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In this paper we assess the suitability of weighted-indexed semi-Markov chains (WISMC)

to study risk measures as applied to high-frequency ¯nancial data. The considered measures are

the drawdown of ¯xed level, the time to crash, the speed of crash, the recovery time and the

speed of recovery; they provide valuable information in portfolio management and in the se-
lection of investments. The results obtained by implementing the WISMC model are compared

with those based on the real data and also with those achieved by GARCH and EGARCH

models. Globally, the WISMC model performs much better than the other econometric models
for all the considered measures unless in the cases when the percentage of censored units is more

than 30% where the models behave similarly.

Keywords: Drawdown-based measures; high-frequency data; right censoring; maximum
likelihood estimate.
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1. Introduction

Financial markets are characterized by continuous upward or downward °uctuations

in prices, caused by the vast amount of information they receive. A strong price

instability, historically and cyclically, often caused strong market collapses. Exactly
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in this context, with the aim of quantifying the possible losses connected to an

investment or an investment portfolio, risk measures were born.

Over the years, a vast and varied literature on this topic, which aims to analyze

the risk with di®erent approaches, has developed. Among the most known risk

measures, we mention value-at-risk and expected shortfall whose fame is chie°y

linked to the Basel regulatory agreements [3, 4]. Their main weakness is that, being

based on quantiles, they neglect the temporal evolution of data, which is a crucial

aspect in the analysis of ¯nancial time series. Nevertheless, drawdown-based mea-

sures overcome this issue; among these, we point out the drawdown of ¯xed level, the

time to crash, the speed of crash, the recovery time and the speed of recovery.

In detail, the drawdown process is the distance of the price process from its

running maximum. The drawdown of ¯xed level, the time to crash and the recovery

time scan the time in which the drawdown of an asset attains a selected K-level for

the ¯rst time, the time taken to have the ¯rst K-variation and the time necessary to

have the ¯rst K 0-descendent after having the ¯rst K-ascent, respectively [17, 18].

Accordingly, the speed of crash and the speed of recovery describe the rate at which

the ¯rst K and ðK �K 0Þ changes occur.
To investigate these risk indicators, it is essential to use stochastic models for

¯nancial returns. In literature, various models which shape returns directly or indi-

rectly, have been suggested. As a matter of fact, the most widespread are the

econometric models [9, 13, 16]. and the di®usive models [2, 14]. Recently e®ective

alternatives, based on semi-Markovian models, have also been advanced [5–8].
In this paper, we analyze the drawdown-based measures listed above by means of

weighted-indexed semi-Markov chain (WISMC) model which is applied to tick-by-

tick data of Fiat stock price. WISMC model is an improvement of the general semi-

Markov chain (SMC) model which allows to correctly represent the long dependence

structure in the squared returns through the addition of an index process. To test the

validity of our model we realize comparisons with the GARCH and EGARCH

models. In particular, we reproduce synthetic series for each considered model and

then, we compute the analyzed risk measures on both real and simulated data. First,

we examine the behavior of the drawdown of ¯xed level asK varies by calculating its

main descriptive statistics. Secondly, we explore the time to crash evaluating its best

parametric law among the lognormal, the Weibull and the exponential distributions

based on the AIC and BIC criterion. In order to do this, we consider right censored

data in the maximum likelihood estimates of the parameters because data are af-

fected by the censorship due to the choice of the observation period (i.e. the trading

day). Furthermore, we compute the Kullback–Leibler divergence as a function of K

to get the closest model to real data. As regard the speed of crash, we analytically

derive its density starting from the time to crash's density and then, we scan its

behaviour for some values of K. Finally, we explore the recovery time and the speed

of recovery for several values of K and K 0, using the approach just described.

Overall, the WISMC model replicates better than the elected GARCH and

EGARCH models the considered risk measures unless the percentage of censored
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data exceeds 30% of observations. In this last situation, the performance of WISMC

starts to decrease probably due to an amount of record insu±cient for estimating the

kernel of the process. Thus, the use of WISMC is strongly recommended for use in

future studies when a consistent dataset is considered.

The rest of the paper is organized as follows. In Sec. 2, we provide a formal

description of the analyzed drawdown-based measures. In Sec. 3, we present the

WISMC model, its application procedures and the maximum likelihood estimate

with right censored data. In Sec. 4, we display the results of our analysis. In Sec. 5, we

report concluding remarks and future goals. In the appendix, we provide a list of the

exploited ¯nancial symbols.

2. Risk Measures

The literature on risk measures is really huge and expanding so much that there are

¯nancial indicators for every need. The most common and simplest risk measures are

the value-at-risk and the expected shortfall which, however, share a signi¯cant

mutual weakness. In fact, being based on quantiles, they disregard the temporal

order of data which is important in ¯nancial time series. On the contrary, there are

measures that overcome this trouble, such as those based on the drawdown, which

take into account the historical evolution of data.

To de¯ne the drawdown of an asset, we introduce the discrete-time varying asset

price process XðtÞ and its running maximum process, determined as

Y ðtÞ ¼ max
s2f0;1;...;tg

fXðsÞg: ð1Þ

The drawdown process, denoted by DðtÞ, is determined as the di®erence between

the running maximum process Y ðtÞ and the price process XðtÞ
DðtÞ ¼ Y ðtÞ �XðtÞ; t � 0: ð2Þ

It expresses the correction of the asset price with respect to a previous relative

maximum.

To understand concretely the de¯nitions above, in Fig. 1 we o®er a graphical

illustration. In detail, the red, the blue and the black lines stand for the price process,

the running maximum process and the drawdown process of Fiat asset during a

trading day, respectively. The drawdown process (black line) is obtained by sub-

tracting the asset price process (red line) from the maximum process (blue line).

In this paper, we deal with risk measures based on drawdown and connected to

market crashes: the drawdown of ¯xed level, the time to crash, the speed of crash, the

recovery time and the speed of recovery.

The drawdown of ¯xed level is the ¯rst time that the drawdown process attains or

overcomes a certain threshold K.

Formally, it is de¯ned as

�ðKÞ :¼ minft � 0jDðtÞ � Kg where K � 0: ð3Þ
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To qualify the time to crash we need to introduce the last visit time of the

maximum before the stopping time �ðKÞ; formally it is de¯ned as

�ðKÞ :¼ maxft 2 ½0; �ðKÞ�jY ðtÞ ¼ XðtÞg: ð4Þ

Using the de¯nition of �ðKÞ and �ðKÞ we de¯ne the time to crash as

TcðKÞ :¼ �ðKÞ � �ðKÞ: ð5Þ
It is the time taken between �ðKÞ and �ðKÞ, i.e. the time the drawdown process

employees to have the ¯rst drop of level K, the latter identi¯es the crash.

Consequently, the speed of crash, that is the velocity at which the ¯rst K-change

occurs, is expressed as

ScðKÞ :¼ K

�ðKÞ � �ðKÞ ¼
K

TcðKÞ : ð6Þ

Our de¯nition of speed of crash is more general than that reported in [17]. In

particular, the authors of [17] de¯ne the speed of crash as the reciprocal of the time to

crash.

In order to introduce the recovery time and the speed of recovery, denoted by

RtðK;K 0Þ and SrðK;K 0Þ, it is necessary to previously de¯ne the quantity �ðK;K 0Þ
as follows

�ðK;K 0Þ :¼ minft > �ðKÞjDðtÞ � K 0g with K > K 0: ð7Þ
It identi¯es the ¯rst moment in which the drawdown process drops below the

thresholdK 0 after crossing the thresholdK for the ¯rst time, i.e. the instant in which

a ðK �K 0Þ-drop occurs. Therefore it indicates an improvement in terms of risk since

Fig. 1. Price process (red line), running maximum process (blue line) and drawdown process (black line)

of Fiat asset during a trading day.
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the asset passes from a more risky situation, reached when the threshold K is

exceeded, to a less risky one achieved when the threshold K 0 is attained.
Exploiting the de¯nition of �ðK;K 0Þ and �ðKÞ, the recovery time is formalized as

RtðK;K 0Þ :¼ �ðK;K 0Þ � �ðKÞ: ð8Þ

It is the time it takes to have the ¯rst K 0-descent in the drawdown process

following the ¯rst K-ascent.

Therefore, the speed of recovery, that is the velocity at which a ðK �K 0Þ-vari-
ation occurs, is de¯ned as

SrðK;K 0Þ :¼ K �K 0

�ðK;K 0Þ � �ðKÞ ¼
K �K 0

RtðK;K 0Þ : ð9Þ

Clearly, all these risk measures provide stakeholders a useful tool with which to

assess the riskiness of an investment or investment portfolio. In particular, �ðKÞ
informs about the riskiness of an asset and depends on the selectedK-value (smallK

indicates low risk events while large K refers to very risky events). Accordingly,

TcðKÞ and ScðKÞ quantify how long it takes and how quickly such risky events occur.

Unlike the previous measures, RtðK;K 0Þ and SrðK;K 0Þ analyze the behavior of a
security following the achievement of a certain K-level in its drawdown and,

therefore, they show a dependence from both the K and the K 0-thresholds. In detail,

the recovery time and the speed of recovery describe how long the drawdown process

holds the ¯rst K-change before having a ðK �K 0Þ drop and the rate at which this

decline occurs.

To graphically display the risk measures just described, in Fig. 2 we provide an

illustration. The black line represents the drawdown process of Fiat asset during a

trading day while the orange and the yellow dashed lines stand for the thresholds K

and K 0, respectively. After ¯xing the threshold K we determine both the measures

�ðKÞ and TcðKÞ. Consequently, the speed at which the K-intensity market crash

occurs, known as ScðKÞ, is the rate at which we traverse the space K in the time

range ½�ðKÞ; �ðKÞ�.
Conversely, to identify the measure RtðK;K 0Þ it is also necessary to consider the

threshold K 0 in addition to the threshold K. Accordingly, the speed of recovery

SrðK;K 0Þ is the rate at which we cross the space ðK �K 0Þ in the time interval

½�ðKÞ; �ðK;K 0Þ�.
It is important to observe that in this paper the crash should be intended as a drop

in the price process whose entity is denoted by the threshold K. If the level K is very

large then we are focusing on a huge price fall. Moreover, it should be pointed out

that the methodology we are going to advance in the next sections, included the

mathematical model, could also be used to investigate a market crash when the price

process is substituted with a market index (e.g. the Dow Jones index) representing a

segment of the ¯nancial market.
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3. Mathematical Models and Methodology of Application

The content of this section is divided in two parts. In the ¯rst part, we shortly present

the WISMC model as related to the ¯nancial problem. The presentation is only

intuitive and it serves the purpose of introducing the considered variables, their

probabilistic interrelations and the main features of the model. Additional details

and mathematical properties can be retrieved in the literature. In the second part, we

explain the methodology of application to assess the suitability of the WISMC model

in comparison with popular econometric models to describe the drawdown-based risk

measures discussed in the previous section.

3.1. The weighted-indexed Semi-Markov chain model

Semi-Markovian-based models are increasingly being used in ¯nancial literature to

reproduce the main stylized facts related to returns. Unlike discrete-time Markovian

models, in which the time until the next transition is geometrically distributed, semi-

Markov models assume that the time between transitions can be modeled using any

distribution, no memoryless distributions included. The consequence is that, a semi-

Markovian process considers not only the current state but also how long it has been

in the current state. However, they are unable to capture the persistent autocorre-

lation in the squared returns. One way to solve this problem is to use an improvement

of the semi-Markov chain (SMC) model, called weighted-indexed semi-Markov chain

Fig. 2. Drawdown process of Fiat asset during a trading day. The orange and the yellow dashed lines act

for the thresholds K and K 0, respectively.
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(WISMC) model. It allows the reproduction of the long-term dependence in the

squared returns by means of an index process. The role of the index is exactly to

increase the memory of the process by adding information contained in the past

trajectory of the returns process. A detailed model de¯nition is in [7, 8].

Basically, the model is described by three stochastic processes: fJngn2N, fTngn2N
and fV �

n gn2N, which in our framework are the return process, the corresponding

jump time process and the index process, respectively.

Assuming that XðtÞ is the time varying price of a ¯nancial asset, we de¯ne the

time varying log-returns as

RðtÞ ¼ logðXðtÞ=Xðt� 1ÞÞ; t 2 N: ð10Þ

The series of returns RðtÞ is converted into a series of discrete returns, denoted by

RdðtÞ, using the following map:

M : R ! E ¼ f�imin �; . . . ;��; 0;�; . . . ; imax �g; ð11Þ

where E is the ¯nite state space of the discrete returns and� is the grid amplitude of

E. Precisely, RdðtÞ ¼ i� whenever RðtÞ 2 ðði� 1
2Þ�; ðiþ 1

2Þ��. The lowest discrete

return, RdðtÞ ¼ �imin �, and the highest discrete return, RdðtÞ ¼ imax �, are

attained whereas RðtÞ � ð�imin þ 1
2 Þ� and RðtÞ > ðimax � 1

2Þ�, respectively.

Subsequently, the sequence of discrete returns fRdðtÞgt2N is transformed into a

series of returns fJngn2N with values in E, describing the value of the return process

at the nth change, and into a series of corresponding jump times fTngn2N with values

in N, portraying the time in which the nth change in the return process occurred. In

order to do this, we set T0 ¼ 0, J0 ¼ Rdð0Þ and for n � 1

Tn ¼ infft 2 N; t > Tn�1 : RdðtÞ 6¼ RdðTn�1Þg; ð12Þ
Jn ¼ RdðTnÞ: ð13Þ

The real novelty, compared to a classic semi-Markov model, is the introduction of

the stochastic process fV �
n gn2N, with values in R. The random variable V �

n describes

the value of the index process at the nth transition, i.e. it synthesizes the information

contained in the past trajectory of the return process up to the n-th transition. It is

de¯ned as

V �
n ¼

Xn�1

k¼0

XTn�k�1

a¼Tn�1�k

f �ðJn�1�k;Tn; aÞ þ f �ðJn;Tn;TnÞ; ð14Þ

where f can be any function. It depends on both the past values of returns Jn�1�k

occurred at times a, the current time Tn and the parameter �, that has the task of

weighing past information. In the next subsection, we provide a speci¯c functional

form of f and we describe the calibration of the parameter � on real data.

Semi-Markovian Drawdown Measures
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In order to build the WISMC model it is necessary to explicit the dependency

structure between the random variables Jn, Tn and V �
n . Toward this end we adopt

the following assumption:

P½Jnþ1 ¼ j;Tnþ1 � Tn � tj�ðJh;Th;V
�
h Þnh¼0; Jn ¼ i;V �

n ¼ v�
¼ P½Jnþ1 ¼ j;Tnþ1 � Tn � tjJn ¼ i;V �

n ¼ v� ¼: Q�
ijðv; tÞ; ð15Þ

where �ðJh;Th;V
�
h Þ is the natural ¯ltration of the three-variate process fJn;Tn;V

�
n g.

The matrix of functionsQ�ðv; tÞ ¼ ðQ�
ijðv; tÞÞi;j2E plays a fundamental role in this

model and it is referred to as the weighted-indexed semi-Markov kernel. It is im-

portant to note that if Q�ðv; tÞ is constant in v then, the weighted-indexed semi-

Markov kernel degenerates into an ordinary semi-Markov kernel, i.e.

P½Jnþ1 ¼ j;Tnþ1 � Tn � tj�ðJh;Th;V
�
h Þnh¼0; Jn ¼ i;V �

n ¼ v�
¼ P½Jnþ1 ¼ j;Tnþ1 � Tn � tjJn ¼ i� ¼: QijðtÞ: ð16Þ

Furthermore, from an ordinary semi-Markov kernel it is recovered the case of a

Markov kernel if the probability distributions of the sojourn times Tnþ1 � Tn in the

states of the system are geometrically distributed.

The probabilities of the weighted-indexed semi-Markov kernel can be expressed

according to

Q�
ijðv; tÞ ¼ P½Tn�1 � Tn � tjJnþ1 ¼ j; Jn ¼ i;V �

n ¼ v�
� P½Jnþ1 ¼ jjJn ¼ i;V �

n ¼ v� ¼: Gijðv; tÞ � pijðvÞ; ð17Þ
where p�

ijð�Þ and G�
ijð�; tÞ are the indexed transition matrix and the conditional

waiting time distribution in the states, respectively. A detailed description of the

estimation procedures of each quantity involved in the model and in particular of the

weighted-indexed semi-Markov kernel is in [8]. It is worth noting that the index

process has the scope of identifying changes in the state of our dynamical system

through the identi¯cation of di®erent regimes characterized by di®erent semi-Mar-

kovian dynamics. Nevertheless, the WISMC model is di®erent from the frequently

used Markov regime switching models [12] because in the latter the new dynamics are

described by changes in the model parameters that are modulated by a Markov chain

that is unobservable. Instead, in the WISMC model the di®erent regimes are con-

nected only to the observable variable (returns in ¯nance) and are optimally included

in the model in order to increase its memory.

3.2. Methodology of application

In order to apply the model and to assess its suitability to reproduce real data

features also in comparison with other econometric models, we develop an applica-

tion methodology that is composed of several successive steps we are going to de-

scribe (see Fig. 3 for a graphical illustration).

G. D'Amico, B. Di Basilio and F. Petroni

2050020-8



. Step 1 Estimation of the model

We consider the intraday prices of a stock over a certain time horizon. To explore

the behavior of the drawdown-based measures within trading day, we organize the

dataset into days each consisting of 507 min or di®erent time grid according to the

data availability. Next, we consider the WISMC, GARCH, EGARCH models and

then, we estimate their parameters from real data. Speci¯cally, the estimation

procedures of the WISMC model are realized according to [8] while, those of the

GARCH and EGARCH models are carried out through the Matlab function

\estimate", following the literature on these topics [9, 13].

Fig. 3. Flow chart of the steps followed in the analysis.
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. Step 2 Simulation from di®erent models

Using the following algorithm, which was discussed in [8], we simulate a synthetic

series of returns from the WISMC model:

(1) Set n ¼ 0; J0 ¼ i;T0 ¼ 0;V �
0 ¼ v, horizon time ¼ T ;

(2) Sample J from p�
Jn;�ðV �

n Þ and set Jnþ1 ¼ Jð!Þ;
(3) Sample W from G�

Jn;Jnþ1
ðV �

n ; �Þ and set Tnþ1 ¼ Tn þW ð!Þ;
(4) Set V �

nþ1 ¼
Pn

k¼0

PTnþ1�k�1
a¼Tn�k

f �ðJn�k;Tnþ1; aÞ � f �ðJnþ1;Tnþ1;Tnþ1Þ;
(5) If Tnþ1 � T stop

or else set n ¼ nþ 1 and go to 2.

Similarly, by means of the Matlab function \simulate", we generate synthetic

series from the GARCH and EGARCH models. In this way several synthetic

series, generated from the considered stochastic models and estimated on real

data, are available.

. Step 3 Statistical parametric models for drawdown-based measures

Using both real and synthetic series, we compute the drawdown-based risk mea-

sures. Next, we realize their empirical investigation employing the Weibull, the

exponential and the lognormal distributions. All these models' parameters are

computed using the maximum likelihood estimate and considering the Type-1

right censoring issue which is linked to the choice of the time interval, i.e. the

trading day. The Type-1 right censoring issue is a problem that occurs when an

experiment, where a certain number of subjects or objects are observed, is arrested

after a speci¯ed observation time limit is reached. Subjects still alive at the time

limit are censored on the right. Speci¯cally, our selection of the daily time horizon

generates Type-1 right censorship on the drawdown of ¯xed level �ðKÞ, the time to

crash Tc and the recovery time Rt as the interest events may not occur within the

507 minutes of the trading day. To correctly estimate these parameters, we use the

Matlab functions \wbl¯t", \exp¯t", and \logn¯t" which are based on the search for

the maximum through an optimization algorithm.

. Step 4 Comparisons of results on real data and those obtained from the di®erent

models.

In order to identify the best parametric model on each series, we compute the AIC

and BIC criterion using the Matlab function \aicbic". In detail, it is possible to

directly detect the best parametric model for the real and WISMC data, choosing

the one with the lowest AIC/BIC. As for the GARCH and EGARCH families, it is

required a further step. In fact, after having identi¯ed the best parametric model

for each considered GARCH/EGARCH, it is selected the model with the lowest

AIC/BIC among the best models. Finally, we quantify the distance between the

best parametric model for each family (WISMC, GARCH and EGARCH) and the

best parametric model for real data by mean of the Kullback–Leibler divergence. It
permits to gauge the semi-distance between real and simulated distributions in

order to assess the closest model to real data.
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4. Results

Data used in this analysis consist of intra-day prices of Fiat asset, denoted by the

symbol F. They have been downloaded from \Borsa Italiana" (\www.borsaitaliana.

it") for the period January 2007–December 2010 (4 full years) and then, have been

re-sampled by means of the Matlab function \resample" to have the frequency of

1min. Globally, we analyze 1001 trading days each consisting of 507 minutes, for a

total of 506506 returns. In Table 1 we provide the main descriptive statistics of Fiat

stock.

In order to model asset returns as a WISMC process, the state space has to be

discretized according to the map (11). In this work, we discretize asset returns into 5

states, chosen to be symmetrical with respect to returns equal to zero. Actually, each

stock exchange ¯xes a diverse discretization in stock prices which depends on the

stock value. Just to give an example, in the Italian stock market the minimum

variation for assets with values between 5.0001 and 10 Euro is set to 0.005 Euro. We

essay to remain as faithful as possible to this discretization.

The WISMC model requires the speci¯cation of the function f in the de¯nition of

the index process V �
n , see relation (14). Our choice of f is driven by an important

empirical evidence, known as volatility clustering. Typically, in real stock market we

observe that large (small) changes in prices are followed by large (small) changes,

which tend to persist for a certain period. According to [7], we reproduce this em-

pirical feature using, as speci¯cation of the function f, an exponentially weighted

moving average (EWMA) of the squared returns (volatility), which is expressed as

follows:

f �ðJn�1�k;Tn; aÞ ¼
�Tn�aJ 2

n�1�kPn�1
k¼0

PTn�k�1
a¼Tn�1�k

�Tn�a
¼ �Tn�aJ 2

n�1�kPTn

a¼1 �
a

: ð18Þ

We also discretize the index V �
n in 5 states to repeat di®erent levels of volatility,

i.e. low, medium low, medium, medium high and high volatility.

Fundamentally, our model depends on two parameters that have to be calibrated:

the number of states for the return process and the value of the parameter �. Both

are optimized by minimizing the mean percentage error (MPE) between real and

synthetic autocorrelation functions, according to the recommendations given in [8].

The basic idea is to set a number of states and a value of � to build a trajectory and

then, estimate the weighted-indexed semi-Markov kernel and run a Monte Carlo

simulation to produce a synthetic series. The next step is to compute the autocor-

relation functions for both real and simulated data and compare them by calculating

Table 1. Mean, median, standard deviation, skewness and kurtosis
of Fiat stock.

Stock Mean Median SD Skewness Kurtosis

F 8.237e-07 0 8.353e-04 �0.017 3.485
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the MPE. This procedure is repeated setting di®erent values of states and �. In the

end, we choose the optimal number of states and the optimal value of � which best

represents data by minimizing the MPE.

In Table 2, we display both the main descriptive statistics and the number of

censored units related to the drawdown of ¯xed level � for di®erent K-values

(K ¼ 0:5%;K ¼ 0:8%;K ¼ 0:9%;K ¼ 1:0%;K ¼ 1:1%). All these quantities are

computed on real data.

Using the Kaplan–Meier estimator [10], which provides a non-parametric esti-

mate of the survival function S, the mean and the standard deviation are computed.

Focusing on the mean values of the drawdown of ¯xed level � , we observe that if the

threshold K increases also � rises on average. This implies that more extreme events

take longer to occur. Just to give an example, a drawdown variation of 0:5% is

detected on average at the thirty-¯rst minute while to have a major change, such as a

1:0%, we have to wait more, about 147 min on average. Furthermore, as can be noted

from the asymmetry index (AI) values, the risk indicator � has a positive asymmetric

distribution that rises as the threshold K grows.

In Fig. 4, we show the real survival curves of the drawdown of ¯xed level � as a

function of K (K ¼ 0:5%;K ¼ 0:8%;K ¼ 0:9%;K ¼ 1:0%;K ¼ 1:1%). Analyzing

their behavior, it can be observed that they move upwards as the threshold increases.

This means that ifK rises, i.e. if we look for a riskier event, the probability that it will

not occur within the trading day also increases.

To explore the time to crash Tc, the recovery time Rt, the speed of crash Sc and

the speed of recovery Sr, we simulate asset returns by means of the WISMC model.

Moreover, to test the validity of our model we carry out comparisons with three

GARCH models and four EGARCH models. Next, for all the considered models, we

generate a synthetic series of returns having the same length as the real one and then,

we compute the analyzed risk indicators for both the real and each simulated series.

Given the real and simulated measures of the time to crash Tc and the recovery

time Rt, we assess their best parametric law among the lognormal, the Weibull and

the exponential distributions based on the AIC and BIC criterion [1, 15]. ll estima-

tion procedures involving these parametric models are accomplished in Matlab

software by considering the censorship issue.

Table 2. Descriptive statistics of � (¯rst quartile, second quartile-median,

third quartile, mean, standard deviation, asymmetry index) and related cen-

sored units computed on real data as a function of K.

Descriptive statistics of �ðKÞ
K Q1 Q2 Q3 Mean SD AI Censoring rate

0.5% 5 11 27 31.466 72.501 0.847 0.6%

0.8% 11 31 104 97.929 148.267 1.354 6.0%
0.9% 15 41 160.750 121.524 164.290 1.470 9.0%

1.0% 19 53 250.500 147.045 179.973 1.568 12.0%

1.1% 22 66 316 163.796 186.790 1.571 15.0%
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In Table 3, we display the model selection for the time to crash Tc, considering

several values of K (K ¼ 0:5%;K ¼ 0:9%;K ¼ 1:1%). The AIC and BIC values of

the best statistical selected models are in bold. In detail, for the best model choice of

real and WISMC data we operate a single step which consists of selecting directly the

parametric model with the lowest AIC/BIC. As for the GARCH and EGARCH

models, we apply a further step. In fact, after detecting the best parametric law for

each considered GARCH and EGARCH model, we choose the one with the smallest

AIC/BIC among the best selected models. Just to give an example, looking at K ¼
0:5% we have that the GARCH (1, 1)-lognormal, the GARCH (1, 2)-Weibull and the

GARCH (2, 1)-lognormal are the best, as a ¯rst step. Subsequently, applying the

second step, we choose the GARCH (1, 2)-Weibull as it has AIC/BIC lower than the

other two.

In Table 4, we show the parameters' point estimate of the best selected models for

the time to crash Tc, considering di®erent values of the threshold K

(K ¼ 0:5%;K ¼ 0:9%;K ¼ 1:1%). The best statistical parametric model is almost

always the lognormal one, except in one case where the Weibull model appears to

perform better. Furthermore, GARCH models are not stable because their para-

meters depend on the value of K and thus, there isn't a GARCH that works uni-

formly better in K than others. This is an undesirable property because it is usually

interesting to understand the behavior of Tc for di®erent values of K. This requires

the use of a speci¯c GARCH model for each level of the drawdown or choosing a

single GARCH model which, consequently, will not be optimal for most of the K

values chosen. In contrast, the approach based on the WISMC model does not

experience this problem. Indeed, the WISMC is a non-parametric model which is

settled once its kernel is estimated. The estimation procedure is independent of the

Fig. 4. Survival curves of � computed on real data in function of K (K ¼ 0:5%, K ¼ 0:8%, K ¼ 0:9%,

K ¼ 1:0%, K ¼ 1:1%).
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levels K and K 0, thus the result is a unique process that describes correctly the

results for all choices of K and K 0.
In Table 5, we portray both the descriptive statistics and the number of censored

units for the time to crash Tc. They are computed considering the best statistical

parametric model for real data as a function of K. Observing Table 5, we note that

both the censoring rate and the average values increase asK increases. This indicates

that it takes more minutes to cross a large threshold than a small one and conse-

quently, that large risky events tend not to always occur in the trading day. For

instance, a 0:5%-change in the drawdown occurs in 12min on average with 6 cen-

sored units while a 1%-variation is achieved in 467 min on average with 148 censored

units.

Table 3. Selection of the best parametric model for the measure Tc on both real and simulated data by

mean of AIC and BIC criterion, considering several K-values (K ¼ 0:5%, K ¼ 0:9%, K ¼ 1:1%). AIC

and BIC relating to the best models are in bold.

Model selection for TcðKÞ
Weibull Lognormal Exponential

AIC BIC AIC BIC AIC BIC

K ¼ 0:5%

Real Data 7.091Eþ03 7.101Eþ03 6.626Eþ03 6.636Eþ03 7.792Eþ03 7.797Eþ03

WISMC 8.162Eþ03 8.172Eþ03 7.926Eþ03 7.935Eþ03 8.246Eþ03 8.251Eþ03
GARCH(1,1) 8.029Eþ03 8.039Eþ03 7.994Eþ03 8.003Eþ03 8.255Eþ03 8.260Eþ03

GARCH(1,2) 7.923Eþ03 7.933Eþ03 7.944Eþ03 7.954Eþ03 8.199Eþ03 8.204Eþ03

GARCH(2,1) 7.924Eþ03 7.934Eþ03 7.928Eþ03 7.938Eþ03 8.184Eþ03 8.188Eþ03

EGARCH(1,1) 7.467Eþ03 7.476Eþ03 7.346Eþ03 7.356Eþ03 7.696Eþ03 7.700Eþ03
EGARCH(1,2) 6.870Eþ03 6.880Eþ03 6.757Eþ03 6.767Eþ03 7.135Eþ03 7.130Eþ03

EGARCH(2,1) 7.384Eþ03 7.394Eþ03 7.233Eþ03 7.243Eþ03 7.625Eþ03 7.630Eþ03

EGARCH(2,2) 6.850Eþ03 6.860Eþ03 6.667Eþ03 6.677Eþ03 7.024Eþ03 7.029Eþ03

K ¼ 0:9%

Real Data 9.620Eþ03 9.629Eþ03 9.286Eþ03 9.296Eþ03 1.088Eþ04 1.089Eþ04
WISMC 9.917Eþ03 9.927Eþ03 9.532Eþ03 9.542Eþ03 1.033Eþ04 1.034Eþ04

GARCH(1,1) 1.071Eþ04 1.072Eþ04 1.018Eþ04 1.019Eþ04 1.076Eþ04 1.077Eþ04

GARCH(1,2) 1.076Eþ04 1.077Eþ04 1.022Eþ04 1.023Eþ04 1.088Eþ04 1.089Eþ04
GARCH(2,1) 1.067Eþ04 1.068Eþ04 1.015Eþ04 1.016Eþ04 1.071Eþ04 1.072Eþ04

EGARCH(1,1) 1.004Eþ04 1.005Eþ04 9.457Eþ03 9.467Eþ03 1.007Eþ04 1.007Eþ04

EGARCH(1,2) 9.086Eþ03 9.095Eþ03 8.765Eþ03 8.775Eþ03 9.140Eþ03 9.145Eþ03

EGARCH(2,1) 9.813Eþ03 9.823Eþ03 9.339Eþ03 9.349Eþ03 9.811Eþ03 9.816Eþ03
EGARCH(2,2) 8.664Eþ03 8.674Eþ03 8.532Eþ03 8.542Eþ03 8.875Eþ03 8.880Eþ03

K ¼ 1:1%

Real Data 9.869Eþ03 9.878Eþ03 9.585Eþ03 9.595Eþ03 1.101Eþ04 1.102Eþ04

WISMC 1.039Eþ04 1.040Eþ04 1.003Eþ04 1.004Eþ04 1.091Eþ04 1.092Eþ04

GARCH(1,1) 1.107Eþ04 1.108Eþ04 1.062Eþ04 1.063Eþ04 1.127Eþ04 1.127Eþ04
GARCH(1,2) 1.108Eþ04 1.109Eþ04 1.065Eþ04 1.066Eþ04 1.128Eþ04 1.129Eþ04

GARCH(2,1) 1.108Eþ04 1.109Eþ04 1.062Eþ04 1.063Eþ04 1.127Eþ04 1.127Eþ04

EGARCH(1,1) 1.076Eþ04 1.077Eþ04 1.022Eþ04 1.023Eþ04 1.097Eþ04 1.097Eþ04

EGARCH(1,2) 1.006Eþ04 1.007Eþ04 9.567Eþ03 9.576Eþ03 1.006Eþ04 1.006Eþ04
EGARCH(2,1) 1.070Eþ04 1.071Eþ04 1.018Eþ04 1.019Eþ04 1.080Eþ04 1.081Eþ04

EGARCH(2,2) 9.886Eþ03 9.896Eþ03 9.396Eþ03 9.406Eþ03 9.886Eþ03 9.890Eþ03
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In Figs. 5–7, we display the density plots of the time to crash Tc for the best

selected parametric models, regarding K ¼ 0:5%, K ¼ 0:9% and K ¼ 1:0%.

Matching the graphs, it is immediate to notice that the densities related to WISMC

data are the closest to the real ones for every value of K.

To quantify the distance between the simulated and real distributions of the time to

crash Tc, we calculate the Kullback–Leibler divergence [11]. It is sometimes referred to

as information divergence, relative entropy or the Kullback–Leibler information cri-

teria (KLIC). We brie°y remember that the Kullback–Leibler divergence of the dis-
tribution Q from the distribution P , denoted by DKLðP jjQÞ, is the measure of the

information lost when Q is used to approximate P . It is de¯ned as follows:

DKLðP jjQÞ ¼
Z þ1

�1
pðxÞ log2

pðxÞ
qðxÞ

� �
dx; ð19Þ

where p and q denote the probability densities of P and Q. In our framework p and q

stand for the synthetic and the real distributions of the time to crash Tc for a selected

K-value, respectively. In Table 6 we show the Kullback–Leibler divergences for the

Table 4. Parameters of the best models for the measure Tc,

considering several K-values (K ¼ 0:5%, K ¼ 0:9%, K ¼ 1:1%).

Summary of the best statistical parametric model for TcðKÞ
Best Model Parameters

K ¼ 0:5%

Real Data Lognormal 1.7021–1.2561
WISMC Lognormal 2.4455–1.1193
GARCH(1,2) Weibull 24.6719–1.5621
EGARCH(2,2) Lognormal 2.2488–0.7124

K ¼ 0:9%

Real Data Lognormal 3.3108–1.9340
WISMC Lognormal 3.3470–1.2940
GARCH(2,1) Lognormal 3.9644–0.9129
EGARCH(2,2) Lognormal 3.1848–0.7092

K ¼ 1:1%

Real Data Lognormal 3.9218–2.1097
WISMC Lognormal 3.7696–1.4432
GARCH(1,1) Lognormal 4.5716–1.1830
EGARCH(2,2) Lognormal 3.5949–0.7663

Table 5. Descriptive statistics of Tc (¯rst quartile, second quartile-median, third quartile, mean,
standard deviation, asymmetry index) and related censored units as a function of K.

Descriptive statistics of TcðKÞ
K Q1 Q2 Q3 Mean SD AI Censoring rate

0.5% 2.351 5.485 12.798 12.070 23.670 0.835 0.6%
0.9% 7.436 27.407 101.014 177.861 1.140eþ03 0.396 9.0%

1.1% 12.168 50.491 209.510 467.415 4.302eþ03 0.291 15.0%
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time to crash Tc, considering three levels of the threshold K

(K ¼ 0:5%;K ¼ 0:9%;K ¼ 1:0%). It is possible to observe that the WISMC model

performs better than the other models, regardless of K.

Once the cdf and the density of the time to crash Tc for the best statistical

parametric model have been estimated, it is possible to translate the results to the

speed of crash Sc which is a nonlinear transformation of the time to crash Tc. First the

cdf can be obtained

FSc
ðxÞ ¼ P ðSc � xÞ ¼ P

K

Tc

� x

� �
¼ P

K

x
� Tc

� �
¼ 1� FTc

K

x

� �
;

Fig. 6. Density plots of Tc for K ¼ 0:9%.

Fig. 5. Density plots of Tc for K ¼ 0:5%.
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and by derivation it is possible to obtain the density function:

fSc
ðxÞ ¼ d

dx
½FSc

ðxÞ� ¼ fTc

K

x

� �
K

x2
: ð20Þ

In Table 7, we provide the statistics of the speed of crash Sc for di®erentK-values

(K ¼ 0:5%;K ¼ 0:9%;K ¼ 1:1%). It can be observed that the average speed

decreases as K increases. This simply involves that the stock reaches high thresholds

more slowly than low thresholds. As a matter of fact, a 0:5% -change in the

Fig. 7. Density plots of Tc for K ¼ 1:1%.

Table 6. Kullback–Leibler divergence
computed for the risk measure Tc, consider-

ing di®erent levels of K(K ¼ 0:5%,

K ¼ 0:9%, K ¼ 1:1%). The smaller dis-

tances are in bold.

Kullback–Leibler divergence for TcðKÞ
Best Model KL

K ¼ 0:5%

WISMC Lognormal 0.2705
GARCH(1,2) Weibull 0.9189

EGARCH(2,2) Lognormal 0.4655

K ¼ 0:9%

WISMC Lognormal 0.1816
GARCH(2,1) Lognormal 0.6048

EGARCH(2,2) Lognormal 0.8260

K ¼ 1:1%
WISMC Lognormal 0.1677

GARCH(1,1) Lognormal 0.4085

EGARCH(2,2) Lognormal 0.8522
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drawdown is achieved with an average velocity of 0.001min�1 while a bigger

variation, such as 1:1%, is attained more slowly, with an average speed of

8.229E-04min�1.

Using formula (20), we construct and plot the best density of the speed of crash Sc

in function of K as shown in Figures 8–10. Moreover, we don't compute the Kull-

back–Leibler divergence of Sc as it is invariant under parameter transformations.

Therefore, the Kullback–Leibler divergences' values of Sc coincide with those already

shown for Tc in Table 6. The results obtained on the measures time to crash and

speed of market crash establish a de¯nite superiority of the WISMC model as

compared to the GARCH and EGARCH models uniformly in K.

In Tables 8, 13 and 18, we display results on the best statistical model selection for

the recovery time Rt, considering several combinations of K and K 0. The AIC and

BIC values of the best selected models are in bold. In all the analyzed cases, the

lognormal law is more suitable than the Weibull and the exponential laws therefore,

it represents the best statistical parametric model among those considered in the

analysis.

Table 7. Descriptive statistics of Sc (¯rst quartile, second quartile-median, third quartile,

mean, standard deviation, asymmetry index) and related censored units as a function of K.

Descriptive statistics of ScðKÞ
K Q1 Q2 Q3 Mean SD AI Censoring rate

0.5% 4.006e-04 9.167e-04 0.002 0.001 0.001 0.525 0.6%

0.9% 8.911e-05 3.333e-04 0.001 8.934e-04 0.001 1.156 9.0%

1.1% 5.263e-05 2.200e-04 9.167e-04 8.229e-04 0.002 1.154 15.0%

Fig. 8. Density plots of Sc for K ¼ 0:5%.
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The parameters' point estimate of the best selected models for the recovery time

Rt are shown in Tables 9, 14 and 19. It can be observed that both GARCH and

EGARCH models are unstable as each couple of thresholds K and K 0 identi¯es
di®erent GARCH and EGARCH models.

Tables 10, 15 and 20 display both the main descriptive statistics and the number

of censored units as a function of the thresholds K and K 0. All these quantities are

computed considering the best parametric law for real data as a function of K and

K 0. In general, the recovery time Rt shows more censored units than the time to

crash Tc since it requires two thresholds to be exceeded,K andK 0. It is observed that

Fig. 10. Density plots of Sc for K ¼ 1:1%.

Fig. 9. Density plots of Sc for K ¼ 0:9%.
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the censorship increases as K increases and it decreases as K 0 increases. Speci¯cally,
they exceed 30% of the total observations for K ¼ 0:7%�K 0 ¼ 0:2%; K 0 ¼ 0:3%;

K 0 ¼ 0:4%. In addition, paying attention to the average values it is possible to note

that they decrease as K 0 increases for each ¯xed K.

Table 8. Selection of the best parametric model for the measure Rt on both real and simulated data by

mean of AIC and BIC criterion, ¯xing K ¼ 0:5% and considering K 0 ¼ 0:2% and K 0 ¼ 0:3%. AIC and

BIC relating to the best models are in bold.

Model selection for RtðK;K 0Þ �K ¼ 0:5%

Weibull Lognormal Exponential

AIC BIC AIC BIC AIC BIC

K 0 ¼ 0:2%

Real Data 8.913Eþ03 8.923Eþ03 8.691Eþ03 8.701Eþ03 1.045Eþ04 1.046Eþ04

WISMC 9.806Eþ03 9.816Eþ03 9.554Eþ03 9.563Eþ03 1.088Eþ04 1.089Eþ04
GARCH(1,1) 1.000Eþ04 1.001Eþ04 9.743Eþ03 9.753Eþ03 1.084Eþ04 1.085Eþ04

GARCH(1,2) 1.026Eþ04 1.027Eþ04 9.987Eþ03 9.996Eþ03 1.103Eþ04 1.104Eþ04

GARCH(2,1) 9.842Eþ03 9.852Eþ03 9.609Eþ03 9.619Eþ03 1.065Eþ04 1.066Eþ04

EGARCH(1,1) 9.921Eþ03 9.931Eþ03 9.662Eþ03 9.671Eþ03 1.087Eþ04 1.088Eþ04
EGARCH(1,2) 9.931Eþ03 9.941Eþ03 9.625Eþ03 9.635Eþ03 1.100Eþ04 1.101Eþ04

EGARCH(2,1) 9.888Eþ03 9.898Eþ03 9.604Eþ03 9.614Eþ03 1.091Eþ04 1.092Eþ04

EGARCH(2,2) 9.930Eþ03 9.939Eþ03 9.635Eþ03 9.645Eþ03 1.103Eþ04 1.104Eþ04

K 0 ¼ 0:3%

Real Data 8.811Eþ03 8.821Eþ03 8.542Eþ03 8.552Eþ03 1.073Eþ04 1.074Eþ04
WISMC 9.562Eþ03 9.571Eþ03 9.272Eþ03 9.282Eþ03 1.094Eþ04 1.095Eþ04

GARCH(1,1) 9.680Eþ03 9.689Eþ03 9.386Eþ03 9.396Eþ03 1.091Eþ04 1.091Eþ04

GARCH(1,2) 1.004Eþ04 1.005Eþ04 9.744Eþ03 9.754Eþ03 1.108Eþ04 1.109Eþ04
GARCH(2,1) 9.781Eþ03 9.791Eþ03 9.514Eþ03 9.523Eþ03 1.092Eþ04 1.092Eþ04

EGARCH(1,1) 9.744Eþ03 9.754Eþ03 9.459Eþ03 9.469Eþ03 1.101Eþ04 1.101Eþ04

EGARCH(1,2) 9.592Eþ03 9.602Eþ03 9.261Eþ03 9.271Eþ03 1.097Eþ04 1.097Eþ04

EGARCH(2,1) 9.613Eþ03 9.623Eþ03 9.300Eþ03 9.310Eþ03 1.096Eþ04 1.097Eþ04
EGARCH(2,2) 9.548Eþ03 9.558Eþ03 9.231Eþ03 9.241Eþ03 1.098Eþ04 1.098Eþ04

Table 9. Parameters of the best models for Rt, ¯xing K ¼ 0:5% and con-
sidering K 0 ¼ 0:2% and K 0 ¼ 0:3%.

Summary of the best statistical parametric model for RtðK;K 0Þ �K ¼ 0:5%

Best Model Parameters

K 0 ¼ 0:2%
Real Data Lognormal 4.4397–2.8453
WISMC Lognormal 4.2893–2.2421
GARCH(2,1) Lognormal 4.7938–2.1882
EGARCH(2,1) Lognormal 4.2484–2.1134

K 0 ¼ 0:3%
Real Data Lognormal 3.8138–2.7859
WISMC Lognormal 3.8102–2.2637
GARCH(1,1) Lognormal 4.0361–2.2020
EGARCH(2,2) Lognormal 3.4432–2.1206

G. D'Amico, B. Di Basilio and F. Petroni

2050020-20



Moreover, the recovery time Rt is more easily predictable than the time to crash

Tc as for every combination of K and K 0 all the models have similar performances.

This evidence is shown in Figure 11 which reports the density plot of the recovery

time Rt for K ¼ 0:5% and K 0 ¼ 0:2%.

Tables 11, 16 and 21 report the Kullback–Leibler divergences for the measure Rt.

As we can observe, if the censored data is less than 30% the WISMC model is the

closest to real data, except for the case K ¼ 0:9%�K 0 ¼ 0:7% where GARCH is

slightly better than WISMC. Conversely, if the percentage of censored data exceeds

30% the GARCH models is preferable to the WISMC and EGARCH models.

Table 10. Descriptive statistics of Rt (¯rst quartile, second quartile-median, third quartile,

mean, standard deviation, asymmetry index) and related censored units as a function of K

and K 0.

Descriptive statistics for RtðK;K 0Þ �K ¼ 0:5%

K 0 Q1 Q2 Q3 Mean SD AI Censoring rate

0.2% 12.436 84.749 577.568 4.854eþ03 2.780eþ05 0.017 26.0%

0.3% 6.922 45.322 296.741 2.196eþ03 1.064eþ05 0.020 21.0%

Table 11. Kullback–Leibler divergence com-
puted for the risk measures Rt, ¯xing K ¼ 0:5%

and considering K 0 ¼ 0:2% and K 0 ¼ 0:3%. The

smallest distances are in bold.

Kullback–Leibler for RtðK;K 0Þ �K ¼ 0:5%

Best Model KL

K 0 ¼ 0:2%

WISMC Lognormal 0.0723

GARCH(2,1) Lognormal 0.0953
EGARCH(2,1) Lognormal 0.1089

K 0 ¼ 0:3%

WISMC Lognormal 0.0544

GARCH(1,1) Lognormal 0.0732

EGARCH(2,2) Lognormal 0.1030

Table 12. Descriptive statistics of Sr (¯rst quartile, second quartile-median, third quartile,
mean, standard deviation, asymmetry index) and related censored units as a function of K

and K 0.

Descriptive statistics of SrðK;K 0Þ �K ¼ 0:5%

K 0 Q1 Q2 Q3 Mean SD AI Censoring rate

0.2% 5.499e-06 3.704e-05 2.614e-04 2.037e-04 4.447e-04 1.124 26.0%

0.3% 6.908e-06 4.495e-05 3.095e-04 1.689e-04 3.304e-04 1.125 21.0%
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Table 13. Selection of the best parametric model for the measure Rt on both real and simulated data

by mean of AIC and BIC criterion, ¯xing K ¼ 0:7% and considering K 0 ¼ 0:2% and K 0 ¼ 0:3%. AIC

and BIC relating to the best models are in bold.

Model selection for RtðK;K 0Þ �K ¼ 0:7%

Weibull Lognormal Exponential

AIC BIC AIC BIC AIC BIC

K 0 ¼ 0:2%

Real Data 8.165eþ03 8.174eþ03 8.017eþ03 8.027eþ03 9.092eþ03 9.102eþ03

WISMC 9.439eþ03 9.449eþ03 9.229eþ03 9.239eþ03 1.022eþ04 1.023eþ04

GARCH(1,1) 9.374eþ03 9.384eþ03 9.182eþ03 9.192eþ03 9.892eþ03 9.902eþ03

GARCH(1,2) 9.514eþ03 9.523eþ03 9.307eþ03 9.317eþ03 1.005eþ04 1.006eþ04

GARCH(2,1) 9.101eþ03 9.111eþ03 8.922eþ03 8.932eþ03 9.600eþ03 9.610eþ03

EGARCH(1,1) 9.763eþ03 9.772eþ03 9.538eþ03 9.548eþ03 1.037eþ04 1.038eþ04

EGARCH(1,2) 9.965eþ03 9.975eþ03 9.702eþ03 9.711eþ03 1.074eþ04 1.075eþ04

EGARCH(2,1) 9.733eþ03 9.743eþ03 9.494eþ03 9.504eþ03 1.039eþ04 1.040eþ04

EGARCH(2,2) 1.010eþ04 1.011eþ04 9.843eþ03 9.853eþ03 1.081eþ04 1.082eþ04

K 0 ¼ 0:3% AIC BIC AIC BIC AIC BIC

Real Data 8.382eþ03 8.392eþ03 8.217eþ03 8.227eþ03 9.500eþ03 9.501eþ03

WISMC 9.534eþ03 9.544eþ03 9.305eþ03 9.315eþ03 1.047eþ04 1.047eþ04

GARCH(1,1) 9.420eþ03 9.430eþ03 9.210eþ03 9.220eþ03 1.014eþ04 1.014eþ04

GARCH(1,2) 9.845eþ03 9.855eþ03 9.615eþ03 9.625eþ03 1.050eþ04 1.050eþ04

GARCH(2,1) 9.359eþ03 9.368eþ03 9.158eþ03 9.168eþ03 1.002eþ04 1.003eþ04

EGARCH(1,1) 9.974eþ03 9.984eþ03 9.724eþ03 9.734eþ03 1.071eþ04 1.072eþ04

EGARCH(1,2) 1.001eþ04 1.002eþ04 9.719eþ03 9.729eþ03 1.091eþ04 1.092eþ04

EGARCH(2,1) 9.789eþ03 9.799eþ03 9.524eþ03 9.534eþ03 1.065eþ04 1.065eþ04

EGARCH(2,2) 1.008eþ04 1.009eþ04 9.810eþ03 9.820eþ03 1.095eþ04 1.096eþ04

Table 14. Parameters of the best models for the measure Rt, ¯xing K ¼
0:7% and considering K 0 ¼ 0:2% and K 0 ¼ 0:3%.

Summary of the best statistical model selection for RtðK;K 0Þ �K ¼ 0:7%

Best Model Parameters

K 0 ¼ 0:2%
Real Data Lognormal 5.8196–3.0246
WISMC Lognormal 5.1304–2.3359
GARCH(2,1) Lognormal 5.7300–2.2500
EGARCH(2,1) Lognormal 5.0986–2.1024

K 0 ¼ 0:3%
Real Data Lognormal 5.4377–3.0407
WISMC Lognormal 4.8123–2.3468
GARCH(2,1) Lognormal 5.3411–2.2941
EGARCH(2,1) Lognormal 4.6954–2.1369
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Since the speed of recovery Sr is a nonlinear transformation of the recovery time

Rt, we gain its cdf analytically as follows

FSr
ðxÞ ¼ P ðSr � xÞ ¼ P

ðK �K 0Þ
Rt

� x

� �
¼ P

ðK �K 0Þ
x

� Rt

� �

¼ 1� FRt

ðK �K 0Þ
x

� �
:

Consequently, its density is given by

fSr
ðxÞ ¼ d

dx
½FSr

ðxÞ� ¼ fRt

ðK �K 0Þ
x

� � ðK �K 0Þ
x2

: ð21Þ

Table 15. Descriptive statistics of Rt (¯rst quartile, second quartile-median, third quartile,

mean, standard deviation, asymmetry index) and related censored units as a function of K

and K 0.

Descriptive statistics of RtðK;K 0Þ �K ¼ 0:7%

K 0 Q1 Q2 Q3 Mean SD AI Censoring rate

0.2% 43.796 336.837 2.591eþ03 3.265eþ04 3.165eþ06 0.010 41.0%

0.3% 29.571 229.913 1.788eþ03 2.340eþ04 2.382eþ06 0.010 37.0%

Table 16. Kullback–Leibler divergence computed

for the risk measures Rt, ¯xing K ¼ 0:7% and
considering K 0 ¼ 0:2% and K 0 ¼ 0:3%. The

smallest distances are in bold.

Kullback–Leibler for RtðK;K 0Þ �K ¼ 0:7%

Best Model KL

K 0 ¼ 0:2%

WISMC Lognormal 0.1191

GARCH(2,1) Lognormal 0.1053

EGARCH(2,1) Lognormal 0.1929

K 0 ¼ 0:3%
WISMC Lognormal 0.1126

GARCH(2,1) Lognormal 0.0965

EGARCH(2,1) Lognormal 0.1868

Table 17. Descriptive statistics of Sr (¯rst quartile, second quartile-median, third quartile,
mean, standard deviation, asymmetry index) and related censored units as a function of K

and K 0.

Descriptive statistics of SrðK;K 0Þ �K ¼ 0:7%

K 0 Q1 Q2 Q3 Mean SD AI Censoring rate

0.2% 2.366e-06 1.751e-05 1.409e-04 1.976e-04 5.623e-04 0.961 41.0%

0.3% 2.614e-06 1.975e-05 1.569e-04 1.886e-04 4.961e-04 1.021 37.0%
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In Tables 12, 17 and 22 we show the main descriptive statistics and the number of

censored units for the speed of recovery Sr, considering di®erent values of K and K 0.
Focusing on the average speeds, we note that they decrease as K 0 increases for each
¯xedK. For instance, in Table 12 we see that after recording the ¯rst 0.5%-change in

the drawdown, there is a faster drop of 0.2% rather than 0.3%.

Table 18. Selection of the best parametric model for the measure Rt on both real and simulated data

by mean of AIC and BIC criterion, ¯xing K ¼ 0:7% and considering K 0 ¼ 0:4% and K 0 ¼ 0:5%. AIC

and BIC relating to the best models are in bold.

Model selection for RtðK;K 0Þ �K ¼ 0:7%

Weibull Lognormal Exponential

AIC BIC AIC BIC AIC BIC

K 0 ¼ 0:4%

Real Data 8.628eþ03 8.638eþ03 8.429eþ03 8.439eþ03 1.002eþ04 1.002eþ04

WISMC 9.538eþ03 9.548eþ03 9.289eþ03 9.299eþ03 1.071eþ04 1.071eþ04
GARCH(1,1) 9.621eþ03 9.631eþ03 9.386eþ03 9.396eþ03 1.055eþ04 1.056eþ04

GARCH(1,2) 9.867eþ03 9.877eþ03 9.619eþ03 9.629eþ03 1.075eþ04 1.076eþ04

GARCH(2,1) 9.625eþ03 9.635eþ03 9.394eþ03 9.403eþ03 1.052eþ04 1.052eþ04

EGARCH(1,1) 9.910eþ03 9.920eþ03 9.632eþ03 9.642eþ03 1.090eþ04 1.091eþ04
EGARCH(1,2) 9.828eþ03 9.838eþ03 9.514eþ03 9.524eþ03 1.087eþ04 1.087eþ04

EGARCH(2,1) 9.811eþ03 9.821eþ03 9.514eþ03 9.524eþ03 1.103eþ04 1.104eþ04

EGARCH(2,2) 9.928eþ03 9.938eþ03 9.638eþ03 9.648eþ03 1.177eþ04 1.177eþ04

K 0 ¼ 0:5%

Real Data 8.602eþ03 8.611eþ03 8.352eþ03 8.361eþ03 1.045eþ04 1.046eþ04
WISMC 9.297eþ03 9.307eþ03 9.018eþ03 9.028eþ03 1.083eþ04 1.084eþ04

GARCH(1,1) 9.500eþ03 9.510eþ03 9.223eþ03 9.233eþ03 1.080eþ04 1.080eþ04

GARCH(1,2) 9.64eþ03 9.650eþ03 9.345eþ03 9.354eþ03 1.090eþ04 1.091eþ04
GARCH(2,1) 9.539eþ03 9.549eþ03 9.272eþ03 9.282eþ03 1.078eþ04 1.079eþ04

EGARCH(1,1) 9.663eþ03 9.673eþ03 9.345eþ03 9.355eþ03 1.098eþ04 1.098eþ04

EGARCH(1,2) 9.501eþ03 9.511eþ03 9.156eþ03 9.165eþ03 1.092eþ04 1.092eþ04

EGARCH(2,1) 9.627eþ03 9.637eþ03 9.295eþ03 9.305eþ03 1.096eþ04 1.096eþ04
EGARCH(2,2) 9.627eþ03 9.637eþ03 9.309eþ03 9.319eþ03 1.099eþ04 1.100eþ04

Table 19. Parameters of the best models for the measure Rt, ¯xing K ¼
0:7% and considering K 0 ¼ 0:4% and K 0 ¼ 0:5%.

Summary of the best statistical model selection for RtðK;K 0Þ �K ¼ 0:7%

Best Model Parameters

K 0 ¼ 0:4%
Real Data Lognormal 4.8758–2.9769
WISMC Lognormal 4.3804–2.3778
GARCH(1,1) Lognormal 4.7477–2.3065
EGARCH(1,1) Lognormal 3.9622–2.0625

K 0 ¼ 0:5%
Real Data Lognormal 4.1419–2.9328
WISMC Lognormal 3.8590–2.4380
GARCH(1,1) Lognormal 4.1426–2.3417
EGARCH(1,2) Lognormal 3.4267–2.0523
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Figure 12 depicts the best densities obtained using formula (21) forK ¼ 0:5% and

K 0 ¼ 0:2%. As we can observe, also the speed of recovery Sr is more foreseeable than

the speed of crash Sc since all the models have the same performance. Furthermore,

we don't report the Kullback–Leibler divergence of Sr because it is invariant with

respect to parameter transformations. Consequently, the Kullback–Leibler diver-

gence's values of the speed of recovery Sr coincide with those already shown in

Tables 11, 16 and 21 for the recovery time Rt.

Table 20. Descriptive statistics of Rt (¯rst quartile, second quartile-median, third quartile,

mean, standard deviation, asymmetry index) and related censored units as a function of K

and K 0.

Descriptive statistics of RtðK;K 0Þ �K ¼ 0:7%

K 0 Q1 Q2 Q3 Mean SD AI Censoring rate

0.4% 17.600 131.079 976.221 1.101eþ04 9.251eþ05 0.012 31.0%

0.5% 8.7048 62.922 454.884 4.640eþ03 3.422eþ05 0.013 25.0%

Table 21. Kullback–Leibler divergence com-
puted for the risk measures Rt, ¯xing K ¼ 0:7%

and considering K 0 ¼ 0:4% and K 0 ¼ 0:5%. The

smallest distances are in bold.

Kullback–Leibler for RtðK;K 0Þ �K ¼ 0:7%

Best Model KL

K 0 ¼ 0:4%

WISMC Lognormal 0.0830

GARCH(2,1) Lognormal 0.0811
EGARCH(2,1) Lognormal 0.2223

K 0 ¼ 0:5%

WISMC Lognormal 0.0504

GARCH(2,1) Lognormal 0.0633

EGARCH(2,1) Lognormal 0.1898

Table 22. Descriptive statistics of Sr (¯rst quartile, second quartile-median, third quartile,
mean, standard deviation, asymmetry index) and related censored units as a function of K

and K 0.

Descriptive statistics of SrðK;K 0Þ �K ¼ 0:7%

K 0 Q1 Q2 Q3 Mean SD AI Censoring rate

0.4% 3.341e-06 2.449e-05 1.820e-04 1.755e-04 4.157e-04 1.090 31.0%

0.5% 4.561e-06 3.252e-05 2.361e-04 1.519e-04 3.165e-04 1.131 25.0%
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5. Concluding Remarks

We analyze several risk measures related to market crises: the drawdown of ¯xed

level, the time to crash, the speed of crash, the recovery time and the speed of

recovery. In detail, we study these drawdown-based risk indicators using high-fre-

quency data of Fiat stock, listed on the Italian Stock Exchange. By applying a

variant of the classic semi-Markov chain (SMC) model, named weighted-indexed

Fig. 11. Density plots of Rt for K ¼ 0:5% and K 0 ¼ 0:2%.

Fig. 12. Density plots of Sr for K ¼ 0:5% and K 0 ¼ 0:2%.
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semi-Markov (WISMC) model, we generate a synthetic series of returns. To test the

potency of our model we make comparisons with the GARCH and EGARCHmodels,

simulating a synthetic series of returns for each selected econometric model. Next, we

compute the drawdown-based risk measures on both real and simulated data and we

explore them through parametric models whose estimation procedures are carried

out considering the right censorship.

Globally, the WISMC model provides better results than the chosen GARCH and

EGARCH models for the measure time to crash, regardless of the chosen K. On the

contrary, for the measure recovery time the WISMC model is more e±cient only

when the number of censored units are less than 30%. In this last situation, the

performance of the WISMC model probably decreases because the number of data is

insu±cient to estimate the kernel of the process. Therefore, our future goal is to use

the WISMC model but with an adequate dataset.
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6. Appendix

Table A.1 provides a list of the ¯nancial symbols involved in the analysis.
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