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Abstract: Infrared thermal imaging (IRI) is a contact-less technology able to monitor human skin
temperature for biomedical applications and in real-life contexts. Its capacity to detect fever was
exploited for mass screening during past epidemic emergencies as well as for the current COVID-
19 pandemic. However, the only assessment of fever may not be selective for the Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Hence, novel approaches for IRI data
analysis have been investigated. The present review aims to describe how IRI have been employed
during the last epidemics, highlighting the potentialities and the limitations of this technology to
contain the contagions. Specifically, the methods employed for automatic face recognition and
fever assessment and IRI’s performances in mass screening at airports and hospitals are reviewed.
Moreover, an overview of novel machine learning methods for IRI data analysis, aimed to identify
respiratory diseases, is provided. In addition, IRI-based smart technologies developed to support the
healthcare during the COVID-19 pandemic are described. Finally, relevant guidelines to fully exploit
IRI for COVID-19 identification are defined, to improve the effectiveness of IRI in the detection of the
SARS-CoV-2 infection.

Keywords: thermography; COVID-19; SARS-CoV-2; fever detection; pandemic; face recognition;
machine learning; artificial intelligence

1. Introduction

The current outbreak of coronavirus disease 2019 (COVID-19), caused by the se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has currently spread to
over 200 countries, with around 120 million confirmed cases worldwide and more than
2.5 million deaths since the start of the outbreak (updated 11 March 2021) [1]. The coro-
navirus infection emerged in Wuhan, China, in December 2019. On 30 January 2020, the
agency’s emergency committee by the World Health Organization (WHO) declared the
outbreak as a public health emergency of international concern and on 11 March 2020,
it was characterized as a pandemic, since the novel virus continued to rapidly spread
worldwide [2].

Coronaviruses are enveloped, positive single-stranded large RNA viruses that infect
a wide range of animals but also humans. They usually cause mild to moderate upper-
respiratory tract illnesses, like the common cold. However, three new coronaviruses have
emerged from animal reservoirs over the past two decades to cause serious and widespread
illness eventually leading to death (i.e., SARS-CoV, MERS-CoV and SARS-CoV-2).

SARS-CoV, emerged in late 2002, causing the severe acute respiratory syndrome
(SARS), then spread rapidly around the world and infected around 8.098 people in 37 coun-
tries with 778 deaths. SARS-CoV disappeared by 2003 [3]. The symptoms of SARS-CoV
were very severe, therefore it was quite simple to identify and isolate patients, quickly
narrowing the epidemic spread.
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MERS-CoV, emerged in 2012, particularly in Saudi Arabia, the United Arab Emirates
and the Republic of Korea and caused the Middle East Respiratory Syndrome (MERS).
Transmission of MERS-CoV has mainly occurred in healthcare settings and continues to
cause sporadic and localized outbreaks, especially in travelers from the Middle East. In
total there were 2.519 cases and 858 deaths [4].

Unlike SARS-CoV and MERS-CoV, SARS-CoV-2 is much more widely transmitted in
the community and has a higher pandemic potential [5]. SARS-CoV-2 infection is trans-
mitted through large droplets generated by symptomatic patients during sneezing and
coughing but can also occur from asymptomatic individuals and prior to symptoms on-
set [6]. Current estimates suggest a median incubation period of 5 to 6 days for COVID-19,
with a variability range of 1 to 14 days [7]. Clinical presentation of the disease ranges
from no symptoms (asymptomatic) to severe pneumonia which may lead to death. The
most commonly reported clinical symptoms are fever (88%), followed by dry cough (68%),
fatigue (38%), dyspnea (19%), sore throat (14%), headache (14%) and myalgia or arthralgia
(15%). Less common symptoms include diarrhea (4%) and vomiting (5%). Approximately
80% of reported cases had mild to moderate symptoms, 13.8% had severe illness, and
6.1% had critical illness (respiratory failure, septic shock and/or multi-organ dysfunc-
tion/failure) [8]. In addition, there is presumably no pre-existing immunity to the new
coronavirus in the population and everyone is expected to be susceptible.

Different strategies have been put in place to try to contain the spread of COVID-19
on a national and global scale, and several approaches for diagnosis and clinical treatments
have been proposed [9,10]. Similarly to previous epidemics, infrared thermography (IRI) is
currently employed to contain the outbreak of COVID-19, thanks to its contactless feature
and to its capability to quickly assess skin temperature (Tsk) variations and fever [11,12].
IRI is a non-invasive, contactless and low-cost technology that measures the radiation from
a body, providing information on its superficial temperature. Importantly, IRI, measuring
the infrared radiation emitted by every object with temperature above absolute zero, is a
passive technology. Therefore, IRI does not require any dosage of radiation, making this
technique completely safe. This technique found a wide field of application thanks to the
technological improvement of the IR sensors [13]. In fact, IR devices are characterized
by large focal plane array (FPA) detectors (up to 1280 × 1024 pixels), which guarantee
to collect temperature maps (i.e., thermograms) with high Non-Equivalent Temperature
Difference (NETD, ~30 mK) and dot pitch (~25–40 µm) [14]. In biomedical applications, IRI
imaging allows to non-invasively record the human Tsk, without physical constraints for the
subjects. Particularly, this technique has been used in medicine to evaluate injuries [15–17],
to support clinical diagnosis of different pathologies [18–21] and to detect the autonomic
activity for psychophysiological assessments in healthcare and technological fields [22–24].
Concerning the IRI employment to limit the COVID-19 spread, since patients could be
partially asymptomatic or do not exhibit fever as symptom, classical IRI evaluations are
not always suitable to detect the infection. This review aims to provide an overview of the
procedures and algorithms used for IRI-based fever detection, focusing on the points of
strength and weakness of IRI application for mass screening during the last epidemics, and
in particular during COVID-19 pandemic. Moreover, the present review reports about the
novel approaches based on machine learning (ML) [25] which exploits both spatial and
temporal features of IRI recordings to increase its capability to identify infected patients.
Furthermore, novel IRI-based technologies aiming to limit the SARS-CoV-2 contagions
are described. Finally, the IRI potentialities to provide a valid tool to support the early
identification of the infection, even in asymptomatic cases, are discussed.

2. Study Organization and Search Processing Method

The guidelines proposed by Kitchenham [26] have been followed for this narrative
review, with the aim to investigate the employment of IRI during pandemics, focusing
on the methods used for the mass fever screening. Moreover, an overview of the novel
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methodologies and technologies developed during the COVID-19 pandemic is provided.
To this aim, the research questions (RQs) addressed by this overview are:

RQ1. What methods are employed for fever assessment? What factors could influence
the IRI capability of fever detection?

RQ2. What was the effectiveness of IRI fever mass screening in healthcare settings
and airports in reducing the spread of the infections in previous epidemics?

RQ3. Could ML approaches deliver a more accurate detection of breathing apparatus
infection even in asymptomatic cases?

The literature research was conducted on Scopus database, using the following key-
words: “thermography” OR “thermal imaging” AND “Covid-19” OR “Sars-Cov-2” OR
“Ebola” OR “pandemic” OR “fever screening”. The search was performed for the article
title, abstract and keywords, and limited to the original articles (i.e., Conference paper,
Review, Letter, Short Survey were excluded) concerning the subject areas Engineering,
Computer Science and Medicine. The database provided 69 results, which were investi-
gated through a manual review procedure to identify the papers suitable for this work.
Particularly, papers not related to IRI data analysis, or automatic face recognition, or ROI
selection for fever screening or disease classification purposes were excluded. After this
review process, 46 papers were included in the study (Figure 1). The resulting papers were
analyzed and grouped based on the operative RQs.
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3. Methodologies for IRI-Based Fever Detection
3.1. External and Internal Confounding for Fever Assessment

IRI provides an indirect measure of the core temperature, relying on the relationship
between Tsk and core temperature. The IRI performances in estimating the feverish
condition are usually defined through several statistical metrics. Particularly, the sensitivity
measures the amount of positives cases that are correctly identified, whereas the specificity
is indicative of the proportion of the negative cases that are correctly classified. The
positive predictive value (PPV) is the extent of positive results of a test that are true positive
cases, whereas the negative predictive value (NPV) is the amount of negative results of a
classification that are true negative cases. In order to reliably assess feverish conditions
through IRI from Tsk, some issues needed to be faced.

Firstly, the capability to estimate fever from different facial regions have been inves-
tigated. Hausfater et al. [27] detected feverish state of the subjects, defined by tympanic
temperature, through IRI from the forehead. The method delivered a sensitivity of 0.76,
a specificity of 0.65, a positive predictive value (PPV) of 0.16, a negative predictive value
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(NPV) of 0.97, and an accuracy of 0.66. Zhou et al. [28] proposed a method for fever
detection based on one RGB camera and two IRI systems, recording three consecutive
frames with a sampling frequency of 30 Hz. The RGB camera allowed the face recognition
and the definition of 17 regions of interest (ROIs) on the face. The maximum value of the
ROIs was considered to classify the feverish status. The Receiver Operating Curve (ROC)
analysis delivered an area under the curve (AUC) of 0.97, with a sensitivity of 0.85 and
specificity of 0.89, considering oral thermometry as the gold standard. Moreover, Chen and
colleagues [29] studied the capability to estimate the core temperature from different ROIs.
Particularly, they employed a tympanic thermometer to measure the core temperature, and
it was compared to the forehead and wrist temperatures. They demonstrated that wrist
temperature cannot be used to establish a threshold for fever screening, whereas a fixed off-
set between tympanic and forehead temperature was found (~ 2 ◦C). Therefore, the authors
proposed a standard operating procedure (SOP) for the measurement of body temperature
using an infrared thermometer, suggesting a threshold for the forehead temperature of
36 ◦C for fever identification. Ring et al. [30] tested the IRI fever assessment capabilities
evaluating the mean temperature of ROIs placed over the forehead and inner canthi. A
good correlation between axilla and inner canthi of the eyes temperatures was found.

A second issue concerning the fever assessment through IRI is related to the confound-
ing effects due to inaccuracies of the radiation model of the skin and to uncertainties of the
measurement conditions. Hence, in order to perform a reliable and accurate fever assess-
ment, external and internal confounding factors need to be considered. Dzien et al. [31]
tested the capability of IRI to assess fever from forehead with different external environ-
mental temperatures. The results indicated that the temperature measured through IRI
devices from forehead is not an appropriate tool to detect infectious diseases directly at
the entrance of a building, at least with cold outdoor temperatures. In order to minimize
internal confounding effects on IRI measurements, Ghassemi et al. [32] developed a battery
of evaluation test methods for standardized, objective and quantitative assessment of
IRI performance, comparing two different thermal cameras. Moreover, they proposed
optimized methods for estimating body temperature, demonstrating that IRI devices’ per-
formance could be affected by many factors (e.g., location and size of the target plane and
blackbody uncertainty) [33]. In order to limit the uncertainty of IRI measurements related
to human skin radiation model, Chu et al. [34] proposed the joint maximum a posterior
(JMAP) approach with a hierarchical prior model of the thermal radiation to be applied on
human face, to provide an efficient and accurate evaluation of abnormal Tsk. To limit the
effects due to inhomogeneities of the measurement conditions, operational guidelines for
identifying a febrile human using a screening thermograph (ISO/TR 13154:2009 ISO/TR
80600) have been defined. Ring and colleagues [35] used these guidelines to assess fever in
children through IRI measurements from eyes inner canthi, forehead, and ear, comparing
the performance with that of a clinical radiometer. A significant difference between the
temperatures measured in non-fevered and fevered patients was assessed, and the ther-
mal imaging of the eye region has been proved to be the most rapid contactless site for
measurement.

3.2. Inner Canthi Identification and Face Segmentation Algorithms in Pandemic Outbreaks

Since the eyes’ inner canthi were demonstrated to be highly indicative of the core
temperature researchers put the effort into defining automatic methods for inner canthi’s
anatomical detection. Dwith et al. [36] developed a method based on coarse-fine registration
strategy based on landmarks and edge detection on eye contours, employing co-registered
infrared and RGB cameras. The registration accuracy was estimated within ±2.7 mm,
which enables accurate localization of the canthi regions. Moreover, using co-registered
IRI-RGB cameras, Dwith et al. [37] developed a method relying on free form deformation
models based on the Demons and cubic B-spline algorithms. They found an error in
the definition of the inner canthi of 2.8 ± 1.2 mm, and an error of the definition of the
maximum temperature in the region of 0.10 ± 0.09 ◦C. Ferrari et al. [38] used a method
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based on sparse 2D-3D points correspondence using a 3D Morphable Face Model (3DMM)
on thermal videos to define the inner canthi regions. Cardone et al. [39] proposed a method
to automatically warp, through a Local Weighted Mean transformation, IRI images of
faces over a template by means of simultaneous recordings of RGB and IRI cameras. Sixty-
eight facial landmarks were identified in each frame in the visible domain through the
open-source software OpenFace [40] and transformed into the corresponding frame of
infrared images, allowing to identify anatomical landmarks over the IRI image of the faces
with an RMSE of 0.66 pixels. Müller et al. [41] employed convolutional neural networks
for multiclass segmentation in thermal infrared face analysis. The principle is based on
existing image-to-image translation approaches, where each pixel in an image is assigned
to a class label. The procedure allowed to correctly identify all the classes, including mask
and glasses worn by the subjects.

A further issue related to a fast, large-scale fever screening is associated to face recog-
nition from a non-uniform background. Radzi et al. [42] proposed an algorithm based
on Gaussian Bi-modal Mixture Models (GBMM) for background-foreground segmenta-
tion as an important feature to identify medial canthal area, to be exploited for fever
mass screening.

Although an accurate estimation of the inner canthus position is provided, some
external factors of the measurement conditions could affect the capability to properly collect
their temperature. Vardasca et al. [43] identified the impact of using different distances
and angles in the assessment of the average inner-canthi temperature. To minimize the
measurement error, distances between 80 and 120 cm and angles as close as possible to 90◦

should be used when the inner-canthi of the eye temperature is recorded with conventional
lenses and standard image analysis software for fever screening [43]. Vardasca et al. [44]
also demonstrated, employing the Bland–Altmann limits of agreement, that the bilateral
difference of the inner canthus of the eyes is negligible.

4. Mass IRI-Based Fever Screening in Public Environments
4.1. Mass Fever Screening in Hospitals

Thanks to IRI’s contactless features, its employment for fever mass screening is largely
encouraged, particularly in healthcare and transport hubs, such as airports.

Regarding the employment of IRI systems in healthcare settings, Hewlett et al. [45]
discriminated feverish subjects from healthy individuals with a sensitivity of 0.70, speci-
ficity of 0.92, PPV of 0.42, and NPV of 0.97. Moreover, Chiu et al. [46] investigated the
effectiveness of the fever screening in hospital, obtaining a sensitivity of 75% and specificity
of 99.6%. Bardou et al. [47] obtained sensitivity of 0.9286, specificity of 0.9967, PPV of
0.8667, and NPV of 0.9984 for feverish subjects detection. Nguyen et al. [48] compared
the performances of three IRI systems for mass fever screening (i.e., FLIR ThermoVision
A20M [FLIR Systems Inc., Boston, MA, USA], OptoTherm Thermoscreen [OptoTherm
Thermal Imaging Systems and Infrared Cameras Inc., Sewickley, PA, USA], and Wahl
Fever Alert Imager HSI2000S [Wahl Instruments Inc., Asheville, NC, USA]). Correlations
of IRI temperatures and oral temperatures (expressed through the correlation coefficient,
ρ), measured with DinaMap ProCare digital thermometer, were similar for OptoTherm
(ρ = 0.43) and FLIR (ρ = 0.42) but significantly lower for Wahl (ρ = 0.14; p < 0.001). The AUC
delivered by the ROC analysis for OptoTherm (0.96) and FLIR (0.92) were not significantly
different but were significantly greater than the AUC of Wahl (0.78; p < 0.001). Chiang
et al. [49] tested the fever assessment under different conditions, comparing an IRI device,
a thermal scanner (i.e., thermoguard) and an IRI ear drum. A significant difference was
found at 10 m distance between ear drum IRI and thermoguard, lateral view IRI, and
frontal IRI. Through a ROC analysis, the optimal cut-off temperatures for the different
imagers were defined as 36.05 ◦C for thermoguard (AUC of 0.716), 36.25 ◦C for lateral view
IRI (AUC of 0.801), and 36.25 ◦C for frontal view IRI (AUC of 0.812).

Concerning COVID-19 pandemic, McConeghy et al. [50] developed a screening proce-
dure based on the definition of a threshold of the skin temperature in two nursing homes.
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Employing a ROC analysis, they identified the best threshold as 38 ◦C, but they concluded
that the only Tsk measurement is an insufficient tool to identify COVID-19 infection.

4.2. Mass Fever Screening in Airports

Concerning the large-scale screening in airports, Nishiura and Kamiya [51] described
the performances of fever screening at Narita International Airport (Japan) during the
the spread of the swine flu pandemic caused by the influenza A subtybe H1N1 virus. A
logistic regression combined with a ROC analysis delivered sensitivity and specificity of
the infrared thermoscanners in detecting hyperthermia ranged from 50.8–70.4% and 63.6–
81.7%, respectively. Kuan et al. [52] studied the performances of the infrared thermometers
to identify dengue fever patients in airport passengers in Taiwan during the period 1998–
2007. This surveillance system successfully identified 45% of the cases; PPV varied from
30.5% to 62.6%. Kuan and Chang [53] demonstrated that 44.9% (95%CI: 35.73–54.13%) of the
confirmed imported dengue cases with an apparent symptom (febrile) in the viremic stage
were detected employing a IRI device during the period 2007–2010. The estimated PPV
was of 2.36% (95% CI: 0.96–3.75%) and the NPV was > 99.99%. Shu et al. [54] demonstrated
that IRI devices were able to identify 65.8% of dengue cases in airport screening. Cho
and Yoon [55] tested the reliability for fever screening of IRI comparing its performance
with tympanic measurements. No statistical differences between tympanic and IRI were
found. During the SARS diffusion, Sun et al. [56] already developed a portable screening
system designed for onboard entry screening at international airports. Face detection
was performed automatically employing OpenCV libraries [57], and whole face single
thermograms were used to classify the pathology. Using a Linear Discriminant analysis,
sensitivity and NPV of 100% were obtained. The specificity and PPV were 88% and 33%
respectively.

In order to provide an accurate and reliable procedure for large-scale fever detection,
Dell’Isola et al. [58] proposed to perform a double-step measurement protocol. In the first
step, contactless body temperature measurements were provided, setting a temperature
threshold of 37.5 ◦C, considering all the measurement uncertainty due to the real operative
measurement conditions. When the first step delivered a temperature value that fell
within the uncertainty zone, a second step was needed to provide further contact body
temperature measurements.

The principal performances obtained for the IRI-based mass screening in hospitals
and airports during epidemic outbreaks are summarized in Table 1.

Table 1. Performances of IRI-based mass screening in epidemics.

Authors Pathology Environment Sensitivity Specificity PPV NPV

Hewlett et al. [45] Fever Hospital 0.70 0.92 0.42 0.97
Chiu et al. [46] Fever Hospital 0.75 1.00 - -

Bardou et al. [47] Fever Hospital 0.93 1.00 0.87 1.00
Nishiura and Kamiya [51] H1N1 Airport 0.51–0.70 0.64–0.82 - -

Kuan et al. [52] Dengue fever Airport - - 0.31–0.63 -
Kuan and Chang [53] Dengue fever Airport - - 0.24 1.00

Sun et al. [56] SARS Airport 1.00 0.88 0.33 1.00

5. Machine Learning Applications for Respiratory Diseases Assessment

In order to better exploit temporal and spatial features of IRI for infections detection,
ML approaches have been proposed. Sun et al. [59] proposed a method for fever assessment
based on neural network and fuzzy clustering method during the avian influenza H5N1
pandemic. The method was based on the combined employment of a thermal imager, a
microwave radar for the respiration rate assessment, and a finger-tip photo-reflector to mea-
sure the heart rate. They obtained a classification of the disease with a sensitivity of 97.1%
and a specificity of 81.3%. Dagdanpurev et al. [60] proposed a model for infection screening
at various ambient temperatures. Combining a linear regression analysis, to account for
environmental thermal condition, with a k-nearest neighbor algorithm, a sensitivity of
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91% and NPV of 92% in fever detection were obtained. Ng et al. [61] proposed a method
for fever assessment based on parabolic regression, combined with an Artificial Neural
Network and ROC curve. The minimum, maximum, average and standard deviation of the
temperature of forehead and eyes regions were used as input of the classifier, reaching a
sensitivity >90% and a specificity >80% in fever detection. Ng also studied the effectiveness
of infrared systems in mass blind screening to detect subjects with elevated body tempera-
ture [62]. Linear regression, ROC analysis, and neural networks-based classification were
used to analyze the temperature data collected from various sites on the face on both the
frontal and side profiles (i.e., forehead; eye region; average cheeks; nose; mouth closed;
average temple; side face; ears; and side temple), achieving a sensitivity of 90.7% and
specificity of 75.8%.

Concerning COVID-19 pandemic, Jiang et al. [63–65] proposed a method to iden-
tify respiratory pathological patterns based on ML. Particularly, face recognition was
performed employing Gaussian pyramid box based on RGB data. Breath pattern was
extracted from nostrils region (wearing a protection mask, as usual during the pandemic)
from 20 s recordings, maximizing the variance of thermal image sequence. A Bidirectional
Gate Recurrent Unit with an ATtention mechanism (BiGRU-AT) was used to classify the
breathing pattern using as input respiration data. The authors obtained an accuracy of
83.69%, sensitivity of 90.23% and specificity of 84.61% in detecting respiratory diseases
patients. Martinez-Jimenez [66] developed a method to discriminate COVID-19 infected
individuals with mild respiratory symptoms from negative healthy volunteers. The tem-
perature asymmetry between the lacrimal caruncles and the forehead was significantly
higher in COVID-19 patients. Through a random forest analysis, a cut-off value of 0.55
◦C was found to discriminate COVID-19 patients from healthy subjects with an accuracy
of 82%.

6. Smart Technologies to Limit COVID-19 Diffusion

COVID-19 outbreak urged the development of smart technologies able to detect fever-
ish status and respiratory infections for an early identification of the disease. Particularly,
Jiang et al. [64] developed an algorithm able to detect respiratory diseases employing a RGB
and thermal camera embedded in a mobile phone, employing 10 s lasting measurements.
Al-Humairi et al. [67] conceptually designed an adaptive monitoring system composed of a
smart artificial intelligence helmet, with an IRI embedded system. Rane [68] demonstrated
the feasibility of using a humanoid robot with infrared sensors for fever detection. The
system required a Raspberry Pi controller and an IRI device, and allowed to automatically
detect, through ML algorithms, nose tip, chin, and inner canthi. Mohammed et al. [69]
proposed a smart helmet with an embedded IRI system that allowed to automatically detect
subjects’ face through OpenCV [57] libraries and to support the identification of COVID-19
by means of ML algorithms. Sun et al. [70] implemented a multiple vital-signs-based
infection screening system called KAZEKAMO, based on a thermopile. Employing Koho-
nen’s self-organizing map (SOM) and k-means clustering algorithm, a sensitivity in fever
screening of 88% was obtained. Finally, Kumar et al. [71] proposed an ML-based system
that collected thermal data of people in real-life scenarios through drones: if the recorded
temperature of any person was greater than at least 2 ◦C than normal body temperature, an
alarm beeped and an announcement was made over the loudspeaker fitted on the drone.

Concerning healthcare settings applications, Tsai et al. [72] developed a contactless
wireless sensor, based on self-injection-locked radar and IRI, placed on the ceiling of the
ward. The system could automatically detect and record the vital signs of the patient every
five seconds, fostering the isolation policy in hospitals, thus preserving the healthcare
staff from the infection. Sun et al. [73] employed a CMOS camera-equipped IRI system
(TVS-500; NEC/AVIO Infrared Technologies Co. Ltd., Tokyo, Japan) to assess fever in
clinical settings, in order to promote the remote sensing of vital signs. Particularly, from
IRI videos the breathing and heart rates were estimated. A logistic regression discriminant
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function predicted the likelihood of infection with sensitivity of 87.5%, specificity of 100%,
NPV of 91.7%, and PPV of 100%.

7. Discussion

The present review aimed to investigate the state of the art of the employment of
IRI for fever mass screening, focusing on the methods of analysis currently employed for
infections identification during epidemics. During the spread of the COVID-19 disease,
the employment of IRI technologies was fostered to detect the feverish condition in public
buildings, such as airports and hospitals, to limit the diffusion of the infection. Several
scientific publications, reported in the present review, dealt with the usage of IRI technology
for mass fever screening, revealing its great performances of IRI in this regard. Moreover, in
order to make the fever detection more accurate and quicker, algorithms for the automatic
identification of the eye’s inner canthi, which are highly indicative of the core temperature,
were implemented. It is worth to mention that also other facial regions (e.g., forehead)
have been demonstrated to be indicative of the core temperature. Anyway, in ecological
conditions, such as large-scale fever screening, the inner canthus is proved to be less
sensitive to external confounding, such as the environmental temperature, the employment
of make-up and sweating [74,75].

However, some COVID-19 patients do not exhibit fever or are asymptomatic, hence
the only evaluation of the fever is not exhaustive for the detection of the infection. For this
reason, some ML-based approaches have been developed to identify the pathology (e.g.,
evaluating breathing rate altered pattern). However, few studies investigating COVID-19
patients through IRI are available, hence the findings of the literature are mostly proof of
concept of the feasibility of employing this technology for the detection of the disease.

From the review of the literature, some suggestions can be proposed to effectively
employ IRI for the detection of the COVID-19. Firstly, algorithms for the automatic detec-
tion of human faces could facilitate the identification of the inner canthi. Moreover, these
algorithms could provide the position of other facial landmarks, hence allowing to evaluate
not only the feverish state but also the spatial facial temperature distribution, that could be
indicative of ongoing infections. Furthermore, it could be worth considering also temporal
features from IRI recordings, such as the temperature time course on relevant regions
of interest (e.g., the nostrils, indicative of the breathing rate), employing modelling ap-
proaches, frequency-domain and non-linear methods of analysis [76,77]. Although a high
speed of detection is preferred for mass screening in public contexts, measurements lasting
some seconds should be recommended to exploit also temporal features of the thermal
recordings. Particularly, in the literature examined, the shorter measurements employed to
detect respiratory diseases were 10 s, hence measurements of at least this duration should
be performed. However, it is worth to note that the respiratory breath generally ranges
between 15–18 breaths per minute in healthy adults, hence shorter measurements could
be suitable to detect respiratory pathologies, but further studies are needed to investigate
this aspect.

Modern ML algorithms, such as deep learning, could prevent the issue of the definition
of regions of interest on the face, given their ability to automatically extract relevant features,
optimizing the classification performances. However, the effectiveness of IRI in detecting
COVID-19 should be extensively tested on patients and, particularly, on asymptomatic
patients, in order to fully explore the potentiality of IRI to stem the tide of this pandemic.
In fact, the capability of IRI to discriminate COVID-19 patients with mild respiratory
symptoms relies on the evaluation of the difference of temperature between facial regions
of interest [66]. Hence, further studies should test the capability of ML to increase the
IRI diagnostic capabilities in discriminating even asymptomatic patients investigating the
facial temperature pattern.
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8. Conclusions

IRI is a non-invasive, contactless and low-cost technology able to measure Tsk modu-
lations. Its contactless features and its ability to detect fever in ecological conditions are
exploited during pandemics, with fever symptoms, to limit the diffusion of the infection.
This review investigated the potentialities of IRI employment during pandemics to contain
the contagions. Furthermore, the review focused on the major issues related to the auto-
matic face recognition and ROIs selection for the rapid fever assessment, and the statistical
analysis employed to increase the fever diagnostic capability of IRI. The evaluation of the
maximum temperature from the eye inner canthus seems to be the most reliable method to
assess fever, hence the development of automatic and rapid methods for facial landmarks
detection is fundamental. Moreover, ML frameworks could constitute a suitable tool, to
exploit both spatial and temporal IRI features, potentially providing optimal classification
performances.
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