 0.01, uncorrected). (B) Bonferroni-corrected (p < 0.05) directed phase couplings.

gamma band phase coupling to the WM processes as
the multiband analyses show the contribution of the
gamma band features to the discrimination of the two
tasks.

Moreover, the fact that the classification was per-
formed on a group level (across subjects), using a
large set of participants, indicates that the phase coup-
ling patterns found to be relevant are consistent across
subjects and can be generalised to new individuals
[18, 61]. In other words, we found the same pattern
of phase couplings across individuals as a trace of the
WM task.

We identified the parcels (brain areas) and the
functional connections (phase couplings) that were
most often selected for the classification. The results
show that without a priori assumptions, the emerging
relevant phase couplings and involved brain areas
are in line with the putative mechanisms underly-
ingWM. Furthermore, our additional analysis of par-
cel powers, reported in the supplementary materials,
showed that the identified phase coupling patterns
are not biased by the difference in power between the
conditions, as demonstrated by: (a) correlation ana-
lysis between the feature selection probability and the
mean power difference of the respective parcels (sup-
plementary figure 1) and (b) z-scored power maps
(supplementary figure 2).

To the best knowledge of the authors, this is the
first study to report successful across-subjects task
decoding based on source-level phase coupling of

MEG signals. Comparison of this classification per-
formance to previous studies is not straightforward
due to accuracy values being influenced by the spe-
cific conditions to be discriminated as well as by
the classification design (within subjects vs. across
subjects). In general, it is acknowledged that across-
subjects classifiers exhibit poorer performance than
within-subject classifiers [16, 17, 20, 31, 33] as a
result of genuine inter-individual differences in the
anatomical/functional architecture of the brain and
the inherent variability in the environmental/meas-
urement conditions between different measurement
sessions [16, 20, 61]. More specifically, to the best
knowledge of the authors, no MEG studies and only
two EEG studies [62, 63] used source-level func-
tional connectivity as features for classifying task
condition/brain states with an across-subjects cross-
validation approach. The study by Dimitrakopoulos
et al (2017) [62] used Pearson correlation as a func-
tional connectivity metric in order to classify the
workloads of two tasks (N-back and arithmetic task),
reporting a maximum accuracy of 88% for the work-
load classification. However, two factors may have
inflated these accuracy values: (a) the correlation
does not account for spurious connectivity induced
by spatial leakage, and (b) the leave-one-out cross-
validation is suboptimal since it might lead to vari-
able and biased results [57]. The study by Wang et al
(2020) [63] used different film clips to induce dif-
ferent emotions (positive, negative, neutral). They
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used weighted partial directed coherence (wPDC) to
obtain connectivity networks in five frequency bands:
delta, theta, alpha, beta and gamma. Features derived
from the wPDC analysis were used to classify the
emotion. This study showed a maximum accuracy of
66.67%when relying on theta band connectivity. Fur-
thermore, these classification studies used a limited
set of subjects (n= 25 inDimitrakopoulos et al (2017)
[62], n = 15 in Wang et al (2020) [63]) that might
cause a large error in the estimation of classification
accuracy [42]. Conversely, we used a large cohort of
subjects (n = 83) in the across-subjects classification
approach.

4.1. Relevant phase couplings and involved brain
areas in the theta band support the role of theta
band activity in executive control and temporal
order coding
In previousWM literature, the theta band activity has
been proposed to have a special role in coordinating,
monitoring and controlling complex WM tasks [64].
In particular, theta band phase coupling from pre-
frontal to temporal areas [8, 12] and from prefrontal
to parieto-occipital areas has been shown to have a
key role in executive control inWM [65, 66]. Interest-
ingly, we demonstrate that frontoparietal, frontotem-
poral and frontocentral phase couplings are the dom-
inant features that underlie the discrimination of the
WM and control conditions in the theta band. This is
observed both in single band andmultiband analyses.
Furthermore, the left SFG, left SMA and left SMG,
which we found to be among the most relevant par-
cels, have all been reported as important for WM.

The SFG, an area of the prefrontal cortex, has
been shown to be regularly activated in the N-back
paradigm [67]. A study by Boisgueheneuc et al (2006)
showed that patients with SFG lesions were impaired
in N-back WM tasks, especially when the executive
demand was high [68]. Given that executive demands
in theWMcondition are arguably higher with respect
to the control condition, our results are in agree-
ment with the proposed role of the SFG in executive
control.

Theta band oscillations have been also reported to
be involved in the maintenance and organisation of
the temporal order of items in WM [5, 69]. Interest-
ingly, the left SMG and the SMA, which we identified
among the most important parcels for the classifica-
tion, have been associated with temporal order cod-
ing [70] and sequence processing [71, 72]. A recent
study by Guidali et al (2019) demonstrated that low-
frequency rTMS applied over SMG disrupted the per-
formance of participants in a short-term memory
task. This effect was specific for temporal order
information; that is, the participants remembered the
correct items but made more errors in recalling the
temporal order of these items [70]. It is therefore
plausible that the emergence of the SMA and SMG
as the most important parcels for the theta band

decoding reflects the different demands between the
two task conditions in the temporal domain; that is,
encoding and maintenance of the temporal order of
the stimuli are relevant for the WM but not for the
control condition.

Finally, we analysed, in each condition, whether
the relevant phase couplings have preferred directions
that are consistent across subjects. Preferred direction
was mainly observed in the WM condition and the
frontal parcels were identified as the ‘leading’ parcels,
indicating anterior to posterior phase coupling dir-
ection (figure 7). This is in accordance with a recent
study by Wang et al (2019), which showed increased
information flow strength from frontal to parieto-
occipital regions and associated this information flow
with central executive functions in WM [6].

Taken together, the relevant phase couplings for
the theta band classification found in the current
study converge with the evidence supporting the pro-
posed role of the theta band in executive control when
the complexity of the task or its attentional demands
are high. Furthermore, the theta band phase coupling
seems to be involved in temporal order coding, with
SMG and SMA possibly acting as key areas related to
this function.

4.2. Alpha band oscillations might serve multiple
functional roles
The frontocentral, frontoparietal, parieto-occipital
and fronto-occipital phase couplings were found to
be relevant for decoding in the alpha band (figure 4).
Furthermore, alpha band phase couplings between
left frontal (superior and inferior opercular) par-
cels and the right cuneus were found to be relevant
for multiband classification. The most relevant par-
cels for the classification were found in the frontal,
central, parietal and occipital regions. This wide-
spread pattern of phase couplings needed for the
alpha band classification proposes that phase coup-
ling in the alpha band could serve multiple func-
tions in WM. In fact, it has been hypothesised, based
on nonhuman primate studies, that alpha oscillations
might support different functions depending on the
laminar organisation of the alpha generators [73].
Increased alpha oscillations in higher-level cortices
may play a direct role in facilitating representation
of task-relevant information and sensory processing,
while increased alpha in lower-level (sensory) cortices
could support functional inhibition [74]. Although
the N-back task does not directly emphasise atten-
tion, the involvement of the frontal and parietal par-
cels indicates that phase coupling in the alpha band
plays a role in attentional functions. Indeed, the alpha
band phase coupling has been previously associated
with top-down modulation and attention [11, 75–
77]. On the other hand, phase coupling in the alpha
band has been associated with distraction inhibition
[78, 79] and inhibition of task-irrelevant brain areas
[13]. The involvement of occipital parcels supports
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the commonly suggested ‘gating by inhibition’ role
of alpha activity [80–82] for which the evidence has
often been observed in the posterior brain areas [13,
69, 78, 83]. Directed phase couplings involving par-
cels in the occipital cortex were found in the current
study mainly in the control condition (figure 7). This
might reflect the inhibitory control of the alpha phase
coupling because in the control condition the cur-
rently presented image becomes a distraction after the
matching process is completed and the suppression of
the current image is therefore beneficial, while in the
WM condition each image needs to be encoded for
forthcoming trials.

An interesting notion can be taken from the
observations that a relatively large number of fea-
tures were needed in the alpha band for success-
ful decoding in the single band case, and that only
two features from the alpha band were identified as
relevant for the multiband classification. This sug-
gests that the differences between the conditions
are subtle and it is the joint information stored in
multiple phase couplings and not individual phase
couplings that allows the discrimination between the
two tasks.

4.3. Multiband classification emphasises the
complementary role of the different frequency
bands and reveals the role of the gamma band
The multiband classification improved the classifica-
tion accuracy (figure 5(A)) by leveraging the inform-
ation coded in patterns of phase couplings across the
frequency bands. This implies that the phase coup-
ling patterns in different frequency bands add dif-
ferent information to the classification, since pooling
redundant information would not lead to improved
classification performance. The frequency band spe-
cificity of the phase coupling patterns can also be
observed in the MPSI connectome graphs (supple-
mentary figure 3).

The multiband classification also revealed that
a few gamma band features contributed to the
multiband classification, even though the classifica-
tion in the gamma band individually did not yield
statistically significant results. To confirm that the
improved accuracy resulted from the inclusion of
the gamma band, we performed two additional ana-
lyses (figure 6). First, we removed the beta band
from the multiband analysis. This yielded virtu-
ally the same results as the concatenation of all
bands, indicating that the beta band did not con-
tribute to the improved accuracy observed in the
multiband classification. Next, we concatenated only
the theta and alpha bands, i.e. further removed
the gamma band. The classification accuracies using
the concatenated theta and alpha bands resulted in
slightly better accuracies compared to the respect-
ive single band accuracies (supplementary figure 4)
but a remarkable drop in accuracies compared to the

multiband classification. These results further indic-
ate that the gamma band phase coupling patterns
appear relevant when combined with information
from the other frequency bands and demonstrate
the strength of the multiband approach, since it can
show the complementary information coded in dif-
ferent frequency bands that cannot be revealed using a
single band.

The gamma band phase couplings that were
relevant for the multiband classification involved
mainly frontal and right temporal parcels. Increased
local [84–86] and long-range [11, 87] gamma band
synchronisations have been previously reported
during WM tasks, especially during the mainten-
ance period of the task. The increased gamma
band synchronisation has been related to mainten-
ance of object/feature representations and binding
of the object representations. On the other hand,
gamma band synchronisation has been proposed to
serve a more general role in attentional functions
[11, 88, 89]. A study by Tseng et al (2018) provided
evidence of the feature binding account of gamma
oscillations by applying transcranial alternating cur-
rent stimulation (tACS) over the left temporal and
parietal cortex. Anti-phase gamma tACS enhanced
the performance of low-performing individuals and
this effect was specific to the binding task [90]. In the
current study, the visual features of the stimuli were
on average the same for both conditions. However, as
discussed earlier, the WM condition requires active
effort to encode and maintain the currently presen-
ted image for the next trials, whereas the control
condition does not require such effort. It is therefore
plausible that the phase coupling patterns involving
temporal and frontal parcels are related to this dif-
ference between the conditions, as Honkanen et al
(2015) proposed that gamma oscillations in frontal
areas might be related to the active effort required to
bind the task-relevant object features into coherent
WM representations [88].

4.4. Limitations
We have discussed how the phase couplings that were
the most relevant for the classification support the
earlier findings in the WM literature. However, it
must be noted that the N-back task used in the HCP
does not allow a clear separation of the different
stages ofWM, that is, the encoding, maintenance and
retrieval. Therefore, it is not possible to conclusively
establish that the observed phase coupling patterns
were induced by specific neural processes. Ad hoc
tasks should be designed in order to further invest-
igate how the presented approach can contribute to
unravelling the processing in different stages of WM.

As a second possible limitation of this study, we
acknowledge that the HCP WM task design is such
that the time window used to estimate the phase
coupling is the same in which the subjects provided
their motor response. This might have affected the
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beta band results, since it is possible that subtle beta
band phase coupling differences between the condi-
tions were masked by strong motor responses that
were similar in both conditions.

Finally, a low number of incorrect trials was
reported in these data since the subject performance
was high. Thus, due to this imbalance, it did notmake
sense to separately analyse incorrect and correct tri-
als. Nevertheless, a task that induces more incorrect
responses would be desirable for future studies since
the classification between incorrect and correct trials
would give stronger evidence of the behavioural rel-
evance of the involved phase coupling patterns.

4.5. Conclusions
We report, for the first time to our knowledge, that it
is possible to discriminate between a WM condition
and control condition by using a machine learning
approach applied to MEG source-level phase coup-
ling data. The across-subjects cross-validation in this
relatively large cohort of 83 subjects indicates that the
phase coupling patterns in theta and alpha bands are
task-specific and common across subjects. These res-
ults accumulate evidence for the crucial role of low-
frequency oscillatory networks in inter-regional com-
munication, especially in tasks involving top-down
processes [6, 91–93]. Furthermore, the multiband
classification increased the accuracy and revealed
that gamma band phase coupling also contains task-
specific information. The increased accuracy in the
multiband classification also implies that phase coup-
ling patterns in different frequency bands are inde-
pendent and related to different neural processes. In
future studies, the approach based on the source-level
directed phase couplings could be used to contrast
many different WM (or cognitive in general) condi-
tions. As already demonstrated in an fMRI study [14],
contrasting multiple conditions, all addressing differ-
ent aspects, allows one to find connectivity patterns
that characterise different aspects of WM processing
but are still overlapping. Furthermore, a comparative
study testing different (robust) phase coupling meas-
ures in combination with different classifiers would
be insightful.
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under the GNU General Public License. Soft-
ware packages used for classification analyses
are freely available at: scikit-learn (https://scikit-
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