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Abstract. In this paper, a new statistical method to model patterns
emerging in complex systems is proposed. A framework for shape anal-
ysis of 2− dimensional landmark data is introduced, in which each
landmark is represented by a bivariate Gaussian distribution. From In-
formation Geometry we know that Fisher-Rao metric endows the sta-
tistical manifold of parameters of a family of probability distributions
with a Riemannian metric. Thus this approach allows to reconstruct
the intermediate steps in the evolution between observed shapes by
computing the geodesic, with respect to the Fisher-Rao metric, be-
tween the corresponding distributions. Furthermore, the geodesic path
can be used for shape predictions. As application, we study the evolu-
tion of the rat skull shape. A future application in Ophthalmology is
introduced.

Shape analysis is a timely and interesting research field. It includes Imaging which
is very important in medicine for the diagnosis and the study of the diseases. We
consider in particular patterns emerging from complex systems as expression of the
self-organization phenomenon among their interacting elements due to internal forces,
[Bertuglia and Nagaoka, 2000; Nicolis, 1995]. The aim of the paper is the statistical
modeling of a shape under the hypothesis that it is possible to extract from it a finite
number of representing points, called landmarks.

We propose a framework for shape analysis of 2 dimensional landmark data fol-
lowing the idea of Peter and Rangarajan [Peter and Rangarajan, 2009] in which each
landmark is represented by a bivariate normal distribution. However, Peter and Ran-
garajan restricted to family of distributions with the same variance, using only the
means as parameters. This hypothesis does not take into account that variance pro-
vides information regarding the dispersion of the real points of the shape around
their means. Numerical simulations prove that, in the case of a big variance, the im-
age shows blots, similar to those of a photocopy from a damaged machine. In medical
images this constitutes a warning sign of some problems threatening the involved
organ, as we have already seen in the process of macular degeneration [Sanctis, 2012].
Therefore we consider variance as additional coordinate for each landmark, reflecting
the uncertainty in the landmark’s placement and the variability across a family of
shapes, and allow the variances to vary among the landmarks and in time.

As mathematical tool we use Information Geometry which consider statistical
models as riemannian manifolds with the Fisher-Rao metric. The methodology en-
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ables us to study the evolution in time of shapes, in particular geodesic paths allow
the interpolation between observed shapes and also can be used to do predictions.

In the paper two applications in Biomedicine are showed.

1 Information Geometry

Differential manifolds are the object of study of Differential Geometry. They are lo-
cally euclidean topological spaces, like for example the M-sphere which is ”locally
equivalent” to the M-dimensional euclidean space. Although differential manifolds
are mapped by local coordinates, it is well-known that all the consequent analysis is
intrinsic, i.e. it does not depend on the choice of the coordinates. In particular, In-
formation Geometry considers statistical manifolds, which are families of probability
distributions or equivalently probability densities with their local coordinates defined
by the model parameters [Amari and Nagaoka, 2000; Murray and Rice, 1984]. For
example, the normal distribution:

p(x) = 1√
2πσ

exp{− (x−µ)2
2σ2 } (1)

is univocally identifiable by two parameters, (µ, σ), where µ and σ > 0 represent
respectively the mean and the standard deviation. Thus, we can identify the family
of normal distributions with the upper half-plane:

Θ = {(µ, σ) : σ > 0}.

Let us recall that a Riemannian metric on a differential manifold is a metric
”compatible” with the system of local coordinates. From Information Geometry we
also know that the Fisher information matrix induces a Riemannian metric on the
statistical manifold, called the Fisher-Rao metric, as follows

ds2 =

M∑
i,j=1

gij(θ)θ
iθj (2)

with metric tensor:

gij(θ) =

∫
p(x/θ)

∂

∂θi
log p(x/θ)

∂

∂θj
log p(x/θ)dx. (3)

Moreover, it is possible to prove that the above metric is the only one consistent
with the theory of Statistical Inference.

In particular, for the family of the univariate normal distributions, simple calcu-
lations lead to: g11(µ, σ) = 1

σ2 , g22(µ, σ) = 2
σ2 and g12(µ, σ) = g21(µ, σ) = 0, whence

the metric (2) becomes ds2 =
[
(dµ)2 + 2(dσ)2

]
/σ2.

It can be proved that one can remove the factor 2 in g22 in order to obtain a
simpler expression. So we recognize that it is the metric which induces the hyperbolic
geometry in the upper half-plane. It is also known that such a geometry is invariant
under the special linear group SL(2,R) of all the real unit determinant matrices which
has, as its subgroups, the location scale group and the group SO(2) of rotations.

More generally for the parametric family of the bivariate normal distributions
with diagonal covariance matrix, an element can be represented by a single point with
coordinates θ = (µ1, µ2, σ1, σ2) on a 4-dimensional manifold which is the Cartesian
product Θ1 ×Θ2 of two half-planes.
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Besides, on a Riemannian manifold, there exist curves, called geodesics locally
minimizing the distance. We recall that one and only one geodesic is locally deter-
mined if:

i) if we are given two points through which the curve has to pass, or
ii) if we are given one point and a tangent vector at the same point, representing

the ”speed” with which the curve starts from that point.
For the Normal Family, the geodesics are the same as in hyperbolic geometry,

that is they constitute the solutions (µ(t), σ(t)), with t ≥ 0, of the following ordinary
differential equation:

µ̇2

σ2
+ 2

σ̇2

σ2
= c

where c 6= 0. It is well known that these solutions are half-circles with their center
on µ-axis and vertical lines.

In the product space of the bivariate normal distributions, a curve

(µ1(t), µ2(t), σ1(t), σ2(t))

is a geodesic if and only if (µi(t), σi(t)) for every i = 1, 2, is a geodesic for the family
of the univariate normal distributions.

2 Shape analysis

Consider a geometric object, as for example a triangle in the plane or a human head
in the space. The shape of the object consists of all information invariant under
similarity transformations that is translations, rotations and scalings [Dryden and
Mardia, 1998]. One way to compare shapes of different objects is to register them on
some common coordinates system using the similarity transformations [Bookstein,
1986; Kendall, 1984]. In the following, in order to simplify the analysis, we consider
planar shapes in the Cartesian plane (x, y).

Data from a shape are often realized as a set of points. Many methods allow
us to extract a finite number of points, which are representative of the shape and
are called landmarks. Anatomical landmarks are points having a biological relevance
(angle of an eye, a special point of the skull,etc) while mathematical landmarks are
points having a mathematical relevance (point of maximum curvature, discontinuity
points, etc.). Figure 1 shows a representation of the midsagittal section of a typical
15-day-old rat skull M.J. Baer and Ackerman [1983], where the landmarks represent
various locations around its boundary. The choice of landmarks is crucial and different
choices may lead to different results. In order to select them in a good way, in the
applications, experts of the real problem can suggest where it is better to put them.

Suppose now that we have a collection of n planar shapes. We denote the coordi-
nates of the K landmarks of the j-th shape Sj , j = 1, ..., n, with

{µj1 , µj2 , . . . , µjK}

where the generic element is µjk = {µjk1
, µjk2

, } for k = 1, . . . ,K.
For each landmark we can estimate the covariance matrix Σk by

Σk =
1

n

n∑
j=1

(µjk − µ̄k)(µjk − µ̄k)′

with µ̄k representing the k-th landmark coordinates of the mean shape µ̄ = 1
n

∑n
j=1 µj ,

where µj is the K × 2 matrix with the coordinates of the shape Sj .
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Fig. 1. Realistic drawing of a cross section of a rat cranium with the eight landmarks used
in the analysis.

Peter and Rangarajan assume that each landmark of a shape of the population
is modeled via a bivariate Gaussian, where the landmark coordinates are the means
µk = (µk1, µk2) and the covariance matrix is equal to Σk = Σ = σ2I2, σ > 0, for
every landmark. Then the shape is represented by a K-components Gaussian mixture
model (GMM)

p(x, µ, σ) = 1
2πσ2K

∑K
k=1 exp{−‖x−µk‖2

2σ2 } (4)

where x is a generic 2-dimensional vector.
In the absence of any a priori knowledge, it is acceptable to put in the model equal

weight 1/K to every landmark. Peter and Rangarajan consider σ as a free parameter,
which is isotropic across all components. Therefore, they only use the means of a
(GMM) as coordinates of the statistical manifold.

On the contrary, our proposal is to relax the isotropic hypothesis by considering
variances as additional coordinates for the landmarks of a complex shape, as it is
compatible with Information Geometry theory. Thus we consider the following new
model for the representation of a shape, where each landmark is modeled via a bi-
variate Gaussian and the shape is represented by a 2K-components Gaussian model
(GM).

Precisely the k-th landmark, k = 1, . . . ,K, of the shape is given by the following:

f(x, µk, Σk) = 1
2π |Σk|

− 1
2 exp{− 1

2 (x− µk)′Σ−1k (x− µk)} (5)

under the condition
Σk = σ2

kI2 = diag(σ2
k1, σ

2
k2) (6)

where (σ2
k1, σ

2
k2) is the vector of the variances of the k-th landmark coordinates of the

shape, for k = 1, . . . ,K.

3 Evolution of complex shapes

Starting from a shape represented by θki(0) = (µki(0), σki(0)), we are interested in its
time evolution θki(t) = (µki(t), σki(t)). Using the geodesics with respect to Fisher-Rao
metric it is possible to predict in a short time the evolution of the shape. Analogously,
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if two shapes are represented by Gaussian models, we can construct a geodesic between
them that will provide us the information about the intermediate shapes (landmarks
and their variances). That intrinsic path will drive the reconstruction of the real
intermediate shapes in the external space.

More precisely, let S(t) be the shape at time t with landmark coordinates µk(t) =
{µk1(t), µk2(t)}, k = 1, . . . ,K.

Since the same landmarks are collected at different times, the covariance structure
may vary from one time to another. We assume the common principal components
(CPC) model, where for each landmark k we have

Γ ′∆k(t)Γ = Σk(t) (7)

with Γ an orthogonal 2× 2-matrix and ∆k(t) a diagonal 2× 2-matrix.
In order to compute the geodesic path between two observations of the same shape

at two different times t1 and t2, we propose the following procedure:

– given the covariance matrices Σk(tl) under the CPC model for k = 1, . . . ,K and
l = 1, 2, estimate Γ and ∆k(tl)

– transform the coordinates of each landmark to νk(tl) = µk(tl)Γ so to have covari-
ance matrices equal to ∆k(tl) for l = 1, 2

– construct the geodesic path between two shapes

In this way, we allow the variances of the landmarks to vary not only among the
landmarks but also between different times. In some cases, it is reasonable to assume
isotropy in time, in particular when the change of the shape is due to external forces.
Indeed, Peter and Rangarajan refer to the effect of deformation of the external space
and unify representation and deformation. On the contrary, we are interested in the
natural evolution of the shape induced by internal forces to the system. In this case,
the model of Peter and Rangarajan induces a loss of information in the Fisher sense.
Our approach, for example, may turn useful in medicine, for the diagnosis and the
consequent therapy, to verify its efficacy but also in the screening program to identify
diseases precociously.

4 Application: rat calvarial data

As an application, we will work with the rat calvarial data set presented in Bookstein
[1991]. It corresponds to 8 landmarks digitized in two dimensions on the skull mid-
sagittal section of 21 rats, which have been collected at ages of 7, 14, 21, 30, 40, 60,
90, and 150 days.

We apply the model in (5) and (6) calculating the covariance matrices Σk(tl) under
the CPC model (7). For each landmark, the shape evolution between two observed
times, say t1 and t2, is estimated by computing the geodesic path from time t1 to t2.
An example is given in the right panel of figure 2, where the x and y coordinates of
the mean shapes at times t1 = 14 and t2 = 21 days are plotted together with the
geodesics connecting their landmarks.

Furthermore, it is possible to forecast the shape evolution at times close to t2,
following the geodesic path between t1 and t2 till a subsequent time t3. For the rat
skull, the predicted mean shapes are plotted in figure 3 together with the observed
mean shapes in subsequent times to t2 = 14 days.

The fit seems good except for landmarks 5 and 6 at earlier times. We should
expect such a result since the dynamics of growth shows an initial strong development
followed by a more stable shape change. More details are in [Sanctis and Gattone,
2015].
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Fig. 2. Mean shape at time t = 14 days (dash-dotted line); mean shape at time t = 21 days
(dashed line); geodesic paths (solid lines) from t = 14 to t = 21.

5 Future application: Keratokonus

Keratoconus, in Ophthalmology, means the degenerative disease of cornea due to the
thinning and bulging of its connective tissue. Real images of a normal cornea and of
a cornea with Keratokonus are showed in figure 4.

This pathology modifies the corneal shape, producing serious problems to the
vision because the cornea is the first magnifier of the eye, which allows the passage
of light. In a normal eye, the images are focused to the same point of the retina then
processed correctly by the brain. In the people with Keratoconus this is not possible
and causes astigmatism and visual aberrations. In order to detect the corneal shape,
an imaging technique is the corneal topography. It is not like a geographic topography
because it does not draw the corneal shape. It calculates the curvature in a lot of points
of the corneal front then deduces the map of the whole surface. In order to calculate
the curvature of the corneal surface, it is possible to use different algorithms: two for
the vision power and one for the shape.The Axial algorithm is mostly used to evaluate
the power of the central part because it measures the difference in curvature between
the real cornea and a semi-sphere. The Tangential algorithm calculates the tangent
in every point while the Altitudinal algorithm measures the altitude of the cornea. A
complete study requires all the algorithms. The first two are important to set laser
for refractive surgeries. The numerical data of the axial and tangential algorithms are
transformed producing coloured maps, where every colour corresponds to a diopter
range: for convention colder colours refer to more flat areas while warmer colours
to more curved regions. In figures 5 and 6 we can see an example of numerical and
colorimetric axial map of a patient who does not have Keratoconus.

Using the numerical data of the axial and tangential algorithms as x and y co-
ordinates of a ”non-geometrical” shape, we propose to apply our model in order to
reconstruct the intermediate steps from an initial situation to the outbreak of the
disease, as shown in figures 7 and 8.
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Fig. 3. Rat data set: observed (dashed lines) and estimated (solid lines) mean shapes from
day 21 to day 150.

Fig. 4. Normal cornea (on the left) and cornea with Keratoconus (on the right)

Following the rat calvarial case, the model is also able to predict, in a short time,
the evolution of the disease. Statistical evidence for this medical case will be the aim
of our future work.

6 Conclusions

The most evident property of self-organization phenomena in complex systems is the
formation of patterns which evolve in time. Our goal in this paper is to model such
shapes statistically, using Information Geometry tools. This is very important mostly
in biology when one wishes to study the spreading behavior of an organism but also
in medicine for the precocious diagnosis and the analysis of the evolution of different



8 Will be inserted by the editor

Fig. 5. Corneal topography of a normal patient: numeric axial map.

Fig. 6. Corneal topography of a normal patient: Colorimetric axial map.

diseases. Since many statistical methods allow us to extract some points, called land-
marks, which are representative of a given shape, we propose to describe a pattern
by a finite dimensional Gaussian model. For every landmark, such a model uses both
the mean and variance as coordinates varying in time. In particular, the variance is
recognized as being able to capture the trend in the self-organizing phenomenon and
point out eventual crisis signals in the complex system. According to Information
Geometry, we can obtain in this way a statistical manifold and use Fisher-Rao met-
ric as Riemannian metric to determine geodesics locally minimizing distances in the
Fisher information sense. Therefore, these curves can be used (a) to reconstruct the
intermediate shapes from those known at two different times and also (b) to predict,
for short times, the evolution of the pattern from its past. As an application, we have
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Fig. 7. Corneal topography of a patient with Keratokonus: initial condition of the disease.

Fig. 8. Corneal topography of a patient with Keratokonus: outbreak of the disease.

considered a rat calvarial data set and proposed to use the same approach to medical
images like those from corneal topography.
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